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Gene Finding Gene Finding

ALK None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR None detected NTRK3 None detected
ERBB2 ERBB2 exon 20 insertion RET None detected
KRAS None detected ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 3.79 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA ERBB2 exon 20 insertion

erb-b2 receptor tyrosine kinase 2
Allele Frequency: 21.74%
Locus: chr17:37880981
Transcript: NM_004448.4

trastuzumab deruxtecan 1, 2 / II+

zongertinib 1 / II+

sevabertinib 1

neratinib
neratinib + hormone therapy
neratinib + trastuzumab + hormone
therapy

31

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

ERBB2 exon 20 insertion  zongertinib 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Prevalent cancer biomarkers without relevant evidence based on included data sources
ARID1B p.(G304Rfs*12) c.908_909insGCGG, MAP2K7 deletion, Microsatellite stable, TP53 p.(E286K) c.856G>A, UGT1A1 p.
(G71R) c.211G>A, HLA-A p.(L180*) c.539T>A, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

ERBB2 p.(Y772_A775dup) c.2313_2324dup COSM20959 chr17:37880981 21.74% NM_004448.4 nonframeshift
Insertion

ARID1B p.(G304Rfs*12) c.908_909insGCGG . chr6:157099720 8.42% NM_001371656.1 frameshift
Insertion

TP53 p.(E286K) c.856G>A COSM10726 chr17:7577082 15.60% NM_000546.6 missense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 99.35% NM_000463.3 missense

HLA-A p.(L180*) c.539T>A . chr6:29911240 32.29% NM_001242758.1 nonsense

NQO1 p.(P187S) c.559C>T . chr16:69745145 99.70% NM_000903.3 missense

ERVMER34-
1

p.(A29V) c.86C>T . chr4:53611602 55.85% NM_001242690.2 missense

HLA-B p.([T118I;L119I]) c.353_355delCCCinsT
CA

. chr6:31324208 76.17% NM_005514.8 missense,
missense

HDAC2 p.(D175H) c.523G>C . chr6:114274557 4.04% NM_001527.4 missense

ARID1B p.(G306dup) c.918_919insGGC . chr6:157099732 17.62% NM_001371656.1 nonframeshift
Insertion

PDE1C p.(?) c.1466-2A>T . chr7:31864603 7.70% NM_001191058.4 unknown

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

MAP2K7 chr19:7968792 0.2 0.64

Copy Number Variations

 

Variant Details

 
ERBB2 exon 20 insertion

erb-b2 receptor tyrosine kinase 2

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor
(HER) family1. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family64. All
ERBB/HER proteins encode transmembrane receptor tyrosine kinases65. However, ERBB2/HER2 is an orphan receptor with no known
ligand65. ERBB2 preferentially binds other ligand-bound ERBB/HER family members to form heterodimers resulting in the activation of
ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which
promote cell proliferation, differentiation, and survival66. Recurrent focal amplification of the ERBB2 gene leads to increased expression
in several cancer types66. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and
activation without ligand binding67,68,69.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-25% of breast, esophageal, and gastric cancers, 5-10% of bladder,
cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers8,9,70,71,72,73,74,75. ERBB2 gene amplification in
pediatric population is observed in 2% of peripheral nervous system cancers (2 in 91 patients) and less than 1% of leukemia (1 in 250
cases)9. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types9,76,77. In breast,

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and
V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include
in-frame exon 20 insertions, particularly Y772_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of
trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER278,79. Trastuzumab80 was FDA
approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and
gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA
for HER2-positive breast cancer including pertuzumab81 (2012), a humanized monoclonal antibody that inhibits HER2 dimerization,
and ado-trastuzumab emtansine82 (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination of
pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer83. In addition to
monoclonal antibodies, the small molecule inhibitor lapatinib84, with specificity for both EGFR and ERBB2, was FDA approved (2007)
for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including trastuzumab. In
2017, the FDA approved the use of neratinib85, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4, for the extended
adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved neratinib85 in combination
with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2-directed therapies. Also in 2020,
the TKI irbinitinib86 was FDA approved for HER2 overexpressing or amplified breast cancer in combination with trastuzumab and
capecitabine. In 2021, the PD-1 blocking antibody, pembrolizumab, in combination with trastuzumab, fluoropyrimidine- and platinum-
based chemotherapy, was approved for HER2 amplified gastric or gastroesophageal (GEJ) adenocarcinoma in the first line51. In
2024, a bispecific HER2 antibody, zanidatamab87, was approved for the treatment of adults with previously treated, unresectable
or metastatic ERBB2 overexpressing biliary tract cancer. In 2018 fast track designation was granted to the monoclonal antibody
margetuximab88 in patients with ERBB2 positive breast cancer previously treated with an anti-HER2 therapy. Additionally, in 2019,
zanidatamab89, received fast track designation in combination with standard chemotherapy for patients with HER2-overexpressing
gastroesophageal adenocarcinoma (GEA). The humanized anti-HER2 antibody drug conjugate disitamab vedotin90 (2020) received
breakthrough designation for adult patients with HER2-positive urothelial cancer after previous platinum-chemotherapy treatment.
In 2021, the antibody-drug conjugate ARX78891 received fast track designation as a monotherapy for advanced or metastatic HER2-
positive breast cancer that have progressed on one or more anti-HER2 regimens. Certain activating mutations have been observed to
impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacomitinib in early and ongoing clinical studies92,93,94,95,96. ERBB2
kinase domain mutations R896G and V659E both showed response to afatinib in two NSCLC case studies97,98. Additionally, acquired
HER2 mutations in estrogen receptor-positive (ER+) breast cancer have been shown to confer resistance to hormone therapy99.
However, this was shown to be overcome by neratinib in combination with therapies targeting ER99. Additionally, in 2025, FDA approved
the kinase inhibitors zongertinib100 and sevabertinib101 for the treatment of adult patients with unresectable or metastatic non-
squamous non-small cell lung cancer (NSCLC) whose tumors have HER2 tyrosine kinase domain activating mutations. In 2025, a 9
amino acid transmembrane peptide of the HER2/neu protein, GLSI-100 (GP-2)102, received fast track designation for the prevention of
breast cancer recurrence following surgery.

