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1 Relevant Biomarkers
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53 Clinical Trials

 
Gene Finding Gene Finding

ALK KIF5B::ALK fusion NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR None detected NTRK3 None detected
ERBB2 None detected RET None detected
KRAS None detected ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 3.79 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA KIF5B::ALK fusion

kinesin family member 5B - ALK receptor
tyrosine kinase
Locus: chr10:32306071 - chr2:29446394

alectinib 1, 2 / I, II+

brigatinib 1, 2 / I, II+

ceritinib 1, 2 / I, II+

crizotinib 1, 2 / I, II+

ensartinib 1 / I, II+

lorlatinib 1, 2 / I, II+

atezolizumab + bevacizumab +
chemotherapy II+

crizotinib 1 / I, II+

alectinib I, II+

brigatinib I, II+

ceritinib I, II+

lorlatinib I, II+

53

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

KIF5B::ALK fusion  neladalkib 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Prevalent cancer biomarkers without relevant evidence based on included data sources
MLH1 p.(V384D) c.1151T>A, Microsatellite stable, TPMT p.(Y240C) c.719A>G, NQO1 p.(P187S) c.559C>T, DSC1 deletion,
Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

MLH1 p.(V384D) c.1151T>A . chr3:37067240 52.78% NM_000249.4 missense

TPMT p.(Y240C) c.719A>G COSM4986703 chr6:18130918 47.06% NM_000367.5 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 99.40% NM_000903.3 missense

MTOR p.(K2496N) c.7488A>T . chr1:11169387 9.98% NM_004958.4 missense

MSH3 p.(A61_P63dup) c.189_190insGCAGCG
CCC

. chr5:79950735 43.43% NM_002439.5 nonframeshift
Insertion

MAP3K4 p.(I1447V) c.4339A>G . chr6:161530889 21.22% NM_005922.4 missense

DMD p.(D2364N) c.7090G>A . chrX:31893313 9.91% NM_004006.3 missense

DNA Sequence Variants

 

 
Genes Variant ID Locus

KIF5B::ALK KIF5B-ALK.K24A20.COSF1058.1 chr10:32306071 - chr2:29446394

Gene Fusions

 

 
Gene Locus Copy Number CNV Ratio

DSC1 chr18:28710424 0.35 0.67

CSMD3 chr8:113237020 4.97 1.59

Copy Number Variations

 

Variant Details

 
KIF5B::ALK fusion

ALK receptor tyrosine kinase, kinesin family member 5B

Background: The ALK gene encodes the ALK receptor tyrosine kinase (RTK), which has sequence similarity to the insulin receptor
subfamily of kinases47. ALK is frequently altered in cancer, most commonly through chromosomal rearrangements that generate
fusion genes containing the intact ALK tyrosine kinase domain combined with various partner genes48. ALK fusion kinases are
constitutively activated and drive oncogenic transformation via activation of downstream STAT3, PI3K/AKT/MTOR, and RAS/RAF/
MEK/ERK pathways48,49,50,51.

Alterations and prevalence: ALK was discovered by positional cloning of translocations involving nucleophosmin 1 (NPM1) on 5q35
with a previously unidentified RTK on 2p23 (ALK), which occur in over 50% of adult and over 80% of pediatric anaplastic large cell
lymphoma (ALCL) cases47,52,53. In contrast, about 5% of non-small cell lung cancer (NSCLC) cases generate recurrent ALK fusions
with EML4, KIF5B, and HIP154,55,56. Notably, ALK F1174L, F1245C, and R1275Q mutations are found in over 80% of ALK-mutated
neuroblastoma57. ALK mutations have also been reported in 5% of pediatric soft tissue sarcomas and less than 1.5% of other solid and
hematological malignancies, including peripheral nervous system tumors, gliomas, leukemia, and bone cancer17,18.

Potential relevance: The first-generation small molecule tyrosine kinase inhibitor (TKI), crizotinib58, was FDA approved (2011) for
the treatment of adults with ALK-positive advanced NSCLC, as well as pediatric and adult populations with ALK-positive ALCL or
inflammatory myofibroblastic tumor (IMT). ALK fusions are a diagnostic marker of infant-type hemispheric glioma and ALK-rearranged

Biomarker Descriptions

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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renal cell carcinoma59,60,61. Kinase domain mutations including L1196M, G1269A, F1174L, G1202R, as well as other variants, have been
shown to confer acquired resistance to crizotinib in ALK-positive NSCLC62,63,64,65. Other mechanisms of acquired resistance involve
amplification of the ALK fusion gene and activation of alternate or bypass signaling pathways involving EGFR, KIT, MET, and IGF1R66.
In order to overcome acquired resistance, second- and third-generation ALK inhibitors including ceritinib67 (2014), alectinib68 (2015),
brigatinib69 (2017), lorlatinib70 (2018), and ensartinib71 (2024) were developed and approved for adults by the FDA. The FDA granted
breakthrough therapy designation (2024) to NVL-65572 for locally advanced or metastatic ALK-positive NSCLC patients who have been
previously treated with two or more ALK TKIs.

