

Patient Name: 양봉금  
Gender: Female  
Sample ID: N26-19

Primary Tumor Site: Liver  
Collection Date: 2025.07.08.

## Sample Cancer Type: Liver Cancer

| Table of Contents        | Page |
|--------------------------|------|
| Variant Details          | 2    |
| Biomarker Descriptions   | 2    |
| Relevant Therapy Summary | 7    |

**Report Highlights**

3 Relevant Biomarkers  
1 Therapies Available  
6 Clinical Trials

## Relevant Liver Cancer Findings

| Gene  | Finding       |
|-------|---------------|
| BRAF  | None detected |
| NTRK1 | None detected |
| NTRK2 | None detected |
| NTRK3 | None detected |
| RET   | None detected |

  

| Genomic Alteration      | Finding                     |
|-------------------------|-----------------------------|
| Tumor Mutational Burden | <b>2.85 Mut/Mb measured</b> |

## Relevant Biomarkers

| Tier | Genomic Alteration                                                                                                                                                           | Relevant Therapies<br>(In this cancer type) | Relevant Therapies<br>(In other cancer type) | Clinical Trials |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------|
| IIC  | <i>IDH2 p.(R172K) c.515G&gt;A</i><br><br>isocitrate dehydrogenase (NADP(+)) 2, mitochondrial<br>Allele Frequency: 25.99%<br>Locus: chr15:90631838<br>Transcript: NM_002168.4 | None*                                       | <b>vorasidenib</b> 1, 2 / II+                | 0               |
| IIC  | <i>CDKN2A deletion</i><br><br>cyclin dependent kinase inhibitor 2A<br>Locus: chr9:21968178                                                                                   | None*                                       | None*                                        | 5               |
| IIC  | <i>NF2 deletion</i><br><br>neurofibromin 2<br>Locus: chr22:29999923                                                                                                          | None*                                       | None*                                        | 1               |

\* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

\* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. *J Mol Diagn*. 2017 Jan;19(1):4-23.

## Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, PBRM1 p.(N258Kfs\*6) c.773\_774insA, PIK3CB p.(D1067A) c.3200A>C, DOCK3 deletion, HLA-B deletion, HLA-B p.(F232Lfs\*22) c.693\_693delTinsGC, WT1 deletion, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

## Variant Details

### DNA Sequence Variants

| Gene   | Amino Acid Change | Coding                  | Variant ID  | Locus          | Allele Frequency | Transcript  | Variant Effect                |
|--------|-------------------|-------------------------|-------------|----------------|------------------|-------------|-------------------------------|
| IDH2   | p.(R172K)         | c.515G>A                | COSM33733   | chr15:90631838 | 25.99%           | NM_002168.4 | missense                      |
| PBRM1  | p.(N258Kfs*6)     | c.773_774insA           | .           | chr3:52682399  | 27.18%           | NM_018313.5 | frameshift Insertion          |
| PIK3CB | p.(D1067A)        | c.3200A>C               | COSM3408278 | chr3:138374244 | 25.46%           | NM_006219.3 | missense                      |
| HLA-B  | p.(F232Lfs*22)    | c.693_693delTinsGC      | .           | chr6:31323296  | 1.80%            | NM_005514.8 | frameshift Block Substitution |
| NQO1   | p.(P187S)         | c.559C>T                | .           | chr16:69745145 | 47.07%           | NM_000903.3 | missense                      |
| MSH3   | p.(A57_A62del)    | c.162_179delTGCAGCGCCGC | .           | chr5:79950707  | 56.10%           | NM_002439.5 | nonframeshift Deletion        |
| HLA-B  | p.(I90K)          | c.269_270delTCinsAG     | .           | chr6:31324538  | 58.33%           | NM_005514.8 | missense                      |
| CCND3  | p.(R138Q)         | c.413G>A                | .           | chr6:41908109  | 3.39%            | NM_001760.5 | missense                      |
| ZNF623 | p.([C125=;N126D]) | c.375_376delCAinsTG     | .           | chr8:144732417 | 2.09%            | NM_014789.3 | synonymous, missense          |

