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Report Highlights
1 Relevant Biomarkers
0 Therapies Available
2 Clinical Trials

 
Gene Finding Gene Finding

BRAF None detected NTRK1 None detected
ERBB2 None detected NTRK2 None detected
FGFR2 None detected NTRK3 None detected
FGFR3 None detected RET None detected

Genomic Alteration Finding

Tumor Mutational Burden 2.85 Mut/Mb measured

Relevant Bladder Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC CTNNB1 p.(S37F) c.110C>T

catenin beta 1
Allele Frequency: 78.24%
Locus: chr3:41266113
Transcript: NM_001904.4

None* None* 2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
CDKN1A p.(L73Pfs*16) c.217_218insC, Microsatellite stable, TERT c.-124C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

CTNNB1 p.(S37F) c.110C>T COSM5662 chr3:41266113 78.24% NM_001904.4 missense

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

CDKN1A p.(L73Pfs*16) c.217_218insC . chr6:36652093 68.64% NM_078467.3 frameshift
Insertion

TERT p.(?) c.-124C>T VCV001299388 chr5:1295228 55.45% NM_198253.3 unknown

GRID2 p.(F758S) c.2273T>C . chr4:94547499 2.74% NM_001510.4 missense

MAML3 p.(Q491Pfs*32) c.1472_1506delAGCAG
CAGCAGCAGCAGCAG
CAGCAGCAGCAGCAGi
nsCAGCAGCAGCAGC
AGCAGCAGCAA

. chr4:140811084 54.10% NM_018717.5 frameshift Block
Substitution

MAML3 p.(Q488_Q494delinsHD
S)

c.1464_1506delGCAAC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGinsCGACA
GCCAGCAGCAGCAGC
AGCAGCAGCAA

. chr4:140811084 44.26% NM_018717.5 nonframeshift
Block
Substitution

APC p.(E1374Q) c.4120G>C . chr5:112175411 66.20% NM_000038.6 missense

HLA-B p.([T118I;L119I]) c.353_355delCCCinsT
CA

. chr6:31324208 100.00% NM_005514.8 missense,
missense

ATM p.(?) c.7308-1G>T . chr11:108200940 76.64% NM_000051.4 unknown

ERCC2 p.([R156=;F157S]) c.468_470delATTinsCT
C

. chr19:45868307 2.99% NM_000400.4 synonymous,
missense

DNA Sequence Variants (continued)

 

 
Gene Locus Copy Number CNV Ratio

TPP2 chr13:103249399 6.58 2.65

CUL4A chr13:113863977 6.92 2.77

Copy Number Variations

 

Variant Details (continued)

 
CTNNB1 p.(S37F) c.110C>T

catenin beta 1

Background: The CTNNB1 gene encodes catenin beta-1 (β-catenin), an integral component of cadherin-based adherens junctions,
which are involved in maintaining adhesion and regulating the growth of epithelial cell layers1. CTNNB1 binds to the APC protein in
the cytoplasm and interacts with TCF and LEF transcription factors in the nucleus to regulate WNT signaling2. Steady-state levels of
CTNNB1 are regulated by ubiquitin-dependent proteolysis3,4,5. CTNNB1 exon 3 mutations can lead to persistent activation of the WNT/
β-catenin pathway and alter downstream nuclear transcription6.

Alterations and prevalence: Recurrent somatic mutations leading to CTNNB1 activation are common in cancer. The most prevalent
alterations include missense mutations in exon 3 at codons S33, S37, T41, and S45 that block phosphorylation by GSK-3β and inhibit
CTNNB1 degradation6,7,8,9. These activating mutations are observed in diverse solid tumors and have a prevalence of 20-30% in
hepatocellular carcinoma, 20% in uterine carcinoma, and 15% in adrenocortical carcinoma10,11,12,13,14,15,16. Alterations in CTNNB1
are also observed in pediatric cancers15,16. Somatic mutations are observed in 36% of hepatobiliary cancer (4 in 11 cases), 6% of
embryonal tumor (21 in 332 cases), 3% of soft tissue sarcoma (1 in 38 cases), 2% of Wilms tumor (11 in 710 cases), and less than 1%
of B-lymphoblastic leukemia/lymphoma (2 in 252 cases) and bone cancer (1 in 327 cases)15,16.

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Potential relevance: Currently, no therapies have been approved for CTNNB1 aberrations. CTNNB1 alterations have been proposed
to promote cancer progression and limit the response to EGFR tyrosine kinase inhibitors in EGFR mutant lung cancer17. Mutation of
CTNNB1 is considered an ancillary diagnostic biomarker for desmoid fibromatosis and WNT-activated medulloblastoma18,19,20.

