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BRAF None detected NTRK1 None detected
CDK4 CDK4 amplification NTRK2 None detected
GLI1 None detected NTRK3 None detected
MDM2 MDM2 amplification RET None detected
Genomic Alteration Finding
Tumor Mutational Burden  2.84 Mut/Mb measured
Relevant Biomarkers
Relevant Therapies Relevant Therapies
Tier Genomic Alteration (In this cancer type) (In other cancer type) Clinical Trials
IA CDK4 amplification None* None* 6

cyclin dependent kinase 4
Locus: chr12:58142242

Diagnostic significance: Dedifferentiated Liposarcoma

IA  MDM2 amplification None*

MDM2 proto-oncogene
Locus: chr12:69202958

None* 5

Diagnostic significance: Dedifferentiated Liposarcoma

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

ESR1 amplification, MAPK1 amplification, NF1 p.(Q2228%) ¢.6682C>T, UGT1A1 p.(G71R) ¢.211G>A, HLA-B deletion,
CARD11 amplification, RACT amplification, NQO1 p.(P187S) ¢.559C>T, RPS6KB1 amplification, GNA13 amplification, H3-3B

amplification, Tumor Mutational Burden

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.



Variant Details

DNA Sequence Variants

Gene
NF1

UGT1A1
NQO1

MAML3

MAML3

FAT1

KMT2C

Variant ID

COSM4415616

Locus
chr17:29664876

chr2:234669144
chr16:69745145

chr4:140811084

chr4:140811084

Amino Acid Change  Coding

p.(Q2228%) C.6682C>T

p.(G71R) c.211G>A

p.(P187S) ¢.559C>T

p.(Q488_Q494delinsHD ¢.1455_1506delACAGC .

S) AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACACG
ACAGCCAGCAGCAGC
AGCAGCAGCAGCAA

p.(Q491Pfs*32) ¢.1455_1506delACAGC .
AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACAGC
AACAGCCAGCAGCAG
CAGCAGCAGCAGCAA

p.(11967M) ¢.5901T>G

p.(H330N) c.988C>A

chr4:187541839

chr7:151970814
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Allele
Frequency

67.46%
49.17%
99.55%

40.00%

59.47%

47.72%

8.60%

Transcript
NM_001042492.3

NM_000463.3
NM_000903.3

NM_018717.5

NM_018717.5

NM_005245.4

NM_170606.3
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Variant Effect

nonsense
missense
missense
nonframeshift

Block
Substitution

frameshift Block
Substitution

missense

missense

Copy Number Variations

Gene
CDK4

MDM2

ESR1

MAPK1

HLA-B

CARD11

RAC1

RPS6KB1

GNA13

H3-3B

TNFAIP3

PMS2

HDAC9

TBX3

RNF43

PPM1D

AXIN2

PRKARTA

Locus
chr12:58142242

chr12:69202958
chr6:152163831
chr22:22123473
chr6:31322252
chr7:2949684
chr7:6426823
chr17:57970507
chr17:63010302
chr17:73772413
chr6:138192315
chr7:6012922
chr7:18201905
chr12:115109599
chr17:56432226
chr17:58677747
chr17:63526027

chr17:66511464

Copy Number
88.7

109.7
11.08
4.79
0.93
9.97
7.24
5.89
5.54
4.86
7.8
6.45
10.04
34.03
5.51
5.79
5.73

5.76

CNV Ratio
31.78

39.23

4.23

1.99

0.62

3.83

2.86

2.38

2.25

2.01

3.06

2.58

3.85

12.37

2.24

2.35

2.33

2.33

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Variant Details (continued)

Copy Number Variations (continued)

Gene Locus Copy Number CNV Ratio
SOX9 chr17:70117435 5.76 2.33

Biomarker Descriptions

CDK4 amplification
cyclin dependent kinase 4

Background: The CDK4 gene encodes the cyclin-dependent kinase 4 protein, a homologue of CDK6'.82, Both proteins are serine/
threonine protein kinases that are involved in the regulation of the G1/S phase transition of the mitotic cell cycle8384 CDK4 is activated
by complex formation with D-type cyclins (e.g., CCND1, CCND2, or CCND3), which leads to the phosphorylation of retinoblastoma
protein (RB), followed by E2F activation, DNA replication, and cell-cycle progression85. Germline mutations in CDK4 are associated
with familial melanoma®687.88, Qverexpression of CDK4 has been observed in several cancers including epithelial cancers of endocrine
tissues and mucosa, melanoma, breast cancer, gliomas, and leukemia8®.

