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Gene Finding Gene Finding

BRAF None detected NTRK1 None detected
BRCA1 None detected NTRK2 None detected
BRCA2 None detected NTRK3 None detected
ERBB2 None detected RET None detected
KRAS None detected

Genomic Alteration Finding

Tumor Mutational Burden 3.79 Mut/Mb measured
Genomic Instability GIM 12 (Low)

HRD Status: HR Proficient (HRD-)

Relevant Ovarian Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC MTAP deletion

methylthioadenosine phosphorylase
Locus: chr9:21802646

None* None* 14

  
IIC CDKN2A deletion

cyclin dependent kinase inhibitor 2A
Locus: chr9:21968178

None* None* 5

  
IIC CDKN2B deletion

cyclin dependent kinase inhibitor 2B
Locus: chr9:22005728

None* None* 2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC ARID1A p.(Q553*) c.1657C>T

AT-rich interaction domain 1A
Allele Frequency: 50.78%
Locus: chr1:27057949
Transcript: NM_006015.6

None* None* 1

  
IIC DDR1 amplification

discoidin domain receptor tyrosine kinase 1
Locus: chr6:30852922

None* None* 1

  
IIC TP53 p.(R248Q) c.743G>A

tumor protein p53
Allele Frequency: 72.69%
Locus: chr17:7577538
Transcript: NM_000546.6

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
MDM2 amplification, Microsatellite stable, NRAS amplification, PIK3CA p.(V344G) c.1031T>G, PIK3CB amplification, PIK3R2
amplification, PPP2R1A p.(P179R) c.536C>G, GATA2 amplification, MECOM amplification, TPMT amplification, NQO1 p.
(P187S) c.559C>T, PRKACA amplification, MEF2B amplification, Tumor Mutational Burden, Genomic Instability (Low)

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

ARID1A p.(Q553*) c.1657C>T . chr1:27057949 50.78% NM_006015.6 nonsense

TP53 p.(R248Q) c.743G>A COSM10662 chr17:7577538 72.69% NM_000546.6 missense

PIK3CA p.(V344G) c.1031T>G COSM22540 chr3:178921549 85.05% NM_006218.4 missense

PPP2R1A p.(P179R) c.536C>G COSM86034 chr19:52715971 35.87% NM_014225.6 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 62.43% NM_000903.3 missense

SOS1 p.(Q560R) c.1679A>G . chr2:39249890 41.72% NM_005633.4 missense

CNTNAP5 p.(D607N) c.1819G>A . chr2:125367443 17.35% NM_130773.4 missense

ASB18 p.(P103S) c.307C>T . chr2:237149944 40.86% NM_212556.3 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

MTAP chr9:21802646 1.11 0.67

CDKN2A chr9:21968178 0.82 0.57

CDKN2B chr9:22005728 0.95 0.61

DDR1 chr6:30852922 4.79 2.02

Copy Number Variations

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Gene Locus Copy Number CNV Ratio

MDM2 chr12:69202958 12.97 5.0

NRAS chr1:115251152 6.62 2.69

PIK3CB chr3:138374221 4.86 2.05

PIK3R2 chr19:18266737 5.29 2.2

GATA2 chr3:128200046 7.03 2.83

MECOM chr3:168802636 6.89 2.78

TPMT chr6:18130879 5.3 2.21

PRKACA chr19:14204349 5.04 2.11

MEF2B chr19:19256562 5.26 2.19

ATR chr3:142168234 4.47 1.9

NOTCH3 chr19:15271451 5.52 2.28

JAK3 chr19:17937461 5.08 2.12

Copy Number Variations (continued)

 

Variant Details (continued)

 
MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase1. Methylthioadenosine phosphorylase, a key enzyme in
polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine
(MTA) to adenine and 5-methylthioribose-1-phosphate36,37. Loss of MTAP function is commonly observed in cancer due to deletion
or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis
inhibitors and to methionine deprivation37.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be co-
deleted with CDKN2A in numerous solid and hematological cancers37,38. Consequently, biallelic loss of MTAP has been observed in
42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21%
of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell
lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma,
stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma,
adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma5,6. Somatic mutations in MTAP have been found in 3% of
uterine corpus endometrial carcinoma5,6.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression1. CDKN2A,
also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)49. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb50,51,52. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both
of which exhibit differential tumor suppressor functions53. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and
CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation1,53,54. CDKN2A
aberrations commonly co-occur with CDKN2B49. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways,