CDKN1A p.(L73Pfs*16) c.217_218insC

cyclin dependent kinase inhibitor 1A

Background: The CDKN1A gene encodes the cyclin-dependent kinase inhibitor 1A protein, also known as p21 or WAF148,49. CDKN1A
belongs to a family of CIP/KIP family of CDK inhibitor (CKI) genes that also includes CDKN1B (also known as KIP/p27) and CDKN2C
(also known as KIP2/p57)49,50. Through inhibition of cyclin dependent kinases, including CDK1 and CDK2, CDKN1A impacts several
biological processes, including cell cycle arrest, differentiation, gene transcription, apoptosis, and DNA repair51. CDKN1A is also
capable of binding to proliferating cell nuclear antigen (PCNA) and inhibiting PCNA-dependent DNA polymerase activity51. Deregulation
of CDKN1A, including loss of expression, is observed in several tumor types, supporting a tumor suppressor role for CDKN1A51.

Alterations and prevalence: Somatic mutations in CDKN1A are observed in 10% of bladder urothelial carcinoma, 3% of kidney
chromophobe, and 2% of skin cutaneous melanoma, uterine corpus endometrial carcinoma, and liver hepatocellular carcinoma15,16.
Biallelic deletion of CDKN1A is observed in 2% of kidney chromophobe and 1% of sarcoma15,16.

Potential relevance: Currently, no therapies are approved for CDKN1A aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome26. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue27,28. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS229. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25030. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)30. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS31,32,33,34,35. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes28.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer27,28,32,36.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma27,28,37,38. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers37,38.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab39 (2014) and nivolumab40 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab39 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication39. Dostarlimab41 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer33,42. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab43 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location33,44,45. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients45. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors46,47. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers46,47.

TERT c.-124C>T

telomerase reverse transcriptase

Background: The TERT gene encodes telomerase reverse transcriptase, a component of the telomerase core enzyme along with
the internal telomerase RNA template (TERC)21. TERT is repressed in most differentiated cells, resulting in telomerase silencing21.
In cancer, telomerase reactivation is known to contribute to cellular immortalization21,22. Increased TERT expression results in

Biomarker Descriptions (continued)

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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telomerase activation, allowing for unlimited cancer cell proliferation through telomere stabilization21. In addition to its role in telomere
maintenance, TERT has RNA-dependent RNA polymerase activity, which, when deregulated, can promote oncogenesis by facilitating
mitotic progression and cancer cell stemness21.

Alterations and prevalence: Somatic mutations are observed in 4% of skin cutaneous melanoma and uterine corpus endometrial
carcinoma, 3% of kidney renal papillary cell carcinoma, and 2% of pancreatic adenocarcinoma, stomach adenocarcinoma, and
sarcoma15,16. Additionally, TERT promoter mutations causing upregulation are observed in many cancer types, especially non-aural
cutaneous melanoma (80% of cases), and glioblastoma (70% of cases)22. Specifically, TERT promoter mutations at C228T and C250T
are recurrent and result in de novo binding sites for ETS transcription factors, leading to enhanced TERT transcription21. Amplification
of TERT is observed in 15% of lung squamous cell carcinoma, 14% of esophageal adenocarcinoma, 13% of adrenocortical carcinoma
and lung adenocarcinoma, and 10% of bladder urothelial carcinoma, 9% of ovarian serous cystadenocarcinoma, 6% of cervical
squamous cell carcinoma, 5% of liver hepatocellular carcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma,
head and neck squamous cell carcinoma, 4% of uterine carcinosarcoma, 3% of uterine corpus endometrial carcinoma, breast invasive
carcinoma, and 2% of diffuse large B-cell lymphoma15,16. TERT is overexpressed in over 85% of tumors and is considered a universal
tumor associated antigen23. Alterations in TERT are rare in pediatric cancers15,16. Somatic mutations are observed in less than 1% of B-
lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (2 in 297 cases), bone cancer (1 in 327 cases), and Wilms tumor (1 in 710
cases)15,16. TERT amplification is observed in 1-2% of peripheral nervous system cancers (2 in 91 cases), leukemia (2 in 250 cases),
and B-lymphoblastic leukemia/lymphoma (5 in 731 cases)15,16.

Potential relevance: Currently, no therapies are approved for TERT aberrations. TERT promoter mutations are diagnostic of
oligodendroglioma IDH-mutant with 1p/19q co-deletion, while the absence of promoter mutations combined with an IDH mutation is
characteristic of astrocytoma24,25. Due to its immunogenicity and near-universal expression on cancer cells, TERT has been a focus of
immunotherapy research, including peptide, dendritic, and DNA vaccines as well as T-cell therapy23.

Biomarker Descriptions (continued)

 

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

FOG-001, nivolumab      (I/II)

tegatrabetan      (I/II)

CTNNB1 p.(S37F) c.110C>T

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 26.17%
ATM LOH, 11q22.3(108098341-108236285)x3
CHEK1 LOH, 11q24.2(125496639-125525271)x3
RAD51B LOH, 14q24.1(68290164-69061406)x3

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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