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6 Relevant Biomarkers
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21 Clinical Trials

 
Gene Finding Gene Finding

BRAF None detected KRAS None detected
BRCA1 None detected NRG1 None detected
BRCA2 None detected NTRK1 None detected
ERBB2 None detected NTRK2 None detected
FGFR1 None detected NTRK3 NTRK3 amplification
FGFR2 None detected PALB2 None detected
FGFR3 None detected RET None detected

Genomic Alteration Finding

Tumor Mutational Burden 15.15 Mut/Mb measured

Relevant Pancreatic Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC MTAP deletion

methylthioadenosine phosphorylase
Locus: chr9:21802646

None* None* 15

  
IIC CDKN2A deletion

cyclin dependent kinase inhibitor 2A
Locus: chr9:21968178

None* None* 5

  
IIC CCND1 amplification

cyclin D1
Locus: chr11:69455949

None* None* 2

  
IIC CDKN2B deletion

cyclin dependent kinase inhibitor 2B
Locus: chr9:22005728

None* None* 2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC NTRK3 amplification

neurotrophic receptor tyrosine kinase 3
Locus: chr15:88420191

None* None* 2

  
IIC FGF19 amplification

fibroblast growth factor 19
Locus: chr11:69513948

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
ASXL2 p.(R312*) c.934C>T, FGF3 amplification, FGF4 amplification, MSH3 p.(A57Pfs*14)
c.162_196delTGCAGCGGCCGCAGCGGCCGCAGCGCCCCCAGCGCinsCGCAGCG, Microsatellite stable, NFE2L2 p.(W24C)
c.72G>C, TP53 p.(V157F) c.469G>T, FMO3 p.(S310L) c.929C>T, HLA-B deletion, IDH2 amplification, IGF1R amplification,
NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

ASXL2 p.(R312*) c.934C>T . chr2:25982356 36.82% NM_018263.6 nonsense

MSH3 p.(A57Pfs*14) c.162_196delTGCAGC
GGCCGCAGCGGCCGC
AGCGCCCCCAGCGCin
sCGCAGCG

. chr5:79950708 1.67% NM_002439.5 frameshift Block
Substitution

NFE2L2 p.(W24C) c.72G>C COSM132852 chr2:178098973 21.34% NM_006164.5 missense

TP53 p.(V157F) c.469G>T COSM10670 chr17:7578461 38.69% NM_000546.6 missense

FMO3 p.(S310L) c.929C>T . chr1:171083248 23.64% NM_006894.6 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 28.63% NM_000903.3 missense