Biomarker Descriptions
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leading to uncontrolled cell proliferation55. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and
pancreatic cancer56,57.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number
loss, truncating, or missense mutations58. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell
carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of
esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach
adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma5,6. Biallelic
deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32%
of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic
adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and
cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical
carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma,
3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney
chromophobe5,6. Alterations in CDKN2A are also observed in pediatric cancers6. Biallelic deletion of CDKN2A is observed in 68% of
T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of
embryonal tumors6. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic
leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)6.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary
diagnostic markers of malignant peripheral nerve sheath tumors23,59,60. Additionally, deletion of CDKN2B is a molecular marker used in
staging Grade 4 pediatric IDH-mutant astrocytoma61. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A
LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib62,63,64. Alternatively,
CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme65. CDKN2A (p16)
expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive
head and neck cancer66,67,68,69.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression1,49. CDKN2B,
also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)49. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb50,51,52. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur
with CDKN2A49. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma1,70,71.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of
glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin
cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous
cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma,
11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma,
breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian
serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe5,6. Somatic mutations in CDKN2B are
observed in 2% of uterine carcinosarcoma5,6. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of
childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14%
of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers5,6. Somatic mutations in CDKN2B are
observed in less than 1% of bone cancer (1 in 327 cases)5,6.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular
marker used in staging grade 4 pediatric IDH-mutant astrocytoma61.

ARID1A p.(Q553*) c.1657C>T

AT-rich interaction domain 1A

Background: The ARID1A gene encodes the AT-rich interaction domain 1A tumor suppressor protein1. ARID1A, also known as
BAF250A, belongs to the ARID1 subfamily that also includes AR1D1B1,43. ARID1A and ARID1B are mutually exclusive subunits of the
BAF variant of the SWI/SNF chromatin-remodeling complex43,44. The BAF complex is a multisubunit protein that consists of SMARCB1/
IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B44. The BAF complex
remodels chromatin at promoter and enhancer elements to alter and regulate gene expression44,45. ARID1A binds to transcription
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factors and coactivator/corepressor complexes to alter transcription43. Recurrent inactivating mutations in BAF complex subunits,
including ARID1A, lead to transcriptional dysfunction thereby, altering its tumor suppressor function43.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in
cancer and have been observed in 20% of all tumors45. The majority of ARID1A inactivating mutations are nonsense or frameshift
mutations43. Somatic mutations in ARID1A have been identified in several cancers including 50% of ovarian clear cell carcinoma,
30% of endometrioid carcinoma, and 24-43% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and stomach
adenocarcinoma5,6,44. In microsatellite stable (MSS) colorectal cancer, mutations in ARID1A have been observed to correlate with
increased tumor mutational burden (TMB) and expression of genes involved in the immune response46. Biallelic deletion of ARID1A
is observed in 3% of cholangiocarcinoma and stomach adenocarcinoma, and 2% of pheochromocytoma and paraganglioma5,6.
Alterations in ARID1A are also observed in pediatric cancers6. Somatic mutations in ARID1A are observed in 12% of non-Hodgkin
lymphoma (2 in 17 cases), 8% of Hodgkin lymphoma (5 in 61 cases), 5% of T-lymphoblastic leukemia/lymphoma (2 in 41 cases), 3%
of soft tissue sarcoma (1 in 38 cases), 2% of embryonal tumors (5 in 332 cases), 1% of glioma (4 in 297 cases), and less than 1% of
bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (1 in 252 cases), and peripheral nervous system tumors (2 in 1158
cases)6. Biallelic deletion of ARID1A is observed in 2% of peripheral nervous system cancers (2 in 91 cases), 1% of leukemia (3 in 250
cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases)6.

Potential relevance: Currently, no therapies are approved for ARID1A aberrations. However, the FDA has granted fast track
designation (2022) to HSF1 pathway inhibitor, NXP-80047, for the treatment of platinum resistant ARID1A-mutated ovarian carcinoma.
Tulmimetostat48, dual inhibitor of EZH2 and EZH1, was also granted a fast track designation (2023) for the treatment of patients with
advanced, recurrent or metastatic endometrial cancer harboring ARID1A mutations and who have progressed on at least one prior line
of treatment.

DDR1 amplification

discoidin domain receptor tyrosine kinase 1

Background: DDR1 encodes discoidin domain receptor tyrosine kinase 11. Unlike other receptor tyrosine kinases, including epidermal
growth factor receptors (EGFRs) and fibroblast growth factor receptors (FGFRs), which exhibit rapid and transient activation, DDRs
display delayed and prolonged activation following ligand binding2. DDR activation occurs through collagen binding, with DDR1
exhibiting the most specificity for type I and IV collagens2. Collagen mediated activation of DDR1 is observed to contribute to diverse
cellular processes including proliferation, invasion, migration, differentiation, matrix remodeling, and embryonic development3. In
cancer, aberrations in DDR1, including overexpression, have been associated with tumor progression3,4.

