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Relevant Lung Cancer Findings

Gene

ALK
BRAF
EGFR
ERBB2
KRAS
MET

Finding

None detected
None detected
None detected
None detected
None detected
None detected

Genomic Alteration

Tumor Mutational Burden

Relevant Biomarkers

Gene Finding

NTRK1 None detected
NTRK2 None detected
NTRK3 None detected
RET None detected
ROS1 None detected

2.84 Mut/Mb measured

No biomarkers associated with relevant evidence found in this sample

Prevalent cancer biomarkers without relevant evidence based on included data sources

MAP2K7 deletion, Microsatellite stable, NF2 p.(N286%*) c.855_856insT, TP53 ¢.375+1G>T, UGT1AT p.(G71R) c.211G>A,
FATT1 p.(T2369Rfs*2) c.7105delA, HLA-A deletion, HLA-B deletion, PDCD1LG2 amplification, NOTCH1 deletion, NQO1 p.

(P187S) ¢.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene Amino Acid Change
NF2 p-(N286%)
TP53 p.(?)

UGT1A1  p.(G71R)

FAT1 p.(T2369Rfs*2)

€.855_856insT

Variant ID Locus Freq:tilne;; Transcript Variant Effect
chr22:30061020 6.31% NM_000268.4 nonsense
chr17:7579311 7.31% NM_000546.6 unknown

COSM4415616  chr2:234669144 47.49% NM_000463.3 missense
chr4:187540634 23.58% NM_005245.4 frameshift

Deletion

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Allele
Gene Amino Acid Change  Coding Locus Frequency Transcript Variant Effect
NQO1 p.(P187S) ¢.559C>T chr16:69745145 99.10% NM_000903.3 missense
VHL p.(G104V) c.311G>T chr3:10183842 3.52% NM_000551.4 missense
MSH3 p.(A61_P63dup) ¢.189_190insGCAGCG . chr5:79950735 54.70% NM_002439.5 nonframeshift
Cccc Insertion
HLA-B p.(IN1041;L105A]) ¢.311_314delACCTinsT . chr6:31324494 25.00% NM_005514.8 missense,
CGC missense
PLXDC2 p.(A470S) c.1408G>T chr10:20534369 4.36% NM_032812.9 missense
A1CF p.(V235I) c.703G>A chr10:52587957 49.83% NM_138932.2 missense
Copy Number Variations
Gene Locus Copy Number CNV Ratio
MAP2K7 chr19:7968792 0.15 0.63
HLA-A chr6:29910229 0.43 0.69
HLA-B chr6:31322252 0 0.47
PDCD1LG2 chr9:5522530 7.33 2.06
NOTCH1 chr9:139390441 0.5 0.7

Biomarker Descriptions

MAP2K7 deletion
mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7'. MAP2K?7 is involved

in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10646566, Activation of MAPK
proteins occurs through a kinase signaling cascade®46567, Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family
members646567 Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved
in several cellular processes including cell proliferation, differentiation, and inflammation646567,

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal
adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinomag?. Biallelic deletions are observed in
4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma3?.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome#!. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue4243, MSlI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS244, Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(PMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25045. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)45. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS4647.4849.50 MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes43.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
Cancer42,43,47,51 .

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma#2435253_MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers5253,

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab54 (2014) and nivolumabss (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab54 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-

H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indications4. Dostarlimab3¢ (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dAMMR/
MSI-H advanced or metastatic colon or rectal cancer4857. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab58 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location485960, Specifically, MSI-H is a strong prognostic indicator of better overall survival (0S) and
relapse free survival (RFS) in stage Il as compared to stage Ill colorectal cancer patients®0. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors®162, However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers®1.62,

NF2 p.(N286*) c.855_856insT
neurofibromin 2

Background: The NF2 gene encodes the cytoskeletal Merlin (Moesin-ezrin-radixin-like) protein’. NF2 is also known as Schwannomin
due to its prevalence in neuronal Schwann cells36. NF2 is structurally and functionally related to the Ezrin, Radixin, Moesin (ERM) family
which is known to control plasma membrane function, thereby influencing cell shape, adhesion, and growth373839. NF2 regulates
several cellular pathways including the RAS/RAF/MEK/ERK, PI3K/AKT, and Hippo-YAP pathways, thus impacting cell motility, adhesion,
invasion, proliferation, and apoptosis37.383940, NF2 functions as a tumor suppressor wherein loss of function mutations are shown to
confer a predisposition to tumor development363839, Specifically, deleterious germline mutations or deletion of NF2 leading to loss

of heterozygosity (LOH) is causal of neurofibromatosis type 2, a tumor prone disorder characterized by early age onset of multiple
Schwannomas and meningiomas363839,