### Copy Number Variations

| Gene   | Locus          | Copy Number | CNV Ratio |
|--------|----------------|-------------|-----------|
| CDKN2A | chr9:21968178  | 0.69        | 0.41      |
| NF2    | chr22:29999923 | 1.32        | 0.69      |
| DOCK3  | chr3:51101879  | 1.28        | 0.68      |
| HLA-B  | chr6:31322252  | 0.77        | 0.44      |
| WT1    | chr11:32410528 | 1.26        | 0.67      |

## Biomarker Descriptions

### IDH2 p.(R172K) c.515G>A

isocitrate dehydrogenase (NADP(+)) 2, mitochondrial

**Background:** The IDH1 and IDH2 genes encode homologous isocitrate dehydrogenase enzymes that catalyze the conversion of isocitrate to  $\alpha$ -ketoglutarate ( $\alpha$ -KG)<sup>49</sup>. The IDH1 gene encodes the NADP+ dependent cytoplasmic isocitrate dehydrogenase enzyme; IDH2 encodes the mitochondrial isoform<sup>49</sup>.

**Alterations and prevalence:** Recurrent somatic mutations in IDH1 and IDH2 are mutually exclusive and observed in several malignancies, including glioma, chondrosarcoma, intrahepatic cholangiocarcinoma, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS)<sup>50</sup>. Recurrent IDH2 variants include predominantly R140Q, R172K, and other substitutions at lower frequencies<sup>51</sup>. These gain-of-function variants confer neomorphic enzyme activity<sup>52</sup>. Although wild-type enzymatic activity is ablated, recurrent IDH2 variants catalyze the conversion of  $\alpha$ -KG to D-2-hydroxyglutarate, an oncometabolite with diverse effects on cellular metabolism, epigenetic regulation, redox states, and DNA repair<sup>49,53</sup>. Recurrent IDH2 mutations are present in 10-20% of patients with

## Biomarker Descriptions (continued)

AML and 5% of patients with MDS<sup>54,55,56</sup>. Alterations in IDH2 are rare in pediatric cancers<sup>8,9</sup>. Somatic mutations in IDH2 are observed in 1% of leukemia (4 in 311 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (1 in 297 cases), and bone cancer (1 in 327 cases)<sup>8,9</sup>.

**Potential relevance:** The IDH1 and IDH2 inhibitor vorasidenib<sup>57</sup> is FDA-approved (2024) for the treatment of adults and children with Grade 2 astrocytoma or oligodendrolioma with IDH2 R172G/K/M/S/W mutations. Enasidenib<sup>58</sup> is FDA-approved (2017) for the treatment of AML patients with IDH2 R140G/L/Q/W and R172G/K/M/S/W mutations. Acquired resistance to enasidenib in AML has been linked to the emergence of Q316E or I319M mutations<sup>59</sup>. IDH2 mutations are associated with a favorable outcome in lower-grade gliomas, astrocytoma, and oligodendrolioma with 1p/19 codeletion<sup>60,61</sup>. IDH2 R172 and R140Q mutations are associated with poor risk in MDS<sup>16,62</sup>. IDH2 mutations are associated with inferior overall survival in polycythemia vera (PV) and essential thrombocythemia (ET), as well as inferior leukemia-free survival in primary myelofibrosis (PMF)<sup>63,64</sup>. Mutations in IDH2 are diagnostic of IDH-mutated astrocytoma and oligodendrolioma with 1p/19q-codeletion subtypes of central nervous system (CNS) tumors<sup>60,65</sup>.

### CDKN2A deletion

*cyclin dependent kinase inhibitor 2A*

**Background:** CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression<sup>1</sup>. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)<sup>71</sup>. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb<sup>72,73,74</sup>. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions<sup>75</sup>. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation<sup>1,75,76</sup>. CDKN2A aberrations commonly co-occur with CDKN2B<sup>71</sup>. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation<sup>77</sup>. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer<sup>78,79</sup>.