Alterations and prevalence: Somatic mutations in DDR1 are observed in 7% of skin cutaneous melanoma, 4% of uterine corpus
endometrial carcinoma, 3% of stomach adenocarcinoma and lung squamous cell carcinoma, and 2% of colorectal adenocarcinoma,
uterine carcinosarcoma, and esophageal adenocarcinoma5,6. Amplification of DDR1 is observed in 6% of cholangiocarcinoma, 4%
of uveal melanoma and ovarian serous cystadenocarcinoma, 3% of esophageal adenocarcinoma and skin cutaneous melanoma,
and 2% of stomach adenocarcinoma, diffuse large B-cell lymphoma, liver hepatocellular, uterine carcinosarcoma, and pancreatic
adenocarcinoma5,6. Biallelic deletion of DDR1 is observed in 6% of diffuse large B-cell lymphoma5,6.

Potential relevance: Currently, no therapies are approved for DDR1 aberrations.

TP53 p.(R248Q) c.743G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis89. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential90. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers91,92.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)5,6,93,94,95,96. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2825,6. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes97,98,99,100. Alterations in TP53 are also
observed in pediatric cancers5,6. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)5,6. Biallelic loss
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of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)5,6.

Potential relevance: The small molecule p53 reactivator, PC14586101 (2020), received a fast track designation by the FDA for
advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53
activity, compounds that induce synthetic lethality are also under clinical evaluation102,103. TP53 mutations are a diagnostic marker
of SHH-activated, TP53-mutant medulloblastoma104. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers
including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)15,17,30,105,106. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional
therapy including hematopoietic cell transplant88. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS,
with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease
presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system107.

MDM2 amplification

MDM2 proto-oncogene

Background: The MDM2 gene encodes the murine double minute 2 proto-oncogene1. MDM2 is structurally related to murine double
minute 4 (MDM4), with both proteins containing an N-terminal domain that binds p53, a zinc-finger domain, and a C-terminal RING
domain18. MDM2 and MDM4 are oncogenes that function as negative regulators of the tumor suppressor TP53, and can homo- or
heterodimerize with p53 through their RING domains18. Specifically, the MDM2 RING domain functions as an E3 ubiquitin ligase and is
responsible for the polyubiquitination and degradation of the p53 protein when MDM2 is present at high levels19. Alternately, low levels
of MDM2 activity promote mono-ubiquitination and nuclear export of p5319. MDM2 amplification and overexpression disrupt the p53
protein function, thereby contributing to tumorigenesis and supporting an oncogenic role for MDM219.

Alterations and prevalence: MDM2 is amplified in 19% of sarcoma, 9% of bladder urothelial carcinoma, 8% of glioblastoma multiforme,
7% of adrenocortical carcinoma, 5% of uterine carcinosarcoma, lung adenocarcinoma, esophageal adenocarcinoma, and stomach
adenocarcinoma, 4% of skin cutaneous melanoma, head and neck squamous cell carcinoma, and ovarian serous cystadenocarcinoma,
3% of breast invasive carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma, testicular germ cell tumors, and lung squamous
cell carcinoma, and 2% of diffuse large B-cell lymphoma5,6. MDM2 overexpression is observed in lung, breast, liver, esophagogastric,
and colorectal cancers20. The most common co-occuring aberrations with MDM2 amplification or overexpression are CDK4
amplification and TP53 mutation21,22. Somatic mutations in MDM2 are observed in 2% of uterine corpus endometrial carcinoma,
adrenocortical carcinoma, and sarcoma5,6. Alterations in MDM2 are also observed in pediatric cancers6. Amplification of MDM2 is
observed in 2% of bone cancer (1 in 42 cases), 1% of Wilms tumor (2 in 136 cases) and peripheral nervous system tumors (1 in 91
cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)6. Somatic mutations in MDM2 are observed in 2% of
non-Hodgkin lymphoma (1 in 17 cases) and less than 1% of bone cancer (3 in 327 cases) and embryonal tumors (1 in 332 cases)6.