Alterations and prevalence: Somatic mutations in NF2 are predominantly misssense or truncating and are observed in about

23% of mesothelioma, 6% of cholangiocarcinoma, 4% of uterine corpus endometrial carcinoma, 3% of kidney renal papillary cell
carcinoma (pRCC), bladder urothelial carcinoma, and cervical squamous cell carcinoma, and 2% of colorectal adenocarcinoma, skin
cutaneous melanoma, lung squamous cell carcinoma, and liver hepatocellular carcinomag?. Biallelic loss of NF2 is observed in 8% of
mesothelioma and 2% of thymomas?®. Structural variants in NF2 are observed in 3% of cholangiocarcinoma and 2% of mesotheliomas?.
Alterations in NF2 are also observed in pediatric cancers®. Somatic mutations in NF2 are observed in less than 1% of bone cancer (2 in
327 cases) and glioma (1 in 297 cases)?. Biallelic deletion of NF2 is observed in less than 1% of B-lymphoblastic leukemia/lymphoma
(1in 731 cases)®.

Potential relevance: Currently, no therapies are approved for NF2 aberrations.

TP53 ¢.375+1G>T
tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair'. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDMZ2, a substrate recognition factor for ubiquitin-dependent proteolysis'0. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential''. Germline mutations in TP53 are

the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers’213,

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)89.14151617_ Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R28289. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes8192021 Alterations in TP53 are also

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

observed in pediatric cancers8?. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)8®. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)8?.

Potential relevance: The small molecule p53 reactivator, PC1458622 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation2324, TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma25. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)26:27.2829.30 |n mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant3'. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging systems32.

UGT1A1 p.(G71R) ¢.211G>A
UDP glucuronosyltransferase family T member A1

Background: The UGTTA1 gene encodes UDP glucuronosyltransferase family T member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily’77. UGTs are microsomal membrane-bound

enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites?7.78. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance”®. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation79.808182_ Furthermore, UGT1A1 polymorphisms, such as UGTTA1*28,
UGT1A1%93, and UGT1A1%*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-3883,

Alterations and prevalence: Biallelic deletion of UGTTA1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinomas?.

Potential relevance: Currently, no therapies are approved for UST1A1 aberrations.

FAT1 p.(T2369Rfs*2) c.7105delA
FAT atypical cadherin 1

Background: FAT1 encodes the FAT atypical cadherin 1 protein, a member of the cadherin superfamily characterized by the presence
of cadherin-type repeats’.63. FAT cadherins, which also include FAT2, FAT3, and FAT4, are transmembrane proteins containing a
cytoplasmic domain and a number of extracellular laminin G-like motifs and EGF-like motifs, which contributes to their individual
functions®3. The cytoplasmic tail of FAT1 is known to interact with a number of protein targets involved in cell adhesion, proliferation,
migration, and invasion®3. FAT1 has been observed to influence the regulation of several oncogenic pathways, including the WNT/B-
catenin, Hippo, and MAPK/ERK signaling pathways, as well as epithelial to mesenchymal transition3. Alterations of FAT1 lead to down-
regulation or loss of function, supporting a tumor suppressor role for FAT163,

Alterations and prevalence: Somatic mutations in FAT1 are predominantly truncating although, the R1627Q mutation has been
identified as a recurrent hotspot82. Mutations in FAT1 are observed in 22% of head and neck squamous cell carcinoma, 20% of
uterine corpus endometrial carcinoma, 14% of lung squamous cell carcinoma and skin cutaneous melanoma, and 12% diffuse
large b-cell ymphoma and bladder urothelial carcinoma?®. Biallelic loss of FAT1 is observed in 7% of head and neck squamous
cell carcinoma, 6% of lung squamous cell carcinoma, 5% of esophageal adenocarcinoma, and 4% of diffuse large b-cell lymphoma,
stomach adenocarcinoma and uterine carcinosarcomas®.