ARID1B p.(G304Rfs*12) c.908_909insGCGG

AT-rich interaction domain 1B

Background: The ARID1B gene encodes the AT-rich interaction domain 1B tumor suppressor protein1. ARID1B, also known as
BAF250B, belongs to the ARID1 subfamily that also includes ARID1A1,10. ARID1A and ARID1B are mutually exclusive subunits of the
BAF variant of the SWI/SNF chromatin remodeling complex10,11.The BAF complex is a multisubunit protein that consists of SMARCB1/
IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B11. The BAF complex
remodels chromatin at promoter and enhancer elements to alter and regulate gene expression11,12. Recurrent inactivating mutations in
BAF complex subunits, including ARID1B, lead to transcriptional dysfunction, suggesting ARID2B functions as a tumor suppressor10.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in
cancer and have been observed in 20% of all tumors12. Somatic mutations in ARID1B are observed in 9% of uterine corpus endometrial
carcinoma, 8% of cholangiocarcinoma, 7% of skin cutaneous melanoma, and 6% of stomach adenocarcinoma, bladder urothelial
carcinoma, and colorectal adenocarcinoma8,9. Biallelic loss of ARID1B is observed in 6% of uveal melanoma, 1% of bladder urothelial
carcinoma, stomach adenocarcinoma, skin cutaneous melanoma, and colorectal adenocarcinoma8,9.

Potential relevance: Currently, no therapies are approved for ARID1B aberrations. Mutations in chromatin modifying genes, including
ARID1B, are considered to be characteristic genetic features of hepatosplenic T-cell lymphoma (HSTL), as they have been observed in
up to 62% of cases13,14.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK71. MAP2K7 is involved
in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK1060,61,62. Activation of MAPK
proteins occurs through a kinase signaling cascade60,61,63. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family
members60,61,63. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved
in several cellular processes including cell proliferation, differentiation, and inflammation60,61,63.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal
adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma8,9. Biallelic deletions are observed in
4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma8,9.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome38. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue39,40. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS241. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25042. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)42. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS43,44,45,46,47. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes40.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer39,40,44,48.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma39,40,49,50. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers49,50.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab51 (2014) and nivolumab52 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab51 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication51. Dostarlimab53 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer45,54. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab55 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location45,56,57. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients57. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors58,59. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers58,59.

TP53 p.(E286K) c.856G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis15. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential16. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers17,18.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)8,9,19,20,21,22. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,9. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes23,24,25,26. Alterations in TP53 are also
observed in pediatric cancers8,9. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)8,9. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)8,9.

Potential relevance: The small molecule p53 reactivator, PC1458627 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation28,29. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma30. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)31,32,33,34,35. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant36. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system37.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily1,103. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites103,104. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance105. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation105,106,107,108. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-38109.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma8,9.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-A p.(L180*) c.539T>A

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self4,5,6. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-A7.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical
squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus
endometrial carcinoma and stomach adenocarcinoma8,9. Biallelic loss of HLA-A is observed in 4% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

Biomarker Descriptions (continued)
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

 

 zongertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 TKD activating
mutation

Supporting Statement:
The FDA has granted Breakthrough Therapy designation to the tyrosine kinase inhibitor, zongertinib (BI 1810631), for the first-
line treatment of adult patients with unresectable or metastatic non-squamous non-small cell lung cancer (NSCLC) whose tumors
have HER2 (ERBB2) tyrosine kinase domain activating mutations.

Reference:

https://www.prnewswire.com/news-releases/fda-grants-hernexeos-breakthrough-therapy-designation-for-first-line-use-in-her2-
erbb2-mutant-advanced-nsclc-302545360.html

 

ERBB2 exon 20 insertion

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

trastuzumab deruxtecan      (II)

zongertinib      (II)

sevabertinib      (II)

neratinib     

neratinib + fulvestrant     

neratinib + trastuzumab + fulvestrant     

sevabertinib, pembrolizumab, chemotherapy      (III)

trastuzumab deruxtecan, pembrolizumab,
chemotherapy      (III)

zongertinib, pembrolizumab, chemotherapy      (III)

ERBB2 exon 20 insertion

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pertuzumab + trastuzumab      (II/III)

anti-PD-L1 antibody, pyrotinib      (II)

pyrotinib      (II)

pyrotinib, chemotherapy      (II)

pyrotinib, thalidomide      (II)

sintilimab      (II)

toripalimab, chemotherapy      (II)

tucatinib, ado-trastuzumab emtansine      (II)

ABT-101      (I/II)

AZD-9574, trastuzumab deruxtecan      (I/II)

BH-30643      (I/II)

DF-1001, sacituzumab govitecan      (I/II)

HS-10376      (I/II)

JIN-A-04      (I/II)

ORIC-114      (I/II)

STX-721      (I/II)

trastuzumab deruxtecan, neratinib      (I/II)

ado-trastuzumab emtansine (Shanghai Fosun
Pharma)      (I)

BL-M07D1      (I)

BM-230      (I)

ENT-H-1, trastuzumab      (I)

GQ-1005      (I)

NVL-330      (I)

ERBB2 exon 20 insertion (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 6.2%
Not Detected Not Applicable

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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