Alterations and prevalence: Recurrent somatic mutations of CDK4 are observed in 3% of skin cutaneous melanoma and 2% of uterine
corpus endometrial carcinoma8?®. Somatic mutations at codons K22 and R24, which are essential for binding and inhibition by p16/
CDKNZ2A, are associated with melanoma formation and metastasis.?091.9293, CDK4 is recurrently amplified in 18% of sarcoma, 7% of
adrenocortical carcinoma, 6% of cholangiocarcinoma, 5% of lung adenocarcinoma, 4% of brain lower grade glioma and skin cutaneous
melanoma, and 2% of stomach adenocarcinoma, diffuse large B-cell lymphoma, and pancreatic adenocarcinomag?9495, Alterations

in CDK4 are also observed in pediatric cancers?. Somatic mutations are observed in 2% of Hodgkin lymphoma®. CDK4 amplification

is observed in 5% of bone cancer (2 in 42 cases), 2% of peripheral nervous system tumors (2 in 91 cases), and less than 1% of Wilms
tumor (1 in 136 cases) and B-lymphoblastic leukemia/lymphoma (1 in 731 cases)?.

Potential relevance: Currently, no therapies are approved for CDK4 aberrations. Amplification of region 12q14-15, which includes
CDK4, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/welldifferentiated liposarcoma (ALT/WDLS)'8. Small
molecule inhibitors targeting CDK4/6 including palbociclib (2015)%, abemaciclib (2017)97, and ribociclib (2017)9%, are FDA approved
in combination with an aromatase inhibitor or fulvestrant for the treatment of hormone receptor-positive, HER2-negative advanced or
metastatic breast cancer.

MDM2 amplification
MDM?2 proto-oncogene

Background: The MDM2 gene encodes the murine double minute 2 proto-oncogene’. MDM2 is structurally related to murine double
minute 4 (MDM4), with both proteins containing an N-terminal domain that binds p53, a zinc-finger domain, and a C-terminal RING
domain’®. MDM2 and MDM4 are oncogenes that function as negative regulators of the tumor suppressor TP53, and can homo- or
heterodimerize with p53 through their RING domains®. Specifically, the MDM2 RING domain functions as an E3 ubiquitin ligase and is
responsible for the polyubiquitination and degradation of the p53 protein when MDMZ2 is present at high levels20. Alternately, low levels
of MDM2 activity promote mono-ubiquitination and nuclear export of p5320. MDM2 amplification and overexpression disrupt the p53
protein function, thereby contributing to tumorigenesis and supporting an oncogenic role for MDM220,

Alterations and prevalence: MDM2 is amplified in 19% of sarcoma, 9% of bladder urothelial carcinoma, 8% of glioblastoma multiforme,
7% of adrenocortical carcinoma, 5% of uterine carcinosarcoma, lung adenocarcinoma, esophageal adenocarcinoma, and stomach
adenocarcinoma, 4% of skin cutaneous melanoma, head and neck squamous cell carcinoma, and ovarian serous cystadenocarcinoma,
3% of breast invasive carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma, testicular germ cell tumors, and lung squamous
cell carcinoma, and 2% of diffuse large B-cell lymphoma8®. MDM2 overexpression is observed in lung, breast, liver, esophagogastric,
and colorectal cancers?!. The most common co-occuring aberrations with MDM2 amplification or overexpression are CDK4
amplification and TP53 mutation2223, Somatic mutations in MDM2 are observed in 2% of uterine corpus endometrial carcinoma,
adrenocortical carcinoma, and sarcomas?®. Alterations in MDM2 are also observed in pediatric cancers®. Amplification of MDM2 is
observed in 2% of bone cancer (1 in 42 cases), 1% of Wilms tumor (2 in 136 cases) and peripheral nervous system tumors (1 in 91
cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)?. Somatic mutations in MDM2 are observed in 2% of
non-Hodgkin lymphoma (1 in 17 cases) and less than 1% of bone cancer (3 in 327 cases) and embryonal tumors (1 in 332 cases)®.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for MDM2 aberrations. Amplification of region 12q13-15, which includes
MDMZ2, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/well differentiated liposarcoma (ALT/WDLS) and
dedifferentiated liposarcoma’s.