**Alterations and prevalence:** Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations<sup>80</sup>. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma<sup>8,9</sup>. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe<sup>8,9</sup>. Alterations in CDKN2A are also observed in pediatric cancers<sup>9</sup>. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors<sup>9</sup>. Somatic mutations in CDKN2A are observed in less than 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)<sup>9</sup>.

**Potential relevance:** Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors<sup>81,82,83</sup>. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma<sup>84</sup>. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib<sup>85,86,87</sup>. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme<sup>88</sup>. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer<sup>89,90,91,92</sup>.

### NF2 deletion

*neurofibromin 2*

**Background:** The NF2 gene encodes the cytoskeletal Merlin (Moesin-ezrin-radixin-like) protein<sup>1</sup>. NF2 is also known as Schwannomin due to its prevalence in neuronal Schwann cells<sup>17</sup>. NF2 is structurally and functionally related to the Ezrin, Radixin, Moesin (ERM) family which is known to control plasma membrane function, thereby influencing cell shape, adhesion, and growth<sup>18,19,20</sup>. NF2 regulates several cellular pathways including the RAS/RAF/MEK/ERK, PI3K/AKT, and Hippo-YAP pathways, thus impacting cell motility, adhesion, invasion, proliferation, and apoptosis<sup>18,19,20,21</sup>. NF2 functions as a tumor suppressor wherein loss of function mutations are shown to confer a predisposition to tumor development<sup>17,19,20</sup>. Specifically, deleterious germline mutations or deletion of NF2 leading to loss

## Biomarker Descriptions (continued)

of heterozygosity (LOH) is causal of neurofibromatosis type 2, a tumor prone disorder characterized by early age onset of multiple Schwannomas and meningiomas<sup>17,19,20</sup>.

Alterations and prevalence: Somatic mutations in NF2 are predominantly missense or truncating and are observed in about 23% of mesothelioma, 6% of cholangiocarcinoma, 4% of uterine corpus endometrial carcinoma, 3% of kidney renal papillary cell carcinoma (pRCC), bladder urothelial carcinoma, and cervical squamous cell carcinoma, and 2% of colorectal adenocarcinoma, skin cutaneous melanoma, lung squamous cell carcinoma, and liver hepatocellular carcinoma<sup>8,9</sup>. Biallelic loss of NF2 is observed in 8% of mesothelioma and 2% of thymoma<sup>8,9</sup>. Structural variants in NF2 are observed in 3% of cholangiocarcinoma and 2% of mesothelioma<sup>8,9</sup>. Alterations in NF2 are also observed in pediatric cancers<sup>9</sup>. Somatic mutations in NF2 are observed in less than 1% of bone cancer (2 in 327 cases) and glioma (1 in 297 cases)<sup>9</sup>. Biallelic deletion of NF2 is observed in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)<sup>9</sup>.

Potential relevance: Currently, no therapies are approved for NF2 aberrations.

### Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome<sup>27</sup>. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue<sup>28,29</sup>. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2<sup>30</sup>. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250<sup>31</sup>. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)<sup>31</sup>. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS<sup>32,33,34,35,36</sup>. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes<sup>29</sup>. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer<sup>28,29,33,37</sup>.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endometrial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma<sup>28,29,38,39</sup>. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers<sup>38,39</sup>.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab<sup>40</sup> (2014) and nivolumab<sup>41</sup> (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab<sup>40</sup> is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication<sup>40</sup>. Dostarlimab<sup>42</sup> (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer<sup>34,43</sup>. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab<sup>44</sup> (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location<sup>34,45,46</sup>. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients<sup>46</sup>. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors<sup>47,48</sup>. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers<sup>47,48</sup>.