SPEN p.(K1452N) c.4356A>T . chr1:16257091 15.20% NM_015001.3 missense

REG1A p.(E52Q) c.154G>C . chr2:79348777 10.66% NM_002909.5 missense

CNTN6 p.(L811V) c.2431C>G . chr3:1425006 14.81% NM_014461.4 missense

P2RY1 p.(L244F) c.732G>C . chr3:152554303 4.55% NM_002563.5 missense

MSH3 p.(A57_A62del) c.162_179delTGCAGC
GGCCGCAGCGGC

. chr5:79950707 96.75% NM_002439.5 nonframeshift
Deletion

HLA-B p.([T118I;L119I]) c.353_355delCCCinsT
CA

. chr6:31324208 96.00% NM_005514.8 missense,
missense

NOTCH4 p.(D606H) c.1816G>C . chr6:32184767 39.31% NM_004557.4 missense

HDAC9 p.(L413I) c.1237C>A . chr7:18687609 11.57% NM_178425.3 missense

HDAC9 p.(K816N) c.2448G>C . chr7:18869153 4.45% NM_178425.3 missense

GLI3 p.(R990C) c.2968C>T . chr7:42005703 12.76% NM_000168.6 missense

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

CSMD3 p.(?) c.4896-4_4896-3delins
GT

. chr8:113516209 4.00% NM_198123.2 unknown

PCDH15 p.(G18S) c.52G>A . chr10:56423971 16.21% NM_001142763.2 missense

STAT6 p.(R115C) c.343C>T . chr12:57500611 10.15% NM_003153.5 missense

CAMKK2 p.(T362S) c.1084A>T . chr12:121691099 46.29% NM_001270485.2 missense

BLM p.(R898K) c.2693G>A . chr15:91328181 31.36% NM_000057.4 missense

PPM1D p.(T529N) c.1586C>A . chr17:58740681 13.08% NM_003620.4 missense

BRIP1 p.(S1031C) c.3092C>G . chr17:59761315 11.86% NM_032043.3 missense

MAP2K7 p.(?) c.567+3G>A . chr19:7975460 3.25% NM_145185.4 unknown

KEAP1 p.(R596Q) c.1787G>A . chr19:10597416 13.41% NM_203500.2 missense

CST5 p.(S53C) c.157A>T . chr20:23860157 14.53% NM_001900.5 missense

DNA Sequence Variants (continued)

 

 
Gene Locus Copy Number CNV Ratio

MTAP chr9:21802646 0.35 0.67

CDKN2A chr9:21968178 0.15 0.63

CCND1 chr11:69455949 28.48 6.29

CDKN2B chr9:22005728 0.15 0.63

NTRK3 chr15:88420191 4.93 1.59

FGF19 chr11:69513948 30.3 6.66

FGF3 chr11:69625020 11.38 2.88

FGF4 chr11:69588019 9.25 2.45

HLA-B chr6:31322252 0 0.43

IDH2 chr15:90628015 5.48 1.7

IGF1R chr15:99192814 5.33 1.67

FANCF chr11:22646196 4.88 1.57

FANCI chr15:89790860 5.45 1.69

BLM chr15:91290599 5.15 1.63

Copy Number Variations

 

Variant Details (continued)

 
MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase1. Methylthioadenosine phosphorylase, a key enzyme in
polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine
(MTA) to adenine and 5-methylthioribose-1-phosphate7,8. Loss of MTAP function is commonly observed in cancer due to deletion or

Biomarker Descriptions

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis
inhibitors and to methionine deprivation8.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be co-
deleted with CDKN2A in numerous solid and hematological cancers8,9. Consequently, biallelic loss of MTAP has been observed in
42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21%
of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell
lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma,
stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma,
adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma5,6. Somatic mutations in MTAP have been found in 3% of
uterine corpus endometrial carcinoma5,6.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression1. CDKN2A,
also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)10. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb11,12,13. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both
of which exhibit differential tumor suppressor functions14. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and
CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation1,14,15. CDKN2A
aberrations commonly co-occur with CDKN2B10. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways,
leading to uncontrolled cell proliferation16. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and
pancreatic cancer17,18.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number
loss, truncating, or missense mutations19. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell
carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of
esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach
adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma5,6. Biallelic
deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32%
of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic
adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and
cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical
carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma,
3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney
chromophobe5,6. Alterations in CDKN2A are also observed in pediatric cancers6. Biallelic deletion of CDKN2A is observed in 68% of
T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of
embryonal tumors6. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic
leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)6.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary
diagnostic markers of malignant peripheral nerve sheath tumors20,21,22. Additionally, deletion of CDKN2B is a molecular marker used in
staging Grade 4 pediatric IDH-mutant astrocytoma23. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A
LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib24,25,26. Alternatively,
CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme27. CDKN2A (p16)
expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive
head and neck cancer28,29,30,31.

CCND1 amplification

cyclin D1

Background: The CCND1 gene encodes the cyclin D1 protein, a member of the highly conserved D-cyclin family that also includes
CCND2 and CCND3145,146,147. D-type cyclins are known to regulate cell cycle progression by binding to and activating cyclin dependent
kinases (CDKs), specifically CDK4 and CDK6, which leads to the phosphorylation and inactivation of the retinoblastoma (RB1)
protein145,146. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition thereby
resulting in cell cycle progression, a common event observed in tumorigenesis145,146,148. Aberrations in the D-type cyclins have been
observed to promote tumor progression suggesting an oncogenic role for CCND1147,149.