Potential relevance: Currently, no therapies are approved for MDM2 aberrations. Amplification of region 12q13-15, which includes
MDM2, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/well differentiated liposarcoma (ALT/WDLS) and
dedifferentiated liposarcoma23.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome108. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue109,110. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2111. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S250112. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)112. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS113,114,115,116,117. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes110.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer109,110,114,118.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma109,110,119,120. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers119,120.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab121 (2014) and nivolumab122 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab121 is also approved
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as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication121. Dostarlimab123 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer115,124. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab125 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location115,126,127. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS)
and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients127. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors128,129. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers128,129.

NRAS amplification

NRAS proto-oncogene, GTPase

Background: The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS
superfamily which also includes KRAS and HRAS1. RAS proteins mediate the transmission of growth signals from the cell surface
to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and
survival157,158,159. Recurrent mutations in RAS lead to several genetic disorders known as RASopathies, including Noonan syndrome,
which results in heart and congenital defects, growth inhibition, and facial dysmorphic features160. Point mutations in NRAS are also
observed in several cancers including melanoma, characterized thick tumors, increased tumor recurrence, treatment resistance, and
increased mitosis161.

Alterations and prevalence: NRAS mutations are observed in 29% of skin cutaneous melanoma, 8% of acute myeloid leukemia and
thyroid carcinoma, 6% of colorectal adenocarcinoma, 4% of uterine corpus endometrial carcinoma, 3% of testicular germ cell tumors
and cholangiocarcinoma, and 2% of thymoma, bladder urothelial carcinoma, uterine carcinosarcoma, and kidney chromophobe5,6,162.
The majority of NRAS mutations consist of point mutations at G12, G13, and Q615,6,163. Mutations at A59, K117, and A146 have also
been observed but are less frequent6,164. Alterations in NRAS are also observed in pediatric cancers6. Somatic mutation in NRAS are
observed in 16% of leukemia (57 in 354 cases), 10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of soft tissue
sarcoma (3 in 38 cases), and less than 1% of glioma (2 in 297 cases), bone cancer (2 in 327 cases), and embryonal tumors (1 in 332
cases)6.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab165 and
panitumumab166, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and
13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)164. In 2022, the FDA granted fast track designation to the pan-RAF
inhibitor, KIN-2787167, for the treatment of NRAS-mutant metastatic or unresectable melanoma. In 2023, the FDA granted fast track
designation to the pan-RAF inhibitor, naporafenib, in combination with trametinib168 for NRAS-mutated unresectable or metastatic
melanoma. In 2024, the FDA granted fast track designation to the MAPK pathway inhibitor, IMM-1-104169, for the treatment of
NRAS-mutant metastatic or unresectable melanoma. NRAS mutations are associated with poor prognosis in patients with low-risk
myelodysplastic syndrome15 as well as melanoma170. In a phase III clinical trial in patients with advanced NRAS-mutant melanoma,
binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively171.

PIK3CA p.(V344G) c.1031T>G

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I
phosphatidylinositol 3-kinase (PI3K) enzyme133. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one
of four p110 catalytic subunits to activated tyrosine protein kinases72,73. The p110 catalytic subunits include p110α, β, δ, γ and are
encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively72. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-
bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog
(PTEN) catalyzes the reverse reaction41,42. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and
metabolism41,42,74,75. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR
pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion,
and genetic instability134,135,136.

Alterations and prevalence: Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9 and
20 due to exon 1 being untranslated)137,138. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21
kinase (codon H1047) domains, each having distinct mechanisms of activation139,140,141. Somatic mutations in PIK3CA are observed
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in 50% of uterine corpus endometrial carcinoma, 35% of uterine carcinosarcoma, 32% of breast invasive carcinoma, 29% of cervical
squamous cell carcinoma, 28% of colorectal adenocarcinoma, 22% of bladder urothelial carcinoma, 17% of head and neck squamous
cell carcinoma, 16% of stomach adenocarcinoma, 11% of lung squamous cell carcinoma, 9% of esophageal adenocarcinoma, 8%
of brain lower grade glioma, 6% of cholangiocarcinoma, 5% of skin cutaneous melanoma and lung adenocarcinoma, 4% of liver
hepatocellular carcinoma, 3% of pancreatic adenocarcinoma and sarcoma, and 2% of mesothelioma, prostate adenocarcinoma,
testicular germ cell tumors, and ovarian serous cystadenocarcinoma5,6. PIK3CA is amplified in 38% of lung squamous cell carcinoma,
20% of ovarian serous cystadenocarcinoma, 18% of esophageal adenocarcinoma, 16% of head and neck squamous cell carcinoma,
15% of cervical squamous cell carcinoma, 11% of uterine carcinosarcoma, 7% of uterine corpus endometrial carcinoma, 5% of stomach
adenocarcinoma, 4% of bladder urothelial carcinoma, 3% of breast invasive carcinoma and pancreatic adenocarcinoma, and 2% of
prostate adenocarcinoma, lung adenocarcinoma, and kidney renal clear cell carcinoma5,6. Alterations in PIK3CA are also observed in
pediatric cancers6. Somatic mutations in PIK3CA are observed in 6% of non-Hodgkin Lymphoma (1 in 17 cases), 4% of glioma (11 in
297 cases), 3% of soft tissue sarcoma (1 in 38 patients), 2% of embryonal tumors (6 in 332 cases), 1% of leukemia (5 in 354 cases),
and less than 1% of bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (2 in 252 cases), and peripheral nervous
system tumors (1 in 1158 cases)6.