MLH1 p.(V384D) c.1151T>A

mutL homolog 1

Background: The MLH1 gene encodes the mutL homolog 1 protein1. MLH1 is a tumor suppressor gene that heterodimerizes with
PMS2 to form the MutLα complex, PMS1 to form the MutLβ complex, and MLH3 to form the MutLγ complex2. The MutLα complex
functions as an endonuclease that is specifically involved in the mismatch repair (MMR) process and mutations in MLH1 result in the
inactivation of MutLα and degradation of PMS22,3. Loss of MLH1 protein expression and MLH1 promoter hypermethylation correlates
with mutations in these genes and are used to pre-screen colorectal cancer or endometrial hyperplasia4,5. MLH1, along with MSH6,
MSH2, and PMS2 form the core components of the MMR pathway2. The MMR pathway is critical to the repair of mismatch errors
which typically occur during DNA replication2. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression in
these genes6. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite
in a tumor as compared to normal tissue7,8,9. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary non-
polyposis colorectal cancer, which is caused by germline mutations in MMR genes7,10. LS is associated with an increased risk of
developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer8,10,11,12. Specifically, MLH1 mutations
are associated with an increased risk of ovarian and pancreatic cancer13,14,15,16.

Alterations and prevalence: Somatic mutations in MLH1 are observed in 6% of uterine corpus endometrial carcinoma, 4% of colorectal
adenocarcinoma, and 2-3% of bladder urothelial carcinoma, stomach adenocarcinoma, and melanoma17,18. Alterations in MLH1
are observed in pediatric cancers17,18. Somatic mutations are observed in 1% of bone cancer and less than 1% of B-lymphoblastic
leukemia/lymphoma (2 in 252 cases), embryonal tumor (2 in 332 cases), and leukemia (2 in 311 cases)17,18.

Potential relevance: The PARP inhibitor, talazoparib19 in combination with enzalutamide is approved (2023) for metastatic castration-
resistant prostate cancer (mCRPC) with mutations in HRR genes that includes MLH1. Additionally, pembrolizumab (2014) is an anti-
PD-1 immune checkpoint inhibitor that is approved for patients with MSI-H or dMMR solid tumors that have progressed on prior
therapies20. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone or in combination with the cytotoxic T-
lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR colorectal cancer that have progressed
on prior treatment21,22. MLH1 mutations are consistent with high grade in pediatric diffuse gliomas23,24.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome30. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue8,10. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS29. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25031. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)31. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS11,32,33,34,35. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes10.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer8,10,11,12.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma8,10,36,37. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers36,37.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab20 (2014) and nivolumab21 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab20 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication20. Dostarlimab38 (2021) is also approved for dMMR recurrent or advanced endometrial

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer33,39. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab22 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location33,40,41. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients41. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors42,43. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers42,43.

TPMT p.(Y240C) c.719A>G

thiopurine S-methyltransferase

Background: The TPMT gene encodes thiopurine S-methyltransferase, a cytosolic enzyme that methylates aromatic and heterocyclic
sulfhydryl compounds such as thiopurines1,44,45. TPMT is the major enzyme responsible for the metabolic inactivation of thiopurine
chemotherapeutic drugs used in the treatment of acute lymphoblastic leukemia (ALL), including, 6-mercaptopurine, 6-thioguanine,
and azathioprine44,45,46. Inherited TPMT polymorphisms, including TPMT*2, TPMT*3A, TPMT*3B, TPMT*3C, and TPMT*8, can result in
TPMT deficiency, which is characterized by impaired enzymatic activity and confers an increased risk of severe toxicity to thiopurine
drugs due to an increase in systemic drug exposure44,46.

