

Patient Name: 유대준
Gender: Male
Sample ID: N26-21

Primary Tumor Site: Lung
Collection Date: 2025.12.30.

Sample Cancer Type: Lung Cancer

Table of Contents

Variant Details
Biomarker Descriptions

Page

1

2

Report Highlights

0 Relevant Biomarkers
0 Therapies Available
0 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	None detected	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	2.84 Mut/Mb measured

Relevant Biomarkers

No biomarkers associated with relevant evidence found in this sample

Prevalent cancer biomarkers without relevant evidence based on included data sources

MAP2K7 deletion, Microsatellite stable, NF2 p.(N286*) c.855_856insT, TP53 c.375+1G>T, UGT1A1 p.(G71R) c.211G>A, FAT1 p.(T2369Rfs*2) c.7105delA, HLA-A deletion, HLA-B deletion, PDCD1LG2 amplification, NOTCH1 deletion, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
NF2	p.(N286*)	c.855_856insT	.	chr22:30061020	6.31%	NM_000268.4	nonsense
TP53	p.(?)	c.375+1G>T	.	chr17:7579311	7.31%	NM_000546.6	unknown
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	47.49%	NM_000463.3	missense
FAT1	p.(T2369Rfs*2)	c.7105delA	.	chr4:187540634	23.58%	NM_005245.4	frameshift Deletion

Variant Details (continued)

DNA Sequence Variants (continued)

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
NQO1	p.(P187S)	c.559C>T	.	chr16:69745145	99.10%	NM_000903.3	missense
VHL	p.(G104V)	c.311G>T	.	chr3:10183842	3.52%	NM_000551.4	missense
MSH3	p.(A61_P63dup)	c.189_190insGCAGCG CCC	.	chr5:79950735	54.70%	NM_002439.5	nonframeshift Insertion
HLA-B	p.([N104I;L105A])	c.311_314delACCTinsT CGC	.	chr6:31324494	25.00%	NM_005514.8	missense, missense
PLXDC2	p.(A470S)	c.1408G>T	.	chr10:20534369	4.36%	NM_032812.9	missense
A1CF	p.(V235I)	c.703G>A	.	chr10:52587957	49.83%	NM_138932.2	missense

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
MAP2K7	chr19:7968792	0.15	0.63
HLA-A	chr6:29910229	0.43	0.69
HLA-B	chr6:31322252	0	0.47
PDCD1LG2	chr9:5522530	7.33	2.06
NOTCH1	chr9:139390441	0.5	0.7

Biomarker Descriptions

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7¹. MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10^{64,65,66}. Activation of MAPK proteins occurs through a kinase signaling cascade^{64,65,67}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{64,65,67}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{64,65,67}.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{8,9}. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma^{8,9}.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁴¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{42,43}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁴⁴. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁴⁵. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁴⁵. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{46,47,48,49,50}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁴³.

Biomarker Descriptions (continued)

LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{42,43,47,51}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{42,43,52,53}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{52,53}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁵⁴ (2014) and nivolumab⁵⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁵⁴ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁵⁴. Dostarlimab⁵⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{48,57}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁵⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{48,59,60}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁶⁰. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{61,62}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{61,62}.

NF2 p.(N286*) c.855_856insT

neurofibromin 2

Background: The NF2 gene encodes the cytoskeletal Merlin (Moesin-ezrin-radixin-like) protein¹. NF2 is also known as Schwannomin due to its prevalence in neuronal Schwann cells³⁶. NF2 is structurally and functionally related to the Ezrin, Radixin, Moesin (ERM) family which is known to control plasma membrane function, thereby influencing cell shape, adhesion, and growth^{37,38,39}. NF2 regulates several cellular pathways including the RAS/RAF/MEK/ERK, PI3K/AKT, and Hippo-YAP pathways, thus impacting cell motility, adhesion, invasion, proliferation, and apoptosis^{37,38,39,40}. NF2 functions as a tumor suppressor wherein loss of function mutations are shown to confer a predisposition to tumor development^{36,38,39}. Specifically, deleterious germline mutations or deletion of NF2 leading to loss of heterozygosity (LOH) is causal of neurofibromatosis type 2, a tumor prone disorder characterized by early age onset of multiple Schwannomas and meningiomas^{36,38,39}.