Potential relevance: The PI3K inhibitor, alpelisib142, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients
with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or
metastatic breast cancer. Specifically, exon 21 H1047R mutations were associated with more durable clinical responses in comparison
to exon 10 E545K mutations143. However, alpelisib did not improve response when administered with letrozole in patients with ER
+ early breast cancer with PIK3CA mutations144. The FDA also approved the kinase inhibitor, capivasertib (2023)145 in combination
with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/
PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib146, is also FDA-approved (2024) in
combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and
HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response
in PIK3CA mutated refractory cancers147,148. In colorectal cancers, PIK3CA mutations predict significantly improved survival and
reduced disease recurrence with adjuvant aspirin therapy, compared to no benefit in wild-type PIK3CA tumors115,124,149,150. In 2025, the
FDA granted fast track designation to the PI3Kα inhibitor and degrader, ETX-636151, for the treatment of PIK3CA-mutant, HR-positive/
HER-negative advanced breast cancer.

PIK3CB amplification

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta

Background: The PIK3CB gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta of the class I
phosphatidylinositol 3-kinase (PI3K) enzyme72. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one
of four p110 catalytic subunits to activated tyrosine protein kinases72,73. The p110 catalytic subunits include p110α, β, δ, γ and are
encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively72. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-
bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog
(PTEN) catalyzes the reverse reaction41,42. The reversible phosphorylation of inositol lipids regulate diverse aspects of cell growth and
metabolism41,42,74,75. Aberrations in PIK3CB that lead to activation of the PI3K/AKT/MTOR pathway have been observed to promote
tumor formation, suggesting an oncogenic role for PIK3CB72,76,77.

Alterations and prevalence: Somatic mutations in PIK3CB are predominantly missense with amino acid substitutions at D1067 being
the most recurrent and observed to lead to hyperactivation of the PI3K pathway5,6,78. PIK3CB mutations are observed in about 9% of
uterine cancer and 2-3% of melanoma, glioblastoma, cholangiocarcinoma, colorectal, bladder, stomach, esophageal, and squamous
lung cancers5,6. Amplification of PIK3CB is also observed in 9% of squamous lung cancer, 7% of cervical cancer, and 5-6% of head and
neck, ovarian, and esophageal cancers5,6.

Potential relevance: Currently, no therapies are approved for PIK3CB aberrations.

PIK3R2 amplification

phosphoinositide-3-kinase regulatory subunit 2

Background: The PIK3R2 gene encodes the phosphoinositide-3-kinase regulatory subunit 2 of the class I phosphatidylinositol 3-
kinase (PI3K) enzyme1,39. PI3K is a heterodimer that contains a p85 regulatory subunit and a p110 catalytic subunit39. PIK3R2 encodes
the p85β protein, one of five p85 isoforms39. p85β is responsible for the binding, stabilization, and inhibition of the p110 catalytic
subunit, thereby regulating PI3K activity40. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) into
phosphatidylinositol (3,4,5)-trisphosphate (PIP3)41,42. Increased PIK3R2 expression has been observed to correlate with elevated AKT
activation and tumor stage, supporting an oncogenic role for PIK3R240.
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Alterations and prevalence: Somatic mutations in PIK3R2 are observed in 5% of uterine corpus endometrial carcinoma, 3% of skin
cutaneous melanoma and stomach adenocarcinoma, and 2% of lung squamous cell carcinoma and colorectal adenocarcinoma5,6.
Amplification of PIK3R2 is observed in 5% of ovarian serous cystadenocarcinoma, 4% of uterine carcinosarcoma, 3% of
cholangiocarcinoma, and 2% of uterine corpus endometrial carcinoma, mesothelioma, and liver hepatocellular carcinoma5,6.