Potential relevance: Currently, no therapies are approved for FAT1 aberrations.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

HLA-A deletion
major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class | molecules are heterodimers composed of two polypeptide chains, a and B2M3. The classical MHC class | genes
include HLA-A, HLA-B, and HLA-C and encode the a polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self456. Downregulation of MHC class | promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-A?.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell ymphoma (DLBCL), 4% of cervical
squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus
endometrial carcinoma and stomach adenocarcinomas?. Biallelic loss of HLA-A is observed in 4% of DLBCL8".

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

HLA-B deletion
major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class |, B'. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class | molecules are heterodimers composed of two polypeptide chains, a and B2M3. The classical MHC class | genes
include HLA-A, HLA-B, and HLA-C and encode the a polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self456. Downregulation of MHC class | promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B?.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell ymphoma (DLBCL), 5% of

cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma3?. Biallelic loss of HLA-
B is observed in 5% of DLBCLS8?.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

PDCD1LG2 amplification
programmed cell death 1 ligand 2

Background: The PDCD1LG2 gene encodes the programmed cell death 1 ligand 2, also known as PD-L2'. PDCD1LG2 is a type

| transmembrane protein expressed by antigen-presenting cells and tumor cells3334 PDCD1LG2 is an immunoregulatory ligand

of PDCD1, a type | transmembrane inhibitory receptor and immune checkpoint belonging to the CD28/CTLA-4 family within the
immunoglobulin superfamily3334. PDCD1LG2 and CD274 (also known as PD-L1) act as co-inhibitors and regulate immune tolerance of
central and peripheral T-cells, reducing proliferation and cytokine production333s,

Alterations and prevalence: Somatic mutations in PDCD1LG2 are observed in 2% of skin cutaneous melanoma and uterine corpus
endometrial carcinomas&®. Amplifications are observed in 4% of sarcoma, head and neck squamous cell carcinoma, and diffuse large B-
cell lymphoma (DLBCL), and 2% of ovarian serous cystadenocarcinoma, esophageal adenocarcinoma, stomach adenocarcinoma, lung
squamous cell carcinoma, bladder urothelial carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinomas?. Alterations
in PDCD1LG2 are rare in pediatric cancers?. Somatic mutations in PDCD1LG2 are observed in 3% of pediatric soft tissue sarcoma®.
Amplification of PDCD1LG2 is observed in 1% of Wilms tumor (2 in 136 cases) and less than 1% of B-lymphoblastic leukemia/
lymphoma (2 in 731 cases)®.

Potential relevance: Currently, no therapies are approved for PDCD1LG2 aberrations.

NOTCH?1 deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH
family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor

(EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting
NOTCH signaling®8. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

genes involved in regulation of cell proliferation, differentiation, growth, and metabolism®70. In cancer, depending on the tumor type,
aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for
NOTCH family members71.7273.74,

Alterations and prevalence: Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma,
melanoma, gastric, esophageal, lung, and uterine cancers82.15. Activating mutations in either the heterodimerization or PEST domains
of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia?576.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMPS5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNBT, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIFTAX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFRS3,
FGFR4, FLT3, FLT4, FOXAT, FOXL2, FOX0O1, GATA2, GLIT, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJS5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,

MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STATSB, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AFT1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARIDTA, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARDT,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNET1,
CD274,CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK?2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICERT, DNMT3A, DOCKS,
DPYD, DSC1, DSC3, EGFR, EIFTAX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXAT, FUBP1, FYN, GATA2, GATAS, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDACY, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAPT, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPKT1,
MAPKS8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF®6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDMT1, PRDM9, PRKACA, PRKARTA, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RADS51D,
RADS52, RAD54L, RAF1, RARA, RASAT, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROST,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCBT1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAPT,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Genes Assayed (continued)

Genes Assayed with Full Exon Coverage

ABRAXAST, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMERT, APC, ARHGAP35, ARIDTA, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXINT, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENOT1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDACY, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAKT1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCHT,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMST,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKARTA, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RADS51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPAT, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCBT,
SOCST, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

HRR Details
Gene/Genomic Alteration Finding
LOH percentage 0.0%
Not Detected Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCAT,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current

as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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