Alterations and prevalence: Somatic mutations in NF2 are predominantly missense or truncating and are observed in about 23% of mesothelioma, 6% of cholangiocarcinoma, 4% of uterine corpus endometrial carcinoma, 3% of kidney renal papillary cell carcinoma (pRCC), bladder urothelial carcinoma, and cervical squamous cell carcinoma, and 2% of colorectal adenocarcinoma, skin cutaneous melanoma, lung squamous cell carcinoma, and liver hepatocellular carcinoma^{8,9}. Biallelic loss of NF2 is observed in 8% of mesothelioma and 2% of thymoma^{8,9}. Structural variants in NF2 are observed in 3% of cholangiocarcinoma and 2% of mesothelioma^{8,9}. Alterations in NF2 are also observed in pediatric cancers⁹. Somatic mutations in NF2 are observed in less than 1% of bone cancer (2 in 327 cases) and glioma (1 in 297 cases)⁹. Biallelic deletion of NF2 is observed in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)⁹.

Potential relevance: Currently, no therapies are approved for NF2 aberrations.

TP53 c.375+1G>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis¹⁰. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹¹. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{12,13}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,14,15,16,17}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{8,9}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{18,19,20,21}. Alterations in TP53 are also

Biomarker Descriptions (continued)

observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586²² (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{23,24}. TP53 mutations are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma²⁵. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{26,27,28,29,30}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant³¹. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system³².

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,77}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{77,78}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance⁷⁹. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{79,80,81,82}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38⁸³.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

FAT1 p.(T2369Rfs*2) c.7105delA

FAT atypical cadherin 1

Background: FAT1 encodes the FAT atypical cadherin 1 protein, a member of the cadherin superfamily characterized by the presence of cadherin-type repeats^{1,63}. FAT cadherins, which also include FAT2, FAT3, and FAT4, are transmembrane proteins containing a cytoplasmic domain and a number of extracellular laminin G-like motifs and EGF-like motifs, which contributes to their individual functions⁶³. The cytoplasmic tail of FAT1 is known to interact with a number of protein targets involved in cell adhesion, proliferation, migration, and invasion⁶³. FAT1 has been observed to influence the regulation of several oncogenic pathways, including the WNT/β-catenin, Hippo, and MAPK/ERK signaling pathways, as well as epithelial to mesenchymal transition⁶³. Alterations of FAT1 lead to downregulation or loss of function, supporting a tumor suppressor role for FAT1⁶³.

Alterations and prevalence: Somatic mutations in FAT1 are predominantly truncating although, the R1627Q mutation has been identified as a recurrent hotspot^{8,9}. Mutations in FAT1 are observed in 22% of head and neck squamous cell carcinoma, 20% of uterine corpus endometrial carcinoma, 14% of lung squamous cell carcinoma and skin cutaneous melanoma, and 12% diffuse large b-cell lymphoma and bladder urothelial carcinoma^{8,9}. Biallelic loss of FAT1 is observed in 7% of head and neck squamous cell carcinoma, 6% of lung squamous cell carcinoma, 5% of esophageal adenocarcinoma, and 4% of diffuse large b-cell lymphoma, stomach adenocarcinoma and uterine carcinosarcoma^{8,9}.

Potential relevance: Currently, no therapies are approved for FAT1 aberrations.

Biomarker Descriptions (continued)

HLA-A deletion

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A⁷.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{8,9}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁷.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

PDCD1LG2 amplification

programmed cell death 1 ligand 2

Background: The PDCD1LG2 gene encodes the programmed cell death 1 ligand 2, also known as PD-L2¹. PDCD1LG2 is a type I transmembrane protein expressed by antigen-presenting cells and tumor cells^{33,34}. PDCD1LG2 is an immunoregulatory ligand of PDCD1, a type I transmembrane inhibitory receptor and immune checkpoint belonging to the CD28/CTLA-4 family within the immunoglobulin superfamily^{33,34}. PDCD1LG2 and CD274 (also known as PD-L1) act as co-inhibitors and regulate immune tolerance of central and peripheral T-cells, reducing proliferation and cytokine production^{33,35}.

Alterations and prevalence: Somatic mutations in PDCD1LG2 are observed in 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{8,9}. Amplifications are observed in 4% of sarcoma, head and neck squamous cell carcinoma, and diffuse large B-cell lymphoma (DLBCL), and 2% of ovarian serous cystadenocarcinoma, esophageal adenocarcinoma, stomach adenocarcinoma, lung squamous cell carcinoma, bladder urothelial carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{8,9}. Alterations in PDCD1LG2 are rare in pediatric cancers⁹. Somatic mutations in PDCD1LG2 are observed in 3% of pediatric soft tissue sarcoma⁹. Amplification of PDCD1LG2 is observed in 1% of Wilms tumor (2 in 136 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases)⁹.