ESR1 amplification
estrogen receptor 1

Background: The ESR1 gene encodes estrogen receptor 1 (ERa), which is a member of the superfamily of nuclear receptors which
convert extracellular signals into transcriptional responses’. A related gene, ESR2, encodes the cognate ER protein'. ERa is a ligand-
activated transcription factor regulated by the hormone estrogen2425, Estrogen binding to ERa results in receptor dimerization, nuclear
translocation, and target gene transcription. In addition, estrogen binding to the ERa results in the activation of the RAS/RAF/MEK/ERK,
PI3K/AKT/mTOR, cAMP/PKA and PLC/PKC signaling pathways and cell proliferation and survival2s. In neuroblastoma, MYCN-driven
miR-17~92 cluster expression suppresses ESR1 to block differentiation, whereas estrogen-activated ESR1 cooperates with ETS-1 to
promote MMP1/9 expression and tumor proliferation, migration, and invasion?7.28.

Alterations and prevalence: Approximately 70% of breast cancers express ERa and ERB positivity. Mutations in the ERa ligand binding
domain, including S463P, Y537S, and D538G, result in endocrine-independent constitutive receptor activation, which is a common
mechanism of endocrine resistance293031.32, Somatic mutations in ESR1 are observed in 5% of uterine corpus endometrial carcinoma,
4% of colorectal adenocarcinoma and skin cutaneous melanoma, 3% of stomach adenocarcinoma, and 2% of lung adenocarcinoma,
lung squamous cell carcinoma, and esophageal adenocarcinoma&®. ESR1 gene fusions and ESR1 copy number gains have also

been observed and are associated with advanced endocrine resistant disease3334353637 Amplification of ESR1 is observed in 5% of
uterine carcinosarcoma, 4% of sarcoma, 3% of uterine corpus endometrial carcinoma, and 2% of ovarian serous cystadenocarcinoma,
adrenocortical carcinoma, and breast invasive carcinomas8?®. Alterations in ESR1 are also observed in pediatric cancers38. Somatic
mutations in ESR1 are observed in 5% of T-lymphoblastic leukemia/lymphoma (2 in 41 cases), 1% of glioma (3 in 297 cases), and less
than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), leukemia (1 in 311 cases), and peripheral nervous system cancers (1
in 1158 cases)38. Amplification of ESR1 is observed in less than 1% of leukemia (1 in 250 cases)38.

Potential relevance: The FDA has approved elacestrant39 (2023) for the treatment of postmenopausal women or adult men with ER-
positive/ERBB2-negative, ESR1-mutated advanced or metastatic breast cancer40. The FDA also approved imlunestrant4! (2025) for the
treatment of adults with ER-positive, HER2-negative, ESR1-mutated advanced or metastatic breast cancer with disease progression
following at least one line of endocrine therapy. The FDA has also granted fast track designations to the following therapies: AC-69942
(2024) and lasofoxifene43 (2019) for ESR1-mutated, ER-positive/ERBB2-negative metastatic breast cancer, camizestrant44 for ESR1-
mutated, HR-positive/ERBB2-negative metastatic breast cancer, and seviteronel45 (2016) for ER-positive breast cancer. Anti-estrogen
(endocrine) treatments such as tamoxifen4é (1977), fulvestrant4’ (2002), letrozole48 (1995), and exemestane#? (2005) are FDA approved
for ER-positive metastatic breast cancerss051, Although ERa and ERB positivity predicts response to endocrine therapies, about a
quarter of patients with primary breast cancer and almost all patients with metastatic disease will develop endocrine resistances253.54,

MAPK1 amplification
mitogen-activated protein kinase 1

Background: The MAPK1 gene encodes the mitogen-activated protein kinase 1, also known as ERK2'. MAPK1 is involved in the ERK1/2
signaling pathway along with MAPK3, MAP2K2, MAP2K4, BRAF, and RAF1555¢, Activation of MAPK proteins occurs through a kinase
signaling cascade56.57.58, Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members56.57.58, Once activated,
MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes
including cell proliferation, differentiation, and inflammations¢.57.58, MAPK1 activation leads to homodimerization and phosphorylation
of downstream targets including transcription factors RSK, MSK, and MYC, cytoskeletal molecules, and nucleoporinss®. MAPK1
mutations have been observed to confer gain of function and promote MAPK pathway signaling, supporting an oncogenic role for
MAPK16061,

Alterations and prevalence: Somatic mutations in MAPK1 are observed in up to 4% of cervical squamous cell carcinoma, and up to

2% of head and neck squamous cell and uterine corpus endometrial carcinomas8?. The most common missense mutations occur at
codon 32289. Amplifications in MAPKT1 are observed in up to 4% of sarcoma, and 3% of bladder carcinoma, lung squamous carcinoma,
and ovarian cancer8?.