Potential relevance: Currently, no therapies are approved for PIK3R2 aberrations.

PPP2R1A p.(P179R) c.536C>G

protein phosphatase 2 scaffold subunit Aalpha

Background: The PPP2R1A gene encodes the protein phosphatase 2 regulatory subunit A alpha, a member of a large heterotrimeric
serine/threonine phosphatase 2A (PP2A) family1,152. Proteins of the PP2A family includes 3 subunits— the structural A subunit
(includes PPP2R1A and PPP2R1B), the regulatory B subunit (includes PPP2R2A, PPP2R5, PPP2R3, and STRN), and the catalytic
C subunit (includes PPPP2CA and PPP2CB)152,153. Specifically, the A subunit is composed of 15 tandem HEAT repeats, consisting
of approximately 40 amino acid residues organized into two anti-parallel alpha-helices which are responsible for binding both the
regulatory B and catalytic C subunits154. Recurrent mutations in PPP2R1A have been observed to promote malignant growth in uterine
cancer155.

Alterations and prevalence: Somatic mutations in PPP2R1A are predominantly missense and are observed in 28% of uterine
carcinosarcoma and 17% of uterine cancer5. Recurrent mutations are observed at codons P179, R183, and S256 within HEAT repeats
1-8 which are involved in interactions with the regulatory B subunit5,155. PPP2R1A mutations are also observed at lesser frequency
in other cancer types including 2-3% of melanoma, uveal melanoma, lung adenocarcinoma, esophageal, squamous lung, stomach,
cervical, and colorectal cancers5. PPP2R1A amplification is found to occur in about 4% of uterine cancer as well as 2% of diffuse large
B-cell lymphoma (DLBCL), low grade glioma, adrenocortical carcinoma, and bladder cancer5.

Potential relevance: The FDA has granted fast track designation (2024) to the small molecule PKMYT1 inhibitor, lunresertib156, in
combination with camonsertib for the treatment of adult patients with PPP2R1A mutated endometrial cancer and platinum resistant
ovarian cancer.

GATA2 amplification

GATA binding protein 2

Background: The GATA2 gene encodes GATA binding protein 2, a member of the GATA family of zinc-finger transcription factors,
which also includes GATA1 and GATA3-61,7,8. The GATA family regulates transcription of many genes by binding to the DNA consensus
sequence T/A(GATA)A/G8. GATA2 is highly expressed in hematopoietic cells and is a critical component for the proliferation and
maintenance of stem cells9. Germline mutations are spontaneous and are inherited in an autosomal dominant pattern10,11. Germline
mutations predispose patients to myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML)10,11. GATA2 deficiency is
recognized as a MDS predisposition syndrome9.

Alterations and prevalence: GATA2 somatic mutations cause loss of function in the mutated allele, which leads to haploinsufficiency12.
Hemizygous mutations in GATA2 frequently co-occur with the inv(3)/t(3;3) aberration that involves the fusion of RPN1/MECOM13.
Up to 10% of intermediate-risk karyotype AML with CEBPA mutations also harbor GATA2 somatic mutations9. The gain-of-function
mutation GATA2 L359V has been identified in 10% of chronic myeloid leukemia during blast phase14. Somatic mutations in GATA2
are also observed in 4% of skin cutaneous melanoma, 3% of uterine corpus endometrial carcinoma and AML, and 2% of colorectal
adenocarcinoma5,6. Amplifications in GATA2 are observed in up to 6% of lung squamous cell carcinoma and cervical squamous cell
carcinoma, and up to 3% of ovarian serous cystadenocarcinoma, esophageal adenocarcinoma, and head and neck squamous cell
carcinoma5,6. Alterations in GATA2 are also observed in the pediatric population6. Somatic mutations are observed in 3% of soft tissue
sarcoma (1 in 38 cases), 2% of Hodgkin lymphoma (1 in 61 cases) and leukemia (5 in 311 cases), and less than 1% of embryonal tumor
(2 in 332 cases), B-lymphoblastic leukemia/lymphoma (1 in 252 cases), and bone cancer (1 in 327 cases)6.

Potential relevance: GATA2 nonsense, frameshift, or splice site missense mutations in codons 349-398 confer poor prognosis in
MDS15. GATA2::MECOM fusion is associated with adverse risk in acute myeloid leukemia (AML)16,17. GATA2::MECOM fusion with
FLT3 ITD or FLT3 TKD mutation are indicated for combination therapy with midostaurin, cytarabine, and daunorubicin in acute myeloid
leukemia16.