### PBRM1 p.(N258Kfs\*6) c.773\_774insA

*polybromo 1*

Background: The PBRM1 gene encodes polybromo 1 protein<sup>1</sup>. PBRM1, also known as BAF180, is a member of the PBAF complex, a SWI/SNF chromatin-remodeling complex<sup>66</sup>. The PBAF complex is a multisubunit protein complex that consists of ARID2, SMARCA4A/BRG1, BRD7, ACTL6A/BAF53A, PHF10/BAF45A, PBRM1/BAF180, SMARCC2/BAF170, SMARCC1/BAF155, SMARCB1/BAF47, SMARCD1/BAF60A, and SMARCE1/BAF57<sup>66,67</sup>. PBRM1 is proposed to facilitate localization of PBAF complexes to specific loci for chromatin remodeling<sup>66,68</sup>. PBRM1 also promotes centromere cohesion in order to maintain genomic stability and prevent aneuploidy by silencing transcription near double-stranded DNA breaks (DSBs), supporting a tumor suppressor role for PBRM1<sup>69,70</sup>.

Alterations and prevalence: Somatic mutations in PBRM1 are observed in 38% of kidney renal clear cell carcinoma, 22% of cholangiocarcinoma, 10% of uterine corpus endometrial carcinoma, and 8% of skin cutaneous melanoma<sup>8,9</sup>. Biallelic deletion of PBRM1

## Biomarker Descriptions (continued)

is observed in 5% of mesothelioma, 4% of diffuse large B-cell lymphoma (DLBCL), 3% of kidney renal clear cell carcinoma, and 2% of esophageal adenocarcinoma, uterine carcinosarcoma, stomach adenocarcinoma, and sarcoma<sup>8,9</sup>.

Potential relevance: Currently, no therapies are approved for PBRM1 aberrations.

### **PIK3CB p.(D1067A) c.3200A>C**

*phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta*

Background: The PIK3CB gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta of the class I phosphatidylinositol 3-kinase (PI3K) enzyme<sup>93</sup>. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases<sup>93,94</sup>. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively<sup>93</sup>. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction<sup>95,96</sup>. The reversible phosphorylation of inositol lipids regulate diverse aspects of cell growth and metabolism<sup>95,96,97,98</sup>. Aberrations in PIK3CB that lead to activation of the PI3K/AKT/MTOR pathway have been observed to promote tumor formation, suggesting an oncogenic role for PIK3CB<sup>93,99,100</sup>.

Alterations and prevalence: Somatic mutations in PIK3CB are predominantly missense with amino acid substitutions at D1067 being the most recurrent and observed to lead to hyperactivation of the PI3K pathway<sup>8,9,101</sup>. PIK3CB mutations are observed in about 9% of uterine cancer and 2-3% of melanoma, glioblastoma, cholangiocarcinoma, colorectal, bladder, stomach, esophageal, and squamous lung cancers<sup>8,9</sup>. Amplification of PIK3CB is also observed in 9% of squamous lung cancer, 7% of cervical cancer, and 5-6% of head and neck, ovarian, and esophageal cancers<sup>8,9</sup>.

Potential relevance: Currently, no therapies are approved for PIK3CB aberrations.

### **DOCK3 deletion**

*dedicator of cytokinesis 3*

Background: The DOCK3 gene encodes dedicator of cytokinesis 3, a member of the DOCK (dedicator of cytokinesis) family of guanine nucleotide exchange factors (GEFs)<sup>1</sup>. As a GEF, DOCK3 functions by catalyzing the exchange of GDP for GTP, and activates the G protein, Rac1, thereby facilitating Rac1 mediated signaling<sup>22</sup>. Consequently, DOCK3 has been observed to facilitate the regulation of several cellular processes including axonal outgrowth, cytoskeletal organization, and cell adhesion<sup>1,23,24</sup>. Unlike other GEFs found to be altered in cancer, DOCK3 has been shown to exhibit tumor suppressor like properties through inhibition of β-catenin/WNT signaling<sup>25,26</sup>. Additionally knockdown of DOCK3 has been observed to inhibit tumor cell adhesion, migration, and invasion in non-small cell lung cancer cell lines, further supporting a tumor suppressive role for DOCK3<sup>24</sup>.