Biomarker Descriptions (continued)
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Alterations and prevalence: Recurrent somatic alterations to CCND1, including mutations, amplifications, and chromosomal
translocations, are observed in many cancer types. A common mechanism of these alterations is to increase the expression and
nuclear localization of the cyclin D1 protein. Recurrent somatic mutations include missense mutations at codons T286 and P287
and c-terminal truncating mutations that are enriched in about 33% of uterine cancer, and missense mutations at Y44 that are
enriched in about 50% of Mantle cell lymphoma (MCL)5,6,150,151. These mutations block phosphorylation-dependent nuclear export and
proteolysis152,153,154,155. CCND1 is recurrently amplified in many cancer types, including up to 35% of esophageal cancer, 20-30% of
head and neck cancer, and 10-20% of breast, squamous lung, and bladder cancers5,6,56. MCL is genetically characterized by the t(11;14)
(q13;q13) translocation, a rearrangement that juxtaposes CCND1 to the immunoglobulin heavy (IgH) chain gene. This rearrangement
leads to constitutive expression of cyclin D1 and plays an important role in MCL pathogenesis156,157. Alterations in CCND1 are also
observed in pediatric cancers6. Amplification of CCND1 is observed in 1-3% of peripheral nervous system tumors (3 in 91 cases) and
bone cancer (1 in 42 cases) and less than 1% of Wilms tumor (1 in 136 cases) and B-lymphoblastic leukemia/lymphoma (2 in 731
cases)6.

Potential relevance: Currently, no therapies are approved for CCND1 aberrations. The t(11;14) translocation involving CCND1 can be
used to help diagnose some lymphoma subtypes including non-gastric MALT lymphoma, splenic marginal cell lymphoma, and mantle
cell lymphoma72.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression1,10. CDKN2B,
also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)10. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb11,12,13. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur
with CDKN2A10. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma1,32,33.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of
glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin
cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous
cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma,
11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma,
breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian
serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe5,6. Somatic mutations in CDKN2B are
observed in 2% of uterine carcinosarcoma5,6. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of
childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14%
of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers5,6. Somatic mutations in CDKN2B are
observed in less than 1% of bone cancer (1 in 327 cases)5,6.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular
marker used in staging grade 4 pediatric IDH-mutant astrocytoma23.

NTRK3 amplification

neurotrophic receptor tyrosine kinase 3

Background: The NTRK genes encode a family of neurotrophic receptor tyrosine kinases that function as receptors for nerve growth
factors89. NTRKs are activated by different neurotrophins and are important for the development of the nervous system89. The NTRK1,
2 and 3 proteins are also known as tropomyosin-related kinases (TrkA, TrkB, TrkC) because NTRK1 was originally discovered as part
of a chimeric fusion gene with tropomyosin-3 isolated from a human colon carcinoma cell line90. NTRKs are the target of recurrent
chromosomal rearrangements that generate fusion proteins containing the intact tyrosine kinase domain combined with numerous
fusion partner genes91,92. NTRK fusion kinases are constitutively active and lead to increased signaling through the RAS/RAF/MEK/
ERK, PI3K/AKT/MTOR, or PLCγ/PKC pathways, promoting cell growth and proliferation91,93.

Alterations and prevalence: NTRK fusions are infrequently observed in diverse pediatric and adult cancer types including glioma,
glioblastoma, lung adenocarcinoma, colorectal carcinoma, thyroid cancer, and sarcoma5,91,94,95,96,97,98. In certain cancer subtypes,
including melanoma, infantile fibrosarcoma, papillary thyroid carcinoma, and secretory carcinoma of the breast or salivary gland, NTRK
fusions are more prevalent91,98,99,100,101. NTRK3 is amplified in 3% of mesothelioma, ovarian serous cystadenocarcinoma, sarcoma,
stomach adenocarcinoma, and 2% of pancreatic adenocarcinoma, breast invasive carcinoma, cervical squamous cell carcinoma,
and lung squamous cell carcinoma5,6. Somatic mutations in NTRK3 are observed in 11% of skin cutaneous melanoma, 8% of lung
adenocarcinoma, uterine corpus endometrial carcinoma, 5% of lung squamous cell carcinoma, 4% of colorectal adenocarcinoma, 3% of
stomach adenocarcinoma, cervical squamous cell carcinoma, cholangiocarcinoma, esophageal adenocarcinoma, and head and neck

Biomarker Descriptions (continued)
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squamous cell carcinoma, and 2% of diffuse large B-cell lymphoma, adrenocortical carcinoma, liver hepatocellular carcinoma, uterine
carcinosarcoma, bladder urothelial carcinoma, and kidney chromophobe5,6. Alterations in NTRK3 are rare in pediatric cancers6. NTRK3
is amplified in 1.5% of Wilms tumor (2 in 136 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases) and
leukemia (1 in 250 cases)6. Somatic mutations in NTRK3 are observed in 3% of soft tissue sarcoma, 1% of glioma (3 in 297 cases), and
less than 1% of bone cancer (2 in 327 cases), B-lymphoblastic leukemia/lymphoma (1 in 252 cases), leukemia (1 in 311 cases), and
peripheral nervous system tumors (1 in 1158 cases)6.