MECOM amplification

MDS1 and EVI1 complex locus

Background: The MECOM gene encodes the MDS1 and EVI1 complex locus (MECOM), a zinc-finger transcriptional factor that regulates
hematopoietic cell differentiation24. The MECOM locus encodes multiple alternative splice variants that result in MDS1-EVI1, MDS1,
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and EVI1 protein isoforms25. The EVI1 isoform is the most abundant and oncogenic form of MECOM that is expressed in various
cancers including acute myeloid leukemia (AML)25,26. MECOM is a frequent target of chromosomal translocation which can lead to
MECOM overexpression and leukemogenesis27.

Alterations and prevalence: Somatic mutations MECOM are observed in up to 22% of malignant melanoma; 75% of these mutations are
missense and the remaining 25% are truncating mutations5,6,28. MECOM amplifications are observed in up to 35% of lung squamous
cell carcinoma, 30% of ovarian serous cystadenocarcinoma, and 20% of esophageal adenocarcinoma, uterine carcinosarcoma,
and cervical squamous cell carcinoma5,6. MECOM rearrangements occur with various partner genes including ETV6, RUNX1, and
H2AFY29. The t(3;21)(q26;q22) translocation that results in the MECOM::RUNX1 fusion is most commonly observed in chronic myeloid
leukemia (CML) in blast crisis. The t(3;3)(q21.3;q26.2)/ inv(3)(q21.3;q26.3) translocation, also referred to as inv(3)/t(3;3), results in a
GATA2::MECOM fusion and is observed in AML, primary myelofibrosis (PMF), and myelodysplastic syndrome (MDS)15,16,30. The inv(3)/
t(3;3) translocation repositions the distal GATA enhancer element and activates MECOM expression while simultaneously causing
GATA2 haploinsufficiency31.

Potential relevance: AML with MECOM rearrangement is considered a distinct molecular subtype of AML as defined by the World
Health Organization (WHO)32. MECOM rearrangements, including GATA2::MECOM fusions, are associated with poor/adverse risk in
AML16,17. Inv(3) is associated with poor cytogenetic risk in MDS as defined by the revised international prognostic scoring system
(IPSS-R) scoring system15. In PMF, inv(3) is considered an unfavorable karyotype associated with intermediate risk as defined by
the dynamic international prognostic scoring system (DIPSS)-Plus scoring system30. MECOM overexpression is observed in 10%
of de novo AML associated with poor prognosis, and is commonly found in MLL-rearranged cases33,34. Amplification of MECOM is
associated with favorable prognosis in ovarian cancer35.

TPMT amplification

thiopurine S-methyltransferase

Background: The TPMT gene encodes thiopurine S-methyltransferase, a cytosolic enzyme that methylates aromatic and heterocyclic
sulfhydryl compounds such as thiopurines1,130,131. TPMT is the major enzyme responsible for the metabolic inactivation of thiopurine
chemotherapeutic drugs used in the treatment of acute lymphoblastic leukemia (ALL), including, 6-mercaptopurine, 6-thioguanine, and
azathioprine130,131,132. Inherited TPMT polymorphisms, including TPMT*2, TPMT*3A, TPMT*3B, TPMT*3C, and TPMT*8, can result in
TPMT deficiency, which is characterized by impaired enzymatic activity and confers an increased risk of severe toxicity to thiopurine
drugs due to an increase in systemic drug exposure130,132.

Alterations and prevalence: Somatic mutations in TPMT are observed in 2% of uterine corpus endometrial carcinoma and colorectal
adenocarcinoma5,6. Biallelic loss of TPMT is observed in 1% of stomach adenocarcinoma, esophageal adenocarcinoma, and
adrenocortical carcinoma5,6. Amplification of TPMT is observed in 7% of ovarian serous cystadenocarcinoma, 6% of bladder urothelial
carcinoma, 4% of diffuse large B-cell lymphoma, uveal melanoma, uterine carcinosarcoma, and skin cutaneous melanoma, 3%
of cholangiocarcinoma, and 2% of breast invasive carcinoma, uterine corpus endometrial carcinoma, and liver hepatocellular
carcinoma5,6. Alterations in TPMT are also observed in pediatric cancers6. Somatic mutations are observed in less than 1% of
peripheral nervous system tumors (1 in 1158 cases)6. Amplification of TPMT is observed in 1% of peripheral nervous system tumors (1
in 91 cases)6.

Potential relevance: Currently, no therapies are approved for TPMT aberrations.