Potential relevance: Currently, no therapies are approved for MAPK1 aberrations.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

NF1 p.(Q2228*) c.6682C>T
neurofibromin 1

Background: The NF1 gene encodes the neurofibromin protein, a tumor suppressor within the Ras-GTPase-activating protein (GAP)
family'3. NF1 regulates cellular levels of activated RAS proteins including KRAS, NRAS, and HRAS, by down regulating the active GTP-
bound state to an inactive GDP-bound state314. Inactivation of NF1 due to missense mutations results in sustained intracellular
levels of RAS-GTP and prolonged activation of the RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways leading to increased
proliferation and survival'3. Constitutional mutations in NF1 are associated with neurofibromatosis type 1, a RASopathy autosomal
dominant tumor syndrome with predisposition to myeloid malignancies such as juvenile myelomonocytic leukemia (JMML) and
myeloproliferative neoplasms (MPN)131516,

Alterations and prevalence: NF1 aberrations include missense mutations, insertions, indels, aberrant splicing, microdeletions, and
rearrangements?3. The majority of NF1 mutated tumors exhibit biallelic inactivation of NF1, supporting the 'two-hit' hypothesis of
carcinogenesis’317. Somatic mutations in NF1 are observed in several cancer types including 17% of skin cutaneous melanoma,

14% of uterine corpus endometrial carcinoma, and 12% of glioblastoma multiforme, lung adenocarcinoma, and lung squamous cell
carcinomas?®. Structural variants in NF1 are observed in 3% of cholangiocarciomas?®. Biallelic deletion of NF1 is observed in 6% of
ovarian serous cystadenocarcinoma, 4% of sarcoma, and 2% of uterine corpus endometrial carcinoma, pheochromocytoma and
paraganglioma, lung squamous cell carcinoma, adrenocortical carcinoma, glioblastoma multiforme, uterine carcinosarcoma, and
acute myeloid leukemia89. Alterations in NF1 are also observed in pediatric cancers?. Somatic mutations in NF1 are observed in 8% of
soft tissue sarcoma (3 in 38 cases), 4% of B-lymphoblastic leukemia/lymphoma (9 in 252 cases), 3% of Hodgkin lymphoma (2 in 61
cases), 2% of glioma (6 in 297 cases), 1% of bone cancer (4 in 327 cases) and leukemia (4 in 354 cases), and less than 1% of peripheral
nervous system tumors (7 in 1158 cases), embryonal tumors (2 in 332 cases), and Wilms tumor (1 in 710 cases)?®. Biallelic deletion of
NF1 is observed in 2% of bone cancer (1 in 42 cases) and less than 1% of leukemia (2 in 250 cases), Wilms tumor (1 in 136 cases), and
B-lymphoblastic leukemia/lymphoma (5 in 731 cases)°.

Potential relevance: Currently, no therapies are approved for NF1 aberrations. Somatic mutation of NF1 is useful as an ancillary
diagnostic marker for malignant peripheral nerve sheath tumor (MPNST)8,

UGT1A1 p.(G71R) ¢.211G>A
UDP glucuronosyltransferase family T member A1

Background: The UGTTA1 gene encodes UDP glucuronosyltransferase family T member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily’99. UGTs are microsomal membrane-bound

enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites99100. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance’0'. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation01.102103,104  Furthermore, UGT1A1 polymorphisms, such as UGTTA1*28,
UGT1A1%93, and UGT1A1%*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-38105,

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinomas?.

Potential relevance: Currently, no therapies are approved for UST1A1 aberrations.