Potential relevance: The first-generation selective tropomyosin receptor kinase (TRK) inhibitor, larotrectinib102, is approved (2018)
for the treatment of adults and pediatric patients with any solid tumors harboring NTRK gene fusions and is the first approved small
molecule inhibitor with a tissue agnostic indication. Entrectinib103 is another first-generation TRK inhibitor approved (2019) for adults
and pediatric patients with NTRK fusion-positive solid tumors as well as for adult patients with ROS1-positive non-small cell lung
cancer (NSCLC). However, acquired resistance to first-generation NTRK inhibition is often mediated by the acquisition of solvent-front
and gatekeeper mutations in the kinase domain104. Consequently, the second generation TRK inhibitor, repotrectinib105, is approved
by the FDA (2024) for the treatment of adult and pediatric patients with solid tumors that have an NTRK gene fusion. NTRK fusion is
diagnostic of NTRK-rearranged spindle cell carcinoma as defined by the World Health Organization (WHO)106.

FGF19 amplification

fibroblast growth factor 19

Background: The FGF19 gene encodes the fibroblast growth factor 19 protein, a member of the FGF protein family composed of
twenty-two members42,43. With the exception of four non-signaling FGF memebers (FGF11-14), FGF proteins function as ligands and
mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases42,43. Upon FGF-mediated stimulation,
FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/
STAT pathways thereby influencing cell proliferation, migration, and survival44,45,46. FGF19 is specifically observed to bind FGFR4 with
increased affinity in the presence of the transmembrane protein klotho beta (KLB) which functions as a cofactor in FGF19 mediated
FGFR4 activation74,75. FGF19-mediated aberrant signaling has been identified as an oncogenic driver in hepatocellular carcinoma74,76.

Alterations and prevalence: FGF19 amplification is observed in 35% of esophageal adenocarcinoma, 23% of head and neck squamous
cell carcinoma, 15% of breast invasive carcinoma, 13% of lung squamous cell carcinoma, 11% of cholangiocarcinoma and bladder
urothelial carcinoma, 7% of stomach adenocarcinoma and liver hepatocellular carcinoma, 5% of skin cutaneous melanoma and
ovarian serous cystadenocarcinoma, 3% of lung adenocarcinoma and cervical squamous cell carcinoma, and 2% of sarcoma, uterine
corpus endometrial carcinoma, and prostate adenocarcinoma5,6. FGF19 aberrations are also observed in pediatric cancers6. FGF19
amplification is observed in 3% of peripheral nervous system cancers (3 in 91 cases), 2% of bone cancer (1 in 42 cases), and less
than 1% of Wilms tumor (1 in 136 cases) and B-lymphoblastic leukemia/lymphoma (2 in 731 cases)6. Somatic mutations in FGF19 are
observed in less than 1% of bone cancer (2 in 327 cases)6.

Potential relevance: Currently, no therapies are approved for FGF19 aberrations. FGF19 overexpression is correlated with the
development and tumor progression in hepatocellular carcinoma77.

ASXL2 p.(R312*) c.934C>T

additional sex combs like 2, transcriptional regulator

Background: The ASXL2 gene encodes the ASXL transcriptional regulator 2 protein, a ligand-dependent co-activator and epigenetic
scaffolding protein involved in transcriptional regulation1,40. ASXL2 belongs to the ASXL gene family, which also includes ASXL1
and ASXL340. ASXL proteins contain a conserved C-terminal plant homeodomain (PHD), which facilitates interaction with DNA and
histones40. ASXL2 influences chromatin remodeling and transcription through interaction with BAP1 as well as other transcriptional
activators and repressors40.