Potential relevance: Currently, no therapies are approved for PDCD1LG2 aberrations.

NOTCH1 deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling⁶⁸. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several

Biomarker Descriptions (continued)

genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{69,70}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{71,72,73,74}.

Alterations and prevalence: Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma, melanoma, gastric, esophageal, lung, and uterine cancers^{8,9,15}. Activating mutations in either the heterodimerization or PEST domains of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia^{75,76}.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed (continued)

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	0.0%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
11. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
12. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
13. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
14. Peter S et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
15. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
16. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
17. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
18. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
19. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514
20. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene.* 2007 Apr 2;26(15):2157-65. PMID: 17401424
21. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
22. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
23. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
24. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165
25. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
26. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood.* 2022 Sep 22;140(12):1345-1377. PMID: 35797463
27. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
28. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
29. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 1.2026]

References (continued)

30. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
31. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
32. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
33. Ai et al. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. *Drug Des Devel Ther.* 2020;14:3625-3649. PMID: 32982171
34. Yang et al. Correlation Between PD-L2 Expression and Clinical Outcome in Solid Cancer Patients: A Meta-Analysis. *Front Oncol.* 2019;9:47. PMID: 30891423
35. Latchman et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. *Nat Immunol.* 2001 Mar;2(3):261-8. PMID: 11224527
36. Evans. Neurofibromatosis Type 2 (NF2): A Clinical and Molecular Review. *Orphanet J Rare Dis.* 2009 Jun 19;4:16. doi: 10.1186/1750-1172-4-16. PMID: 19545378
37. Bretscher et al. ERM-Merlin and EBP50 protein families in plasma membrane organization and function. *Annu. Rev. Cell Dev. Biol.* 2000;16:113-43. PMID: 11031232
38. Petrilli et al. Role of Merlin/NF2 inactivation in tumor biology. *Oncogene.* 2016 Feb 4;35(5):537-48. PMID: 25893302
39. Morrow et al. Merlin: the wizard requires protein stability to function as a tumor suppressor. *Biochim. Biophys. Acta.* 2012 Dec;1826(2):400-6. PMID: 22750751
40. Mia et al. Targeting NF2-Hippo/Yap signaling pathway for cardioprotection after ischemia/reperfusion injury. *Ann Transl Med.* 2016 Dec; 4(24): 545. PMID: 28149906
41. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
42. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
43. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
44. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
45. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
46. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
47. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
48. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
49. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
50. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
51. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
52. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
53. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
54. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
55. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
56. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
57. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
58. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
59. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
60. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982

References (continued)

61. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan;16(1). PMID: 30654522
62. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
63. Peng et al. Role of FAT1 in health and disease. *Oncol Lett.* 2021 May;21(5):398. PMID: 33777221
64. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. *Clin. Cancer Res.* 2013 May 1;19(9):2301-9. PMID: 23406774
65. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. *Br J Pharmacol.* 2014 Jan;171(1):24-37. PMID: 24117156
66. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. *Microbiol Mol Biol Rev.* 2011 Mar;75(1):50-83. PMID: 21372320
67. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int J Mol Sci.* 2020 Feb 7;21(3). PMID: 32046099
68. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. *Exp. Cell Res.* 2005 Jan 15;302(2):281-91. PMID: 15561108
69. Bray. Notch signalling in context. *Nat. Rev. Mol. Cell Biol.* 2016 Nov;17(11):722-735. PMID: 27507209
70. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. *Cell.* 2009 Apr 17;137(2):216-33. PMID: 19379690
71. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. *J. Exp. Med.* 2011 Sep 26;208(10):1931-5. PMID: 21948802
72. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. *Nat Rev Urol.* 2018 Jun;15(6):345-357. PMID: 29643502
73. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. *Proc. Natl. Acad. Sci. U.S.A.* 2011 Oct 25;108(43):17761-6. PMID: 22006338
74. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. *Am J Cancer Res.* 2019;9(5):837-854. PMID: 31218097
75. Weng et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. *Science.* 2004 Oct 8;306(5694):269-71. PMID: 15472075
76. Breit et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. *Blood.* 2006 Aug 15;108(4):1151-7. PMID: 16614245
77. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxification. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
78. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
79. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
80. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
81. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget.* 2017 Jan 10;8(2):3640-3648. PMID: 27690298
82. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One.* 2015;10(5):e0127524. PMID: 26010150
83. Karas et al. JCO Oncol Pract. 2021 Dec 3:OP2100624. PMID: 34860573