HLA-B deletion
major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class |, B'. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class | molecules are heterodimers composed of two polypeptide chains, a and B2M3. The classical MHC class | genes
include HLA-A, HLA-B, and HLA-C and encode the a polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self456. Downregulation of MHC class | promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B?.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell ymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanomas8?. Biallelic loss of HLA-
B is observed in 5% of DLBCL&9.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

CARD11 amplification
caspase recruitment domain family member 11

Background: The CARD11 gene encodes caspase recruitment domain family member 11 protein'. CARD11, also known as CARMAT1,

is a scaffold protein that functions in the adaptive immune system to mediate antigen-receptor signaling through the NF-kB, JNK, and
MTOR signaling pathways7071.72, |n response to T- or B- cell receptor triggering, CARD11 is activated, which results in binding of various
cofactors, including BCL10, MALT1, and RNF3171. Cofactor recruitment to CARD11 leads to the ubiquitination of BCL10, which then
associates with the IkB (IKK) complex through the IKKy subunit, thereby leading to IkB activation and downstream NF-kB signaling”'.
CARD11 gain-of-function mutations are associated with constitutive activation of NF-kB signaling and aberrant proliferation of diffuse
large B-cell ymphoma (DLBCL), supporting an oncogenic role for CARD1171.

Alterations and prevalence: Somatic mutations in CARD11 are observed in 17% of DLBCL, 14% of skin cutaneous melanoma,

10% of uterine corpus endometrial carcinoma, 7% of colorectal adenocarcinoma and stomach adenocarcinoma, and 6% of lung
adenocarcinoma&?. Amplification of CARD11 is observed in 5% of esophageal adenocarcinoma, 4% of bladder urothelial carcinoma,
lung adenocarcinoma, and uterine carcinosarcoma, 3% of stomach adenocarcinoma, 2% of adrenocortical carcinoma, DLBCL, and skin
cutaneous melanomas?.

Potential relevance: Currently, no therapies are approved for CARD11 aberrations.

RAC1 amplification
ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)

Background: The RAC1 gene encodes Rac family small GTPase 1. RAC1 is one of 23 members of the RHO subfamily of GTPases
within the RAS superfamily626364, The RAS superfamily includes the RHO, RAS, RAB, ARF, RHEB, and Ga subfamilies6263.6465 RHO
subfamily members are known for the regulation of several pathways involved in cell morphology, motility, and proliferation6.67.68,
RAC1 can exist in an inactive GDP-bound form as well as in an active GTP-bound formé4. Guanine nucleotide exchange factors (GEFs)
activate RAC1 by facilitating the release of GDP to allow for binding of GTP, while GTPase-activating proteins (GAPs) facilitate the
reverse, that is converting GTP-bound RACT1 to an inactive state®4.

Alterations and prevalence: Somatic mutations in RAC1 are observed in 6% of skin cutaneous melanoma and 2% of uterine
carcinosarcomas®. The P29S mutation is recurrent in melanoma and is potentially associated with resistance to BRAF inhibitors89.69.
RAC1 is amplified in 6% of esophageal squamous cell carcinoma, 4% of uterine carcinosarcoma, bladder urothelial carcinoma, and
sarcoma, as well as 2% of skin cutaneous melanoma and esophageal adenocarcinoma3s?.

Potential relevance: Currently, no therapies are approved for RAC1 aberrations.

RPS6KB1 amplification
ribosomal protein S6 kinase B1

Background: The RPS6KB1 gene encodes ribosomal protein S6 kinase B11. RPS6KB1, also known as S6K1, belongs to the AGC
kinase family along with AKT, PKA, PKC, and PKG78. RPS6KB1 is a downstream target of mTORC1 phosphorylation which results in
activation of RPS6KB1 and subsequent phosphorylation of the 40S ribosomal protein S67980. Aberrations including amplification and
overexpression of RPS6KB1 have been associated with various cancer types including breast, kidney, and hepatocellular carcinoma,
supporting an oncogenic role for RPS6KB17981,

Alterations and prevalence: Somatic mutations in RPS6KB1 are observed in 2% uterine corpus endometrial carcinoma&®. Amplification
of RPS6KB1 is observed in 9% of breast invasive carcinoma, 5% of liver hepatocellular carcinoma and mesothelioma, and 4% uterine
carcinosarcomas?,

Potential relevance: Currently, no therapies are approved for RPS6KB1 aberrations.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Biomarker Descriptions (continued)

GNA13 amplification
G protein subunit alpha 13

Background: The GNA13 gene encodes the G protein subunit a 13. GNA13 functions as the a subunit of heterotrimeric G proteins,
which are responsible for binding guanine nucleotide, hydrolyzing GTP, and interacting with specific receptor and effector molecules?©.
Specifically, GNA13 mediated signaling is observed to impact several cellular processes including the regulation of cell growth,
transformation, cell adhesion, and migration''. GNA13 deregulation, including overexpression, has been observed to result in increased
levels of chemokines which can promote cell proliferation. In contrast, mutations in GNA13 leading to inactivation result in B-cell
release from germinal centers of lymphoid tissues to peripheral blood and may promote lymphomagenesis in germinal center diffuse
large B-cell and Burkitt's lymphomas?2.