Alterations and prevalence: Somatic mutations in ASXL2 are observed in 8% of uterine corpus endometrial carcinoma and bladder
urothelial carcinoma, 7% of skin cutaneous melanoma, 4% of colorectal adenocarcinoma, lung squamous cell carcinoma, and
uterine carcinosarcoma5,6. ASXL2 mutations in acute myeloid leukemia (AML) are observed to co-occur with t(8;21)(q22;q22)/
RUNX1::RUNX1T141. ASXL2 deletions are observed in 4% diffuse large B-cell lymphoma (DLBCL) and 2% of uterine carcinosarcoma5,6.

Potential relevance: Currently, no therapies are approved for ASXL2 aberrations. ASXL2 mutations have been shown to be associated
with better prognosis in pediatric AML with t(8;21)41.

Biomarker Descriptions (continued)
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FGF3 amplification

fibroblast growth factor 3

Background: The FGF3 gene encodes the fibroblast growth factor 3 protein, a member of the FGF protein family composed of twenty-
two members42,43. With the exception of four non-signaling FGF memebers (FGF11-14), FGF proteins function as ligands and mediate
the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases42,43. Upon FGF-mediated stimulation, FGFRs
activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT
pathways thereby influencing cell proliferation, migration, and survival44,45,46. Specifically, FGF3 has been shown to bind to both FGFR1
and FGFR247,48. Overexpression of FGF3 has been associated with certain tumor types including lung and liver cancers49,50. Additionally,
constitutive ectopic expression has been suggested to promote tumorigenesis in vitro, supporting an oncogenic role for FGF348.

Alterations and prevalence: FGF3 amplification is observed in about 35% of esophageal cancer, 24% of head and neck cancer, 10-15%
of invasive breast carcinoma, squamous lung, and bladder cancers as well as 5-10% of cholangiocarcinoma, melanoma, liver, ovarian
and stomach cancers5. FGF3 overexpression is correlated with non-small cell lung cancer (NSCLC) development as well as tumor
metastasis and recurrence in hepatocellular carcinoma49,50.

Potential relevance: Currently, no therapies are approved for FGF3 aberrations.

FGF4 amplification

fibroblast growth factor 4

Background: The FGF4 gene encodes the fibroblast growth factor 4 protein, a member of the FGF protein family, which is composed
of 22 members1,43. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate
the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases42,43. Upon FGF-mediated stimulation, FGFRs
activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT
pathways, thereby influencing cell proliferation, migration, and survival44,45,46.

Alterations and prevalence: Amplifications in FGF4 are observed in various tumor types, but most frequently are found in up to 35%
of esophageal adenocarcinoma, 24% of head and neck squamous cell carcinoma, 14% of breast invasive carcinoma, 12% of lung
squamous cell carcinoma, 11% of cholangiocarcinoma, 10% of bladder urothelial carcinoma, 7% of stomach adenocarcinoma, and
5% of liver hepatocellular carcinoma5,6. FGF4 overexpression has been associated with Kaposi sarcoma lesions as well as testicular
cancer87,88.

Potential relevance: Currently, no therapies are approved for FGF4 aberrations.

MSH3 p.(A57Pfs*14) c.162_196delTGCAGCGGCCGCAGCGGCCGCAGCGCCCCCAGCGCinsCGCAGCG

mutS homolog 3

Background: The MSH3 gene encodes the mutS homolog 3 protein1. MSH3 heterodimerizes with MSH2 to form the MutSβ complex, an
ATPase which functions in mismatch repair (MMR) by recognizing mismatches and initiating repair2,3. MSH3 is capable of interacting
with proliferating cellular nuclear antigen (PCNA), which may facilitate MutSβ localization to DNA mispairs2,3. Mutations in MSH3 have
been observed to be associated with microsatellite instability (MSI) in colon cancer4.

Alterations and prevalence: Somatic mutations in MSH3 are observed in 9% of uterine corpus endometrial carcinoma, 4% of
stomach adenocarcinoma, and 3% of skin cutaneous melanoma5,6. Biallelic deletion of MSH3 are observed in 3% of ovarian serous
cystadenocarcinoma and 2% of prostate adenocarcinoma5,6.

Potential relevance: Currently, no therapies are approved for MSH3 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome107. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue108,109. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2110. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S250111. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)111. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS112,113,114,115,116. MSI-H is a hallmark of Lynch

Biomarker Descriptions (continued)

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).