Alterations and prevalence: Somatic mutations in DOCK3 are observed in 21% of skin cutaneous melanoma, 16% of uterine corpus endometrial carcinoma, 12% of stomach adenocarcinoma, 9% of colorectal adenocarcinoma, 6% of esophageal adenocarcinoma, 4% of sarcoma, and lung adenocarcinoma, 3% of bladder urothelial carcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, and 2% of diffuse large B-cell lymphoma, pancreatic adenocarcinoma, head and neck squamous cell carcinoma, kidney renal papillary cell carcinoma, ovarian serous cystadenocarcinoma, liver hepatocellular carcinoma, and kidney chromophobe<sup>8,9</sup>. Biallelic loss of DOCK3 is observed in 4% of diffuse large B-cell lymphoma, 3% of esophageal adenocarcinoma and kidney renal clear cell carcinoma, and 2% of sarcoma<sup>8,9</sup>.

Potential relevance: Currently, no therapies are approved for DOCK3 aberrations.

### **HLA-B deletion, HLA-B p.(F232Lfs\*22) c.693\_693delTinsGC**

*major histocompatibility complex, class I, B*

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B<sup>1</sup>. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells<sup>2</sup>. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M<sup>3</sup>. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self<sup>4,5,6</sup>. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B<sup>7</sup>.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal

## Biomarker Descriptions (continued)

adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma<sup>8,9</sup>. Biallelic loss of HLA-B is observed in 5% of DLBCL<sup>8,9</sup>.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

### WT1 deletion

#### Wilms tumor 1

Background: The WT1 gene encodes the Wilms tumor 1 homolog, a zinc-finger transcriptional regulator that plays an important role in cellular growth and metabolism<sup>10,11</sup>. WT1 is endogenously expressed in embryonic kidney cells as well as hematopoietic stem cells and regulates the process of filtration of blood through the kidneys<sup>12</sup>. WT1 protein contains N-terminal proline-glutamine rich regions that are involved in RNA and protein interaction while the C-terminal domain contains Kruppel link cysteine histidine zinc fingers that are involved in DNA binding<sup>10</sup>. WT1 interacts with various genes including TP53, STAT3, and epigenetic modifiers such as TET2 and TET3<sup>10,13</sup>. WT1 is primarily characterized as a tumor suppressor gene involved in the development of renal Wilms tumor (WT), a rare pediatric kidney cancer<sup>10,14</sup>. Loss of function mutations observed in WT1, including large deletions and intragenic mutations, can impact the zinc finger domain, thereby decreasing the DNA binding activity<sup>10</sup>. WT1 overexpression is observed in acute myeloid leukemia (AML) and lymphoid cancers<sup>10,15</sup>.

Alterations and prevalence: Somatic mutations of WT1 occur in 7% of AML, 5% of melanoma, and 1% of mesothelioma<sup>9</sup>. WT1 overexpression is observed in AML, acute lymphoblastic lymphoma (ALL), and myelodysplastic syndrome (MDS)<sup>10</sup>

Potential relevance: Somatic mutations in WT1, including nonsense, frameshift, and splice-site mutations, are associated with poor prognosis in MDS<sup>16</sup>. Overexpression of WT1 in MDS is associated with a higher risk of progression to AML. WT1 overexpression is also associated with poor prognosis, resistance to chemotherapy, and poor overall survival in AML<sup>13</sup>.

