

Patient Name: 이철
Gender: Male
Sample ID: N26-12

Primary Tumor Site: lung
Collection Date: 2025.12.29

Sample Cancer Type: Lung Cancer

Table of Contents

	Page
Variant Details	2
Biomarker Descriptions	2
Alert Details	6
Relevant Therapy Summary	7

Report Highlights

1 Relevant Biomarkers
6 Therapies Available
31 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	None detected	NTRK3	None detected
ERBB2	ERBB2 exon 20 insertion	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	3.79 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	ERBB2 exon 20 insertion erb-b2 receptor tyrosine kinase 2 Allele Frequency: 21.74% Locus: chr17:37880981 Transcript: NM_004448.4	trastuzumab deruxtecan ^{1,2 / II+} zongertinib ^{1 / II+} sevabertinib ¹	neratinib neratinib + hormone therapy neratinib + trastuzumab + hormone therapy	31

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

 Alerts informed by public data sources: Contraindicated, Resistance, Breakthrough, Fast Track

ERBB2 exon 20 insertion

 zongertinib¹

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

ARID1B p.(G304Rfs*12) c.908_909insGCGG, MAP2K7 deletion, Microsatellite stable, TP53 p.(E286K) c.856G>A, UGT1A1 p.(G71R) c.211G>A, HLA-A p.(L180*) c.539T>A, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
ERBB2	p.(Y772_A775dup)	c.2313_2324dup	COSM20959	chr17:37880981	21.74%	NM_004448.4	nonframeshift Insertion
ARID1B	p.(G304Rfs*12)	c.908_909insGCGG	.	chr6:157099720	8.42%	NM_001371656.1	frameshift Insertion
TP53	p.(E286K)	c.856G>A	COSM10726	chr17:7577082	15.60%	NM_000546.6	missense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	99.35%	NM_000463.3	missense
HLA-A	p.(L180*)	c.539T>A	.	chr6:29911240	32.29%	NM_001242758.1	nonsense
NQO1	p.(P187S)	c.559C>T	.	chr16:69745145	99.70%	NM_000903.3	missense
ERVMER34- p.(A29V) 1		c.86C>T	.	chr4:53611602	55.85%	NM_001242690.2	missense
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT CA	.	chr6:31324208	76.17%	NM_005514.8	missense, missense
HDAC2	p.(D175H)	c.523G>C	.	chr6:114274557	4.04%	NM_001527.4	missense
ARID1B	p.(G306dup)	c.918_919insGGC	.	chr6:157099732	17.62%	NM_001371656.1	nonframeshift Insertion
PDE1C	p.(?)	c.1466-2A>T	.	chr7:31864603	7.70%	NM_001191058.4	unknown

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
MAP2K7	chr19:7968792	0.2	0.64

Biomarker Descriptions

ERBB2 exon 20 insertion

erb-b2 receptor tyrosine kinase 2

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor (HER) family¹. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family⁶⁴. All ERBB/HER proteins encode transmembrane receptor tyrosine kinases⁶⁵. However, ERBB2/HER2 is an orphan receptor with no known ligand⁶⁵. ERBB2 preferentially binds other ligand-bound ERBB/HER family members to form heterodimers resulting in the activation of ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which promote cell proliferation, differentiation, and survival⁶⁶. Recurrent focal amplification of the ERBB2 gene leads to increased expression in several cancer types⁶⁶. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and activation without ligand binding^{67,68,69}.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-25% of breast, esophageal, and gastric cancers, 5-10% of bladder, cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers^{8,9,70,71,72,73,74,75}. ERBB2 gene amplification in pediatric population is observed in 2% of peripheral nervous system cancers (2 in 91 patients) and less than 1% of leukemia (1 in 250 cases)⁹. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types^{9,76,77}. In breast,

Biomarker Descriptions (continued)

bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include in-frame exon 20 insertions, particularly Y772_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER2^{78,79}. Trastuzumab⁸⁰ was FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for HER2-positive breast cancer including pertuzumab⁸¹ (2012), a humanized monoclonal antibody that inhibits HER2 dimerization, and ado-trastuzumab emtansine⁸² (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer⁸³. In addition to monoclonal antibodies, the small molecule inhibitor lapatinib⁸⁴, with specificity for both EGFR and ERBB2, was FDA approved (2007) for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including trastuzumab. In 2017, the FDA approved the use of neratinib⁸⁵, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4, for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved neratinib⁸⁵ in combination with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2-directed therapies. Also in 2020, the TKI irbinitinib⁸⁶ was FDA approved for HER2 overexpressing or amplified breast cancer in combination with trastuzumab and capecitabine. In 2021, the PD-1 blocking antibody, pembrolizumab, in combination with trastuzumab, fluoropyrimidine- and platinum-based chemotherapy, was approved for HER2 amplified gastric or gastroesophageal (GEJ) adenocarcinoma in the first line⁵¹. In 2024, a bispecific HER2 antibody, zanidatamab⁸⁷, was approved for the treatment of adults with previously treated, unresectable or metastatic ERBB2 overexpressing biliary tract cancer. In 2018 fast track designation was granted to the monoclonal antibody margetuximab⁸⁸ in patients with ERBB2 positive breast cancer previously treated with an anti-HER2 therapy. Additionally, in 2019, zanidatamab⁸⁹, received fast track designation in combination with standard chemotherapy for patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA). The humanized anti-HER2 antibody drug conjugate disitamab vedotin⁹⁰ (2020) received breakthrough designation for adult patients with HER2-positive urothelial cancer after previous platinum-chemotherapy treatment. In 2021, the antibody-drug conjugate ARX788⁹¹ received fast track designation as a monotherapy for advanced or metastatic HER2-positive breast cancer that have progressed on one or more anti-HER2 regimens. Certain activating mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacotinib in early and ongoing clinical studies^{92,93,94,95,96}. ERBB2 kinase domain mutations R896G and V659E both showed response to afatinib in two NSCLC case studies^{97,98}. Additionally, acquired HER2 mutations in estrogen receptor-positive (ER+) breast cancer have been shown to confer resistance to hormone therapy⁹⁹. However, this was shown to be overcome by neratinib in combination with therapies targeting ER⁹⁹. Additionally, in 2025, FDA approved the kinase inhibitors zongertinib¹⁰⁰ and sevabertinib¹⁰¹ for the treatment of adult patients with unresectable or metastatic non-squamous non-small cell lung cancer (NSCLC) whose tumors have HER2 tyrosine kinase domain activating mutations. In 2025, a 9 amino acid transmembrane peptide of the HER2/neu protein, GLSI-100 (GP-2)¹⁰², received fast track designation for the prevention of breast cancer recurrence following surgery.

ARID1B p.(G304Rfs*12) c.908_909insGCGG

AT-rich interaction domain 1B

Background: The ARID1B gene encodes the AT-rich interaction domain 1B tumor suppressor protein¹. ARID1B, also known as BAF250B, belongs to the ARID1 subfamily that also includes ARID1A^{1,10}. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin remodeling complex^{10,11}. The BAF complex is a multisubunit protein that consists of SMARCB1/INI1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B¹¹. The BAF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression^{11,12}. Recurrent inactivating mutations in BAF complex subunits, including ARID1B, lead to transcriptional dysfunction, suggesting ARID2B functions as a tumor suppressor¹⁰.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors¹². Somatic mutations in ARID1B are observed in 9% of uterine corpus endometrial carcinoma, 8% of cholangiocarcinoma, 7% of skin cutaneous melanoma, and 6% of stomach adenocarcinoma, bladder urothelial carcinoma, and colorectal adenocarcinoma^{8,9}. Biallelic loss of ARID1B is observed in 6% of uveal melanoma, 1% of bladder urothelial carcinoma, stomach adenocarcinoma, skin cutaneous melanoma, and colorectal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for ARID1B aberrations. Mutations in chromatin modifying genes, including ARID1B, are considered to be characteristic genetic features of hepatosplenic T-cell lymphoma (HSTL), as they have been observed in up to 62% of cases^{13,14}.

Biomarker Descriptions (continued)

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7¹. MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10^{60,61,62}. Activation of MAPK proteins occurs through a kinase signaling cascade^{60,61,63}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{60,61,63}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{60,61,63}.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{8,9}. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma^{8,9}.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome³⁸. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{39,40}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁴¹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁴². Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁴². Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{43,44,45,46,47}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁴⁰. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{39,40,44,48}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{39,40,49,50}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{49,50}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁵¹ (2014) and nivolumab⁵² (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁵¹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁵¹. Dostarlimab⁵³ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{45,54}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁵⁵ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{45,56,57}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁵⁷. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{58,59}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{58,59}.

TP53 p.(E286K) c.856G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis¹⁵. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹⁶. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{17,18}.

Biomarker Descriptions (continued)

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,19,20,21,22}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{8,9}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{23,24,25,26}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586²⁷ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{28,29}. TP53 mutations are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma³⁰. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{31,32,33,34,35}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant³⁶. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system³⁷.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,103}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{103,104}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹⁰⁵. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{105,106,107,108}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹⁰⁹.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-A p.(L180*) c.539T>A

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A⁷.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{8,9}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

ERBB2 exon 20 insertion

zongertinib

Cancer type: Non-Small Cell Lung Cancer

Variant class: ERBB2 TKD activating mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to the tyrosine kinase inhibitor, zongertinib (BI 1810631), for the first-line treatment of adult patients with unresectable or metastatic non-squamous non-small cell lung cancer (NSCLC) whose tumors have HER2 (ERBB2) tyrosine kinase domain activating mutations.