Report Date: 02 Feb 2026 8 of 19

 
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes109.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer108,109,113,117.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma108,109,118,119. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers118,119.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab120 (2014) and nivolumab121 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab120 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication120. Dostarlimab122 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer114,123. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab124 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location114,125,126. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS)
and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients126. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors127,128. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers127,128.

NFE2L2 p.(W24C) c.72G>C

nuclear factor, erythroid 2 like 2

Background: The NFE2L2 gene encodes the nuclear factor, erythroid 2 like 2 transcription factor, a member of the basic leucine zipper
protein family1. NFE2L2, also known as NRF2, is a proto-oncogene that activates transcription of genes with antioxidant response
elements (ARE)78. NFE2L2 targets include genes involved in antioxidant response, drug metabolism, DNA repair, autophagy, cell
survival, and proliferation78,79. NFE2L2 is negatively regulated by KEAP1, a Cul3 adaptor protein, that ubiquitinates NFE2L279.

Alterations and prevalence: Recurrent somatic mutations in NFE2L2 are observed in 14% of lung squamous cell carcinoma, 9% of
esophageal adenocarcinoma, and 5% of head and neck squamous cell carcinoma5,6. Deletion of NFE2L2 exon 2 or exon 2 and 3 result
in an isoform leading to the lack of the KEAP1 interacting domain, NFE2L2 stabilization, and expression of NFE2L2 targets such as
HMOX1, G6PD, PDGFC, FGF2, and NQO178,80.

Potential relevance: Currently, no therapies are approved for NFE2L2 aberrations. The FDA has granted fast track designation (2022) to
the mTORC 1/2 inhibitor, sapanisertib (CB-228)81, for patients with NFE2L2 mutated, unresectable or metastatic squamous non-small
cell lung cancer (NSCLC) who have received prior platinum-based chemotherapy and immune checkpoint inhibitor therapy.

TP53 p.(V157F) c.469G>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis51. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential52. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers53,54.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)5,6,55,56,57,58. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2825,6. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes59,60,61,62. Alterations in TP53 are also
observed in pediatric cancers5,6. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)5,6. Biallelic loss
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of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)5,6.

Potential relevance: The small molecule p53 reactivator, PC1458663 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation64,65. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma66. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)67,68,69,70,71. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant72. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system73.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells34. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M35. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self36,37,38. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B39.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma5,6. Biallelic loss of HLA-
B is observed in 5% of DLBCL5,6.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

IDH2 amplification

isocitrate dehydrogenase (NADP(+)) 2, mitochondrial

Background: The IDH1 and IDH2 genes encode homologous isocitrate dehydrogenase enzymes that catalyze the conversion of
isocitrate to α-ketoglutarate (α-KG)129. The IDH1 gene encodes the NADP+ dependent cytoplasmic isocitrate dehydrogenase enzyme;
IDH2 encodes the mitochondrial isoform129.

Alterations and prevalence: Recurrent somatic mutations in IDH1 and IDH2 are mutually exclusive and observed in several
malignancies, including glioma, chondrosarcoma, intrahepatic cholangiocarcinoma, acute myeloid leukemia (AML), and
myelodysplastic syndrome (MDS)130. Recurrent IDH2 variants include predominantly R140Q, R172K, and other substitutions at lower
frequencies131. These gain-of-function variants confer neomorphic enzyme activity132. Although wild-type enzymatic activity is ablated,
recurrent IDH2 variants catalyze the conversion of α-KG to D-2-hydroxyglutarate, an oncometabolite with diverse effects on cellular
metabolism, epigenetic regulation, redox states, and DNA repair129,133. Recurrent IDH2 mutations are present in 10-20% of patients with
AML and 5% of patients with MDS134,135,136. Alterations in IDH2 are rare in pediatric cancers5,6. Somatic mutations in IDH2 are observed
in 1% of leukemia (4 in 311 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (1 in 297 cases),
and bone cancer (1 in 327 cases)5,6.