## Genes Assayed

### Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYO1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

### Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERF1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYCL, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,

## Genes Assayed (continued)

### Genes Assayed for the Detection of Copy Number Variations (continued)

PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

### Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

### Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERF1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

## Relevant Therapy Summary

● In this cancer type      ○ In other cancer type      ● In this cancer type and other cancer types      ✗ No evidence

### IDH2 p.(R172K) c.515G>A

| Relevant Therapy | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|------------------|-----|------|-----|------|------------------|
| vorasidenib      | ○   | ○    | ○   | ✗    | ✗                |

### CDKN2A deletion

| Relevant Therapy         | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|--------------------------|-----|------|-----|------|------------------|
| palbociclib              | ✗   | ✗    | ✗   | ✗    | ● (II)           |
| palbociclib, abemaciclib | ✗   | ✗    | ✗   | ✗    | ● (II)           |
| AMG 193                  | ✗   | ✗    | ✗   | ✗    | ● (I/II)         |
| ABSK-131                 | ✗   | ✗    | ✗   | ✗    | ● (I)            |

\* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## Relevant Therapy Summary (continued)

 In this cancer type  
  In other cancer type  
  In this cancer type and other cancer types  
  No evidence

### CDKN2A deletion (continued)

| Relevant Therapy | FDA                                                                               | NCCN                                                                              | EMA                                                                                 | ESMO                                                                                | Clinical Trials*                                                                        |
|------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| CID-078          |  |  |  |  |  (I) |

### NF2 deletion

| Relevant Therapy | FDA                                                                               | NCCN                                                                              | EMA                                                                                 | ESMO                                                                                | Clinical Trials*                                                                        |
|------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| BPI-460372       |  |  |  |  |  (I) |

\* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## HRR Details

| Gene/Genomic Alteration | Finding               |
|-------------------------|-----------------------|
| Not Detected            | <b>Not Applicable</b> |

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from [www.fda.gov](http://www.fda.gov) and is current as of 2025-11-25. NCCN information was sourced from [www.nccn.org](http://www.nccn.org) and is current as of 2025-11-03. EMA information was sourced from [www.ema.europa.eu](http://www.ema.europa.eu) and is current as of 2025-11-25. ESMO information was sourced from [www.esmo.org](http://www.esmo.org) and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search [www.clinicaltrials.gov](http://www.clinicaltrials.gov) by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

## References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Yang et al. A tumor suppressor and oncogene: the WT1 story. *Leukemia.* 2007 May;21(5):868-76. PMID: 17361230
11. Owen et al. The clinical relevance of Wilms Tumour 1 (WT1) gene mutations in acute leukaemia. *Hematol Oncol.* 2010 Mar;28(1):13-9. PMID: 20013787
12. Hou et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: stability during disease evolution and implication of its incorporation into a survival scoring system. *Blood.* 2010 Jun 24;115(25):5222-31. PMID: 20368469
13. Rampal et al. Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia. *Haematologica.* 2016 Jun;101(6):672-9. PMID: 27252512
14. Hastie. Wilms' tumour 1 (WT1) in development, homeostasis and disease. *Development.* 2017 Aug 15;144(16):2862-2872. PMID: 28811308
15. Hohenstein et al. The many facets of the Wilms' tumour gene, WT1. *Hum. Mol. Genet.* 2006 Oct 15;15 Spec No 2:R196-201. PMID: 16987884
16. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
17. Evans. Neurofibromatosis Type 2 (NF2): A Clinical and Molecular Review. *Orphanet J Rare Dis.* 2009 Jun 19;4:16. doi: 10.1186/1750-1172-4-16. PMID: 19545378
18. Bretscher et al. ERM-Merlin and EBP50 protein families in plasma membrane organization and function. *Annu. Rev. Cell Dev. Biol.* 2000;16:113-43. PMID: 11031232
19. Petrilli et al. Role of Merlin/NF2 inactivation in tumor biology. *Oncogene.* 2016 Feb 4;35(5):537-48. PMID: 25893302
20. Morrow et al. Merlin: the wizard requires protein stability to function as a tumor suppressor. *Biochim. Biophys. Acta.* 2012 Dec;1826(2):400-6. PMID: 22750751
21. Mia et al. Targeting NF2-Hippo/Yap signaling pathway for cardioprotection after ischemia/reperfusion injury. *Ann Transl Med.* 2016 Dec; 4(24): 545. PMID: 28149906
22. Namekata et al. MOCA induces membrane spreading by activating Rac1. *J Biol Chem.* 2004 Apr 2;279(14):14331-7. PMID: 14718541
23. Laurin et al. Insights into the biological functions of Dock family guanine nucleotide exchange factors. *Genes Dev.* 2014 Mar 15;28(6):533-47. PMID: 24637113
24. Zhu et al. Inhibition of RAC1-GEF DOCK3 by miR-512-3p contributes to suppression of metastasis in non-small cell lung cancer. *Int J Biochem Cell Biol.* 2015 Apr;61:103-14. PMID: 25687035
25. Caspi et al. A novel functional screen in human cells identifies MOCA as a negative regulator of Wnt signaling. *Mol Biol Cell.* 2008 Nov;19(11):4660-74. PMID: 18716063
26. Cui et al. *Oncotarget.* 2016 Feb 2;7(5):5613-29. PMID: 26716413
27. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
28. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
29. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
30. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133