Alterations and prevalence: Somatic mutations in GNA13 are observed in 5% of DLBCL, 4% of uterine and 3% of bladder cancerg?.
Homozygous deletions are observed in 6% of DLBCL8°. GNA13 is the most frequently mutated gene in germinal center derived B-cell
lymphomas, including 25% of Burkitt lymphoma’2. The majority of such mutations are predicted to result in loss of protein function?2.

Potential relevance: Currently, no therapies are approved for GNA13 aberrations.

H3-3B amplification
H3.3 histone B

Background: The H3-3B gene encodes the H3.3 histone B protein, also known as H3F3B, a sequence variant member of the histone
H3 family'.73. Specifically, H3-3B is expressed independently of DNA replication in non-dividing or terminally differentiated cells74.
Histone H3, along with histones H4, H2A, and H2B form the nucleosome, which is a component of chromatin’s. Histones play a role in
transcriptional regulation, DNA repair, replication, and chromosomal stability’5. Mutations in H3 have been observed to impact global
histone methylation and gene transcription, which may promote tumorigenesis’®.

Alterations and prevalence: Somatic mutations in H3-3B are observed in 1% of bladder urothelial carcinoma, skin cutaneous melanoma,
mesothelioma, and uterine corpus endometrial carcinomas8®. H3-3B amplifications are observed in 4% of breast invasive carcinoma,
uterine carcinosarcoma and liver hepatocellular carcinoma, 3% of mesothelioma, uterine corpus endometrial carcinoma, skin
cutaneous melanoma, esophageal adenocarcinoma and cervical squamous cell carcinomas?®.

Potential relevance: Currently, no therapies are approved for H3-3B aberrations. The FDA has granted fast track designation to ONC201
for the treatment of adult high-grade glioma harboring a H3 K27M mutation??.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMPS5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNBT, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIFTAX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFRS3,
FGFR4, FLT3, FLT4, FOXAT, FOXL2, FOXO1, GATA2, GLIT, GNAT1, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJS5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,

MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STATSB, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AFT1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCBT1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,

ARHGAP35, ARIDTA, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNET1,
CD274,CD276,CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICERT, DNMT3A, DOCKS,
DPYD, DSC1, DSC3, EGFR, EIFTAX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXAT, FUBP1, FYN, GATA2, GATAS, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDACY, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAPT, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPKT1,
MAPKS8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF®6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDMT1, PRDM9, PRKACA, PRKARTA, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RADS51D,
RADS52, RAD54L, RAF1, RARA, RASAT, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROST,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCBT1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAPT,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAST1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMERT, APC, ARHGAP35, ARIDTA, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXINT, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK?2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENOT1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDACY, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAKT1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCHT,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMST,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKARTA, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RADS51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPAT, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCBT,
SOCST, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

. In this cancer type O In other cancer type O In this cancer type and other cancer types No evidence
CDK4 amplification
Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*
abemaciclib " X()
camrelizumab + dalpiciclib " X()
palbociclib " X()

* Most advanced phase (1V, Il 1I/111, 11, I/11, 1) is shown and multiple clinical trials may be available.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Relevant Therapy Summary (continued)

. In this cancer type O In other cancer type O In this cancer type and other cancer types No evidence

CDK4 amplification (continued)

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*
palbociclib, abemaciclib C X()
MDM2 amplification
Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*
retifanlimab, pemigatinib " YO
alrizomadlin, toripalimab @ (/)
SA53-MDM2 @ (/)
siremadlin, pazopanib @ (/)
BTX-A51 " X0)

* Most advanced phase (IV, IIl, 117111, 11, 1711, 1) is shown and multiple clinical trials may be available.

HRR Details
Gene/Genomic Alteration Finding
LOH percentage 29.78%
BRCA2 LOH, 13913.1(32890491-32972932)x2
RAD54L LOH, 1p34.1(46714017-46743978)x3

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCAT,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current

as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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