Potential relevance: The IDH1 and IDH2 inhibitor vorasidenib137 is FDA-approved (2024) for the treatment of adults and children with
Grade 2 astrocytoma or oligodendroglioma with IDH2 R172G/K/M/S/W mutations. Enasidenib138 is FDA-approved (2017) for the
treatment of AML patients with IDH2 R140G/L/Q/W and R172G/K/M/S/W mutations. Acquired resistance to enasidenib in AML has
been linked to the emergence of Q316E or I319M mutations139. IDH2 mutations are associated with a favorable outcome in lower-
grade gliomas, astrocytoma, and oligodendroglioma with 1p/19 codeletion140,141. IDH2 R172 and R140Q mutations are associated
with poor risk in MDS68,142. IDH2 mutations are associated with inferior overall survival in polycythemia vera (PV) and essential
thrombocythemia (ET), as well as inferior leukemia-free survival in primary myelofibrosis (PMF)143,144. Mutations in IDH2 are diagnostic
of IDH-mutated astrocytoma and oligodendroglioma with 1p/19q-codeletion subtypes of central nervous system (CNS) tumors66,140.
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IGF1R amplification

insulin like growth factor 1 receptor

Background: The IGF1R gene encodes the insulin like growth factor 1 receptor, a type II receptor tyrosine kinase in the insulin receptor
(IR) family along with IGF2R and INSR82. IR family proteins, including IGF1R, bind ligands insulin, insulin-like growth factors 1 and 2
(IGF-1/2), and serum insulin-like growth factor binding proteins (IGFBPs)83. IGF1R can homo- or heterodimerize with IGF2R to control
ligand-induced activation84. After activation and autophosphorylation, docking sites allow for the binding of IRS1, IRS2, IRS3, IRS4,
and SHC proteins, resulting in the activation of the the PI3K/AKT and RAS/RAF/MAPK signaling pathways84. IGF1R is ubiquitously
expressed in normal tissues and plays a role in growth and glucose homeostasis85. In cancer, IGF1R overexpression is critical for
anchorage-independent growth85.

Alterations and prevalence: Somatic mutations in IGF1R are observed in 8% of uterine cancer, 6% of melanoma, 4% of stomach, and 3%
of colorectal and bladder cancers5,6. Amplifications are observed in up to 5% of sarcoma, 4% of ovarian carcinoma, and 3% of breast,
stomach, esophageal, and adrenocortical cancer5,6.

Potential relevance: Currently, no therapies are approved for IGF1R aberrations. IGF1R localization has been implicated in
chemotherapy resistance, with chemotherapy resistant cell lines presenting with significantly higher IGF1R nuclear expression86.

Biomarker Descriptions (continued)

 

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed
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AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

MRTX-1719, chemotherapy      (II/III)

AMG 193      (I/II)

CTS-3497      (I/II)

IDE397      (I/II)

PH020-803      (I/II)

TNG-456, abemaciclib      (I/II)

TNG-462      (I/II)

ABSK-131      (I)

GH-56      (I)

GTA-182      (I)

HSK-41959      (I)

ISM-3412      (I)

MRTX-1719      (I)

MTAP deletion

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

S-095035, TNG-462      (I)

SYH-2039      (I)

MTAP deletion (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib      (II)

palbociclib, abemaciclib      (II)

AMG 193      (I/II)

ABSK-131      (I)

CID-078      (I)

CDKN2A deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

abemaciclib      (II)

palbociclib      (II)

CCND1 amplification

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib, abemaciclib      (II)

CID-078      (I)

CDKN2B deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

larotrectinib      (II)

NTRK3 amplification

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

TYRA-430      (I)

FGF19 amplification

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Gene/Genomic Alteration Finding

LOH percentage 41.37%
BRCA1 LOH, 17q21.31(41197602-41276231)x3
BRCA2 LOH, 13q13.1(32890491-32972932)x2
ATM LOH, 11q22.3(108098341-108236285)x2
BRIP1 LOH, 17q23.2(59760627-59938976)x3
BRIP1 SNV, S1031C, AF:0.12
CDK12 LOH, 17q12(37618286-37687611)x3
CHEK1 LOH, 11q24.2(125496639-125525271)x2
CHEK2 LOH, 22q12.1(29083868-29130729)x3
FANCL LOH, 2p16.1(58386886-58468467)x3
RAD51C LOH, 17q22(56769933-56811619)x3
RAD51D LOH, 17q12(33427950-33446720)x3

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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