## References (continued)

31. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
32. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
33. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
34. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
35. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
36. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
37. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
38. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
39. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
40. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/125514s178lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf)
41. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/125554s131lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf)
42. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2024/761174s009lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf)
43. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
44. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/125377s136lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf)
45. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
46. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
47. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
48. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
49. Molenaar et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. *Oncogene.* 2018 Apr;37(15):1949-1960. PMID: 29367755
50. Yan et al. IDH1 and IDH2 mutations in gliomas. *N. Engl. J. Med.* 2009 Feb 19;360(8):765-73. PMID: 19228619
51. Waitkus et al. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. *Cancer Cell.* 2018 Aug 13;34(2):186-195. PMID: 29805076
52. Dang et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. *Nature.* 2009 Dec 10;462(7274):739-44. PMID: 19935646
53. Ward et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. *Cancer Cell.* 2010 Mar 16;17(3):225-34. PMID: 20171147
54. Paschka et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. *J. Clin. Oncol.* 2010 Aug 1;28(22):3636-43. PMID: 20567020
55. Chou et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. *Leukemia.* 2011 Feb;25(2):246-53. PMID: 21079611
56. Marcucci et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. *J. Clin. Oncol.* 2010 May 10;28(14):2348-55. PMID: 20368543
57. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/218784s002lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/218784s002lbl.pdf)
58. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/209606s007lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/209606s007lbl.pdf)
59. Intlekofer et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. *Nature.* 2018 Jul;559(7712):125-129. PMID: 29950729
60. NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2025]