Reference:

<https://www.prnewswire.com/news-releases/fda-grants-hernexeos-breakthrough-therapy-designation-for-first-line-use-in-her2-erbb2-mutant-advanced-nsclc-302545360.html>

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFB2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFB2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✕ No evidence

ERBB2 exon 20 insertion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
trastuzumab deruxtecan	●	●	●	●	● (II)
zongertinib	●	●	✗	✗	● (II)
sevabertinib	●	✗	✗	✗	● (II)
neratinib	✗	○	✗	✗	✗
neratinib + fulvestrant	✗	○	✗	✗	✗
neratinib + trastuzumab + fulvestrant	✗	○	✗	✗	✗
sevabertinib, pembrolizumab, chemotherapy	✗	✗	✗	✗	● (III)
trastuzumab deruxtecan, pembrolizumab, chemotherapy	✗	✗	✗	✗	● (III)
zongertinib, pembrolizumab, chemotherapy	✗	✗	✗	✗	● (III)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ● In other cancer type
 ● In this cancer type and other cancer types
 × No evidence

ERBB2 exon 20 insertion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pertuzumab + trastuzumab	×	×	×	×	● (II/III)
anti-PD-L1 antibody, pyrotinib	×	×	×	×	● (II)
pyrotinib	×	×	×	×	● (II)
pyrotinib, chemotherapy	×	×	×	×	● (II)
pyrotinib, thalidomide	×	×	×	×	● (II)
sintilimab	×	×	×	×	● (II)
toripalimab, chemotherapy	×	×	×	×	● (II)
tucatinib, ado-trastuzumab emtansine	×	×	×	×	● (II)
ABT-101	×	×	×	×	● (I/II)
AZD-9574, trastuzumab deruxtecan	×	×	×	×	● (I/II)
BH-30643	×	×	×	×	● (I/II)
DF-1001, sacituzumab govitecan	×	×	×	×	● (I/II)
HS-10376	×	×	×	×	● (I/II)
JIN-A-04	×	×	×	×	● (I/II)
ORIC-114	×	×	×	×	● (I/II)
STX-721	×	×	×	×	● (I/II)
trastuzumab deruxtecan, neratinib	×	×	×	×	● (I/II)
ado-trastuzumab emtansine (Shanghai Fosun Pharma)	×	×	×	×	● (I)
BL-M07D1	×	×	×	×	● (I)
BM-230	×	×	×	×	● (I)
ENT-H-1, trastuzumab	×	×	×	×	● (I)
GQ-1005	×	×	×	×	● (I)
NVL-330	×	×	×	×	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	6.2%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. *Cancer Discov.* 2013 Jan;3(1):35-43. PMID: 23208470
11. Wilson et al. SWI/SNF nucleosome remodelers and cancer. *Nat. Rev. Cancer.* 2011 Jun 9;11(7):481-92. PMID: 21654818
12. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. *Nat Commun.* 8;14648. PMID: 28262751
13. NCCN Guidelines® - NCCN-T-Cell Lymphomas [Version 2.2025]
14. McKinney et al. The Genetic Basis of Hepatosplenic T-cell Lymphoma. *Cancer Discov.* 2017 Apr;7(4):369-379. PMID: 28122867
15. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
16. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
17. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
18. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
19. Peter S et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
20. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
21. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
22. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
23. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
24. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514
25. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene.* 2007 Apr 2;26(15):2157-65. PMID: 17401424
26. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
27. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
28. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
29. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165

References (continued)

30. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
31. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood.* 2022 Sep 22;140(12):1345-1377. PMID: 35797463
32. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
33. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
34. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 1.2026]
35. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
36. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
37. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
38. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
39. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
40. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
41. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
42. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
43. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
44. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
45. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
46. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
47. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
48. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
49. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
50. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
51. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
52. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
53. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
54. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
55. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
56. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
57. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
58. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
59. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
60. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. *Clin. Cancer Res.* 2013 May 1;19(9):2301-9. PMID: 23406774
61. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. *Br J Pharmacol.* 2014 Jan;171(1):24-37. PMID: 24117156

References (continued)

62. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. *Microbiol Mol Biol Rev.* 2011 Mar;75(1):50-83. PMID: 21372320
63. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int J Mol Sci.* 2020 Feb 7;21(3). PMID: 32046099
64. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. *Science.* 1985 Sep 6;229(4717):974-6. PMID: 2992089
65. Hsu et al. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. *Cancer Metastasis Rev.* 2016 Dec;35(4):575-588. PMID: 27913999
66. Gutierrez et al. HER2: biology, detection, and clinical implications. *Arch. Pathol. Lab. Med.* 2011 Jan;135(1):55-62. PMID: 21204711
67. Di Fiore et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. *Science.* 1987 Jul 10;237(4811):178-82. PMID: 2885917
68. Hudziak et al. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. *Proc. Natl. Acad. Sci. U.S.A.* 1987 Oct;84(20):7159-63. PMID: 2890160
69. Lonardo et al. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. *New Biol.* 1990 Nov;2(11):992-1003. PMID: 1983208
70. Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. *Cell.* 2015 Oct 8;163(2):506-19. PMID: 26451490
71. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. *Nature.* 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
72. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. *Nature.* 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
73. Donna M et al. Comprehensive molecular characterization of human colon and rectal cancer. *Nature.* 2012 Jul 18;487(7407):330-7. PMID: 22810696
74. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature.* 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
75. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. *Nature.* 2011 Jun 29;474(7353):609-15. PMID: 21720365
76. Petrelli et al. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature. *Breast Cancer Res. Treat.* 2017 Nov;166(2):339-349. PMID: 28762010
77. Bose et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. *Cancer Discov.* 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7. PMID: 23220880
78. Hudis. Trastuzumab--mechanism of action and use in clinical practice. *N. Engl. J. Med.* 2007 Jul 5;357(1):39-51. PMID: 17611206
79. Slamon et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. *Science.* 1987 Jan 9;235(4785):177-82. PMID: 3798106
80. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/103792s5354lbl.pdf
81. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125409s139lbl.pdf
82. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125427s121lbl.pdf
83. NCCN Guidelines® - NCCN-Breast Cancer [Version 5.2025]
84. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/022059s031lbl.pdf
85. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208051s009lbl.pdf
86. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213411s004lbl.pdf
87. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2024/761416Orig1s000lbl.pdf
88. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761150s005lbl.pdf
89. <https://www.targetedonc.com/view/her2targeted-antibody-zw25-earns-fda-fast-track-designation-in-gea>
90. <https://www.prnewswire.com/news-releases/remegen-announces-us-fda-has-granted-breakthrough-therapy-designation-for-disitamab-vedotin-rc48-in-urothelial-cancer-301138315.html>
91. <https://ir.ambrx.com/news/news-details/2023/ACE-Breast-02-Pivotal-Phase-3-Study-of-Ambrxs-ARX788-for-the-Treatment-of-HER2-Positive-Metastatic-Breast-Cancer-Achieves-Positive-Results/default.aspx>

References (continued)

92. Ma et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. *Clin. Cancer Res.* 2017 Oct 1;23(19):5687-5695. PMID: 28679771
93. De Grève et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. *Lung Cancer*. 2012 Apr;76(1):123-7. PMID: 22325357
94. Kris et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. *Ann. Oncol.* 2015 Jul;26(7):1421-7. PMID: 25899785
95. Falchook et al. Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment. *J Thorac Oncol.* 2013 Feb;8(2):e19-20. PMID: 23328556
96. David M et al. Neratinib in HER2- or HER3-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 'basket' study. *AACR 2017*. Abstract CT001
97. Lin et al. Response to Afatinib in a Patient with Non-Small Cell Lung Cancer Harboring HER2 R896G Mutation: A Case Report. *Onco Targets Ther.* 2019;12:10897-10902. PMID: 31849493
98. Chang et al. Sustained Partial Response to Afatinib in a Patient With Lung Adenocarcinoma Harboring HER2V659E Mutation. *JCO Precis Oncol.* 2020 Aug; 912-915. PMID: 35050762
99. Nayar et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. *Nat. Genet.* 2019 Feb;51(2):207-216. PMID: 30531871
100. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219042s000lbl.pdf
101. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219972s000lblCorrected.pdf
102. <https://investor.greenwichlifesciences.com/news-events/press-releases/detail/102/us-fda-fast-track-designation>
103. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
104. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene*. 2006 Mar 13;25(11):1659-72. PMID: 16550166
105. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer*. 2020 Apr;122(9):1277-1287. PMID: 32047295
106. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
107. Sundaraghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget*. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
108. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One*. 2015;10(5):e0127524. PMID: 26010150
109. Karas et al. *JCO Oncol Pract.* 2021 Dec 3:OP2100624. PMID: 34860573