Alterations and prevalence: Somatic mutations in TPMT are observed in 2% of uterine corpus endometrial carcinoma and colorectal
adenocarcinoma17,18. Biallelic loss of TPMT is observed in 1% of stomach adenocarcinoma, esophageal adenocarcinoma, and
adrenocortical carcinoma17,18. Amplification of TPMT is observed in 7% of ovarian serous cystadenocarcinoma, 6% of bladder
urothelial carcinoma, 4% of diffuse large B-cell lymphoma, uveal melanoma, uterine carcinosarcoma, and skin cutaneous melanoma,
3% of cholangiocarcinoma, and 2% of breast invasive carcinoma, uterine corpus endometrial carcinoma, and liver hepatocellular
carcinoma17,18. Alterations in TPMT are also observed in pediatric cancers18. Somatic mutations are observed in less than 1% of
peripheral nervous system tumors (1 in 1158 cases)18. Amplification of TPMT is observed in 1% of peripheral nervous system tumors
(1 in 91 cases)18.

Potential relevance: Currently, no therapies are approved for TPMT aberrations.

DSC1 deletion

desmocollin 1

Background: The DSC1 gene encodes desmocollin 1, a member of the desmocollin (DSC) subfamily of the cadherin superfamily,
which also includes DSC2 and DSC31. DSCs along with desmogleins (DSGs) function as membrane-spanning constituents of the
desmosomes25. Desmosomes are protein complexes in the intracellular junctions that confer stability and strengthen cell-cell
adhesion26. Deregulation of DSC expression is suggested to impact β-catenin signaling and has been observed in a number of cancer
types, supporting a potential role for DSC1 in tumorigenesis25,27,28,29.

Alterations and prevalence: Somatic mutations in DSC1 are observed in 17% of skin cutaneous melanoma, 8% of uterine corpus
endometrial carcinoma, 4% of uterine carcinosarcoma, and 3% of lung adenocarcinoma, lung squamous cell carcinoma, and colorectal
adenocarcinoma17,18. Biallelic deletion of DSC1 is observed in 2% of pancreatic adenocarcinoma and esophageal adenocarcinoma17,18.

Potential relevance: Currently, no therapies are approved for DSC1 aberrations.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

 

 neladalkib

Cancer type: Non-Small Cell Lung Cancer Variant class: ALK fusion

Supporting Statement:
The FDA has granted Breakthrough Therapy designation to a brain-penetrant ALK-selective tyrosine kinase inhibitor (TKI), 
NVL-655, for the treatment of patients with locally advanced or metastatic ALK-positive non-small cell lung cancer (NSCLC) who
have been previously treated with two or more ALK TKIs.

Reference:

https://investors.nuvalent.com/2024-05-16-Nuvalent-Receives-U-S-FDA-Breakthrough-Therapy-Designation-for-NVL-655
 

KIF5B::ALK fusion

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

crizotinib      (I)

alectinib      (IV)

brigatinib      (II)

lorlatinib      (II)

ceritinib     

ensartinib      (II)

atezolizumab + bevacizumab + carboplatin +
paclitaxel     

alectinib, durvalumab      (III)

ASKC-202, limertinib      (III)

neladalkib, alectinib      (III)

KIF5B::ALK fusion

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

alectinib, crizotinib      (II)

alectinib, lorlatinib      (II)

brigatinib, chemotherapy      (II)

chemotherapy, lorlatinib      (II)

ensartinib, radiation therapy, bevacizumab      (II)

IBI-318, lenvatinib      (II)

IBI323, bevacizumab, chemotherapy      (II)

iruplinalkib      (II)

JS-207, chemotherapy      (II)

pembrolizumab, bevacizumab, chemotherapy      (II)

SY-3505      (II)

alectinib, radiation therapy      (I/II)

amivantamab, alectinib, brigatinib, lorlatinib      (I/II)

DAJH-1050766      (I/II)

furetinib      (I/II)

neladalkib      (I/II)

ramucirumab, lorlatinib      (I/II)

sotiburafusp alfa, chemotherapy      (I/II)

sotiburafusp alfa, HB-0030      (I/II)

ACR-246      (I)

APG-2449      (I)

CGT-9475      (I)

gilteritinib      (I)

IBI-363, IBI-325, lenvatinib      (I)

LZ-001      (I)

SYS-6023      (I)

talazoparib, crizotinib      (I)

KIF5B::ALK fusion (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Gene/Genomic Alteration Finding

LOH percentage 29.69%
BRCA2 LOH, 13q13.1(32890491-32972932)x2
BARD1 LOH, 2q35(215593375-215674382)x3
CHEK2 LOH, 22q12.1(29083868-29130729)x2
FANCL LOH, 2p16.1(58386886-58468467)x3
PALB2 LOH, 16p12.2(23614759-23652528)x3

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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