## References (continued)

61. Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. *N Engl J Med.* 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10. PMID: 26061751
62. Houillier et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. *Neurology.* 2010 Oct 26;75(17):1560-6. PMID: 20975057
63. Vannucchi et al. Mutations and prognosis in primary myelofibrosis. *Leukemia.* 2013 Sep;27(9):1861-9. PMID: 23619563
64. Tefferi et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. *Leukemia.* 2010 Jul;24(7):1302-9. PMID: 20508616
65. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
66. Wilson et al. SWI/SNF nucleosome remodelers and cancer. *Nat. Rev. Cancer.* 2011 Jun 9;11(7):481-92. PMID: 21654818
67. Hodges et al. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. *Cold Spring Harb Perspect Med.* 2016 Aug 1;6(8). PMID: 27413115
68. Thompson. Polybromo-1: the chromatin targeting subunit of the PBAF complex. *Biochimie.* 2009 Mar;91(3):309-19. PMID: 19084573
69. Hopson et al. BAF180: Its Roles in DNA Repair and Consequences in Cancer. *ACS Chem Biol.* 2017 Oct 20;12(10):2482-2490. PMID: 28921948
70. Carril-Auria et al. *Cancers (Basel).* 2019 Dec 19;12(1). PMID: 31861590
71. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. *Nat Commun.* 2021 Apr 6;12(1):2047. PMID: 33824349
72. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. *Am. J. Respir. Cell Mol. Biol.* 2018 Aug;59(2):200-214. PMID: 29420051
73. Roussel. The INK4 family of cell cycle inhibitors in cancer. *Oncogene.* 1999 Sep 20;18(38):5311-7. PMID: 10498883
74. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). *Biochem. Biophys. Res. Commun.* 1999 Aug 27;262(2):534-8. PMID: 10462509
75. Hill et al. The genetics of melanoma: recent advances. *Annu Rev Genomics Hum Genet.* 2013;14:257-79. PMID: 23875803
76. Kim et al. The regulation of INK4/ARF in cancer and aging. *Cell.* 2006 Oct 20;127(2):265-75. PMID: 17055429
77. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. *Mayo Clin. Proc.* 2008 Jul;83(7):825-46. PMID: 18613999
78. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. *J. Invest. Dermatol.* 2007 May;127(5):1234-43. PMID: 17218939
79. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. *Ann. Surg.* 2002 Dec;236(6):730-7. PMID: 12454511
80. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. *Clin Cancer Res.* 2021 Jul 15;27(14):4025-4035. PMID: 34074656
81. NCCN Guidelines® - NCCN-Mesothelioma: Peritoneal [Version 2.2026]
82. NCCN Guidelines® - NCCN-Mesothelioma: Pleural [Version 2.2026]
83. NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 1.2025]
84. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. *Brain Pathol.* 2020 Jul;30(4):844-856. PMID: 32307792
85. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. *J Transl Med.* 2019 Jul 29;17(1):245. PMID: 31358010
86. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. *Anticancer Res.* 2013 Aug;33(8):2997-3004. PMID: 23898052
87. von Witzleben et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmacological Inhibitors of the CDK4/6 Cell-Cycle Pathway. *Cancer Res.* 2015 Sep 15;75(18):3823-31. PMID: 26183925
88. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. *Neuro-oncology.* 2012 Jul;14(7):870-81. PMID: 22711607
89. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. *Oncotarget.* 2018 Sep 7;9(70):33247-33248. PMID: 30279955
90. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. *J. Clin. Oncol.* 2014 Dec 10;32(35):3930-8. PMID: 25267748

## References (continued)

91. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. *J. Natl. Cancer Inst.* 2018 Dec 1;110(12):1393-1399. PMID: 29878161
92. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. *Cancer Clin Oncol.* 2013;2(1):51-61. PMID: 23935769
93. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. *Signal Transduct Target Ther.* 2017;2:17063. PMID: 29279775
94. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. *Apoptosis.* 2004 Nov;9(6):667-76. PMID: 15505410
95. Cantley. The phosphoinositide 3-kinase pathway. *Science.* 2002 May 31;296(5573):1655-7. PMID: 12040186
96. Fruman et al. The PI3K Pathway in Human Disease. *Cell.* 2017 Aug 10;170(4):605-635. PMID: 28802037
97. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. *Nat. Rev. Genet.* 2006 Aug;7(8):606-19. PMID: 16847462
98. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. *Nat. Rev. Mol. Cell Biol.* 2012 Feb 23;13(3):195-203. PMID: 22358332
99. Pazarentzos et al. Oncogenic activation of the PI3-kinase p110 $\beta$  isoform via the tumor-derived PIK3C $\beta$ (D1067V) kinase domain mutation. *Oncogene.* 2016 Mar 3;35(9):1198-205. PMID: 25982275
100. Crowder et al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. *Cancer Res.* 2009 May 1;69(9):3955-62. PMID: 19366795
101. Nakanishi et al. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110 $\beta$ . *Cancer Res.* 2016 Mar 1;76(5):1193-203. PMID: 26759240