PRKACA amplification

protein kinase cAMP-activated catalytic subunit alpha

Background: The PRKACA gene encodes the protein kinase cAMP-activated catalytic subunit alpha (C-alpha) of protein kinase A (PKA),
an inactive tetrameric holoenzyme with two regulatory (R) subunits and two catalytic (C) subunits (namely PRKACA and PRKACB)1.
PKA is a cAMP-dependent protein kinase involved in the phosphorylation of several downstream targets and an essential regulator of
several cell signaling pathways including differentiation, proliferation, and apoptosis1,79,80. PKA is activated when the R subunits bind
cAMP, which results in the dissociation of active monomeric C subunits and the subsequent phosphorylation of target proteins1,79.
Aberrations in PRKACA are oncogenic, as they are predicted to abolish the interaction with R subunits leading to cAMP-independent
activation of PKA81. Germline amplification and somatic mutation of PRKACA are associated with the development and pathogenesis
of benign adrenal tumors leading to Cushing syndrome, which is characterized by overproduction of cortisol resulting in metabolic
abnormalities81,82.

Alterations and prevalence: Somatic mutations in PRKACA are predominantly missense and occur in about 2-3% of melanoma, diffuse
large B-cell lymphoma, and uterine cancer5,6. PRKACA fusions have also been observed in 2% of liver cancer5,6. Specifically, PRKACA
fusion with DNAJB1 has been observed to be recurrent in fibrolamellar hepatocellular carcinoma, which results in the retention of
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a functional PRKACA catalytic domain and increased protein levels79,83. PRKACA amplification is observed in about 11% of ovarian
cancer and 2-3% of adrenocortical carcinoma, sarcoma, and uterine cancer79,83.

Potential relevance: Currently, no therapies are approved for PRKACA aberrations.

MEF2B amplification

myocyte enhancer factor 2B

Background: The MEF2B gene encodes myocyte enhancer factor 2B, a member of the MADS/MEF2 family of DNA binding proteins,
which also includes MEF2A, MEF2C, and MEF2D1,84. MEF2B is a transcription factor that regulates cell development, including
lymphocyte, neuron, muscle and endothelial cells84. MEF2B transcriptional targets include BCL6, SMHC, BZLF1, and SOST84. Mutations
in MEF2B have been observed to promote increased transcription of BCL685. Aberrations in BCL6 often lead to altered target gene
transcription, including those involved in cell cycle arrest, differentiation, and apoptosis86,87.

Alterations and prevalence: Somatic mutations in MEF2B are observed in 2% of uterine corpus endometrial carcinoma and diffuse
large B-cell lymphoma (DLBCL), and 1% of skin cutaneous melanoma5,6. MEF2B amplification is observed in 6% of ovarian serous
cystadenocarcinoma, 4% of uterine carcinosarcoma, 3% of cholangiocarcinoma, esophageal adenocarcinoma, and uterine corpus
endometrial carcinoma, 2% of adrenocortical carcinoma, and 1% of liver hepatocellular carcinoma, uveal melanoma, and sarcoma5,6.

Potential relevance: Currently, no therapies are approved for MEF2B aberrations. In diffuse large B-cell lymphoma, MEF2B mutations
are associated with diagnostic significance88.
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ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,

Genes Assayed for the Detection of Copy Number Variations
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SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

AMG 193      (I/II)

CTS-3497      (I/II)

IDE397      (I/II)

PH020-803      (I/II)

TNG-456, abemaciclib      (I/II)

TNG-462, pembrolizumab      (I/II)

ABSK-131      (I)

GH-56      (I)

GTA-182      (I)

HSK-41959      (I)

MTAP deletion

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

ISM-3412      (I)

MRTX-1719      (I)

S-095035, TNG-462      (I)

SYH-2039      (I)

MTAP deletion (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib      (II)

palbociclib, abemaciclib      (II)

AMG 193      (I/II)

ABSK-131      (I)

CID-078      (I)

CDKN2A deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib, abemaciclib      (II)

CID-078      (I)

CDKN2B deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

talazoparib      (II)

ARID1A p.(Q553*) c.1657C>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

nilotinib      (II)

DDR1 amplification

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

TP53-EphA-2-CAR-DC, anti-PD-1      (I)

TP53 p.(R248Q) c.743G>A

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Gene/Genomic Alteration Finding

LOH percentage 30.72%
BRCA1 LOH, 17q21.31(41197602-41276231)x2
BRIP1 LOH, 17q23.2(59760627-59938976)x2
CDK12 LOH, 17q12(37618286-37687611)x2
RAD51C LOH, 17q22(56769933-56811619)x2
RAD51D LOH, 17q12(33427950-33446720)x2

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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