

Patient Name: 여인철  
Gender: Male  
Sample ID: N25-366

Primary Tumor Site: thyroid  
Collection Date: 2025.12.11

## Sample Cancer Type: Thyroid Cancer

### Table of Contents

|                          |   |
|--------------------------|---|
| Variant Details          | 2 |
| Biomarker Descriptions   | 3 |
| Alert Details            | 7 |
| Relevant Therapy Summary | 9 |

### Report Highlights

1 Relevant Biomarkers  
23 Therapies Available  
23 Clinical Trials

## Relevant Thyroid Cancer Findings

| Gene  | Finding                            |
|-------|------------------------------------|
| BRAF  | <b>BRAF p.(V600E) c.1799T&gt;A</b> |
| NTRK1 | None detected                      |
| NTRK2 | None detected                      |
| NTRK3 | None detected                      |
| RET   | None detected                      |

  

| Genomic Alteration      | Finding                    |
|-------------------------|----------------------------|
| Tumor Mutational Burden | <b>1.9 Mut/Mb measured</b> |

## Relevant Biomarkers

| Tier | Genomic Alteration                                                                                                                                                     | Relevant Therapies<br>(In this cancer type)                         | Relevant Therapies<br>(In other cancer type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clinical Trials |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| IA   | <b>BRAF p.(V600E) c.1799T&gt;A</b><br><br>B-Raf proto-oncogene, serine/threonine kinase<br>Allele Frequency: 6.78%<br>Locus: chr7:140453136<br>Transcript: NM_004333.6 | <b>dabrafenib + trametinib</b> 1 / II+<br>dabrafenib<br>vemurafenib | <b>binimetinib + encorafenib</b> 1, 2 / I, II+<br><b>cetuximab + encorafenib</b> 1, 2 / I, II+<br><b>cetuximab + encorafenib + chemotherapy</b> 1 / I, II+<br><b>cobimetinib + vemurafenib</b> 1, 2 / I, II+<br><b>dabrafenib</b> 1, 2 / I, II+<br><b>dabrafenib + trametinib</b> 1, 2 / I, II+<br><b>vemurafenib</b> 1, 2 / I, II+<br><b>atezolizumab + cobimetinib + vemurafenib</b> 1 / II+<br><b>trametinib</b> 1, 2<br><b>encorafenib</b> I, II+<br><b>encorafenib + panitumumab</b> I, II+<br><b>encorafenib + panitumumab + chemotherapy</b> I, II+<br><b>ipilimumab + nivolumab</b> I, II+<br><b>bevacizumab + chemotherapy</b> I<br><b>anti-PD-1</b> II+<br><b>dabrafenib + pembrolizumab + trametinib</b> II+<br><b>ipilimumab</b> II+<br><b>nivolumab</b> II+<br><b>nivolumab + relatlimab</b> II+<br><b>pembrolizumab</b> II+<br><b>dabrafenib + MEK inhibitor</b><br><b>selumetinib</b><br><b>tovorafenib</b> | 23              |

\* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

\* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

**⚠ Alerts informed by public data sources:** 🚫 Contraindicated, ⚠ Resistance, ↗ Breakthrough, ⚠ Fast Track

**BRAF p.(V600E) c.1799T>A**

⚠ **plixorafenib** <sup>1</sup>

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

### Prevalent cancer biomarkers without relevant evidence based on included data sources

**CDKN2A p.(E69\*) c.205G>T, MAP2K7 deletion, Microsatellite stable, TP53 c.375+1G>T, UGT1A1 p.(G71R) c.211G>A, HLA-B deletion, Tumor Mutational Burden**

## Variant Details

### DNA Sequence Variants

| Gene   | Amino Acid Change | Coding     | Variant ID  | Locus          | Allele Frequency | Transcript     | Variant Effect |
|--------|-------------------|------------|-------------|----------------|------------------|----------------|----------------|
| BRAF   | p.(V600E)         | c.1799T>A  | COSM476     | chr7:140453136 | 6.78%            | NM_004333.6    | missense       |
| CDKN2A | p.(E69*)          | c.205G>T   | .           | chr9:21971153  | 5.34%            | NM_001195132.2 | nonsense       |
| TP53   | p.(?)             | c.375+1G>T | .           | chr17:7579311  | 8.86%            | NM_000546.6    | unknown        |
| UGT1A1 | p.(G71R)          | c.211G>A   | COSM4415616 | chr2:234669144 | 51.45%           | NM_000463.3    | missense       |
| KEL    | p.(N63S)          | c.1904A>G  | .           | chr7:142639999 | 6.12%            | NM_000420.3    | missense       |

## Variant Details (continued)

### DNA Sequence Variants (continued)

| Gene   | Amino Acid Change | Coding    | Variant ID | Locus          | Allele Frequency | Transcript  | Variant Effect |
|--------|-------------------|-----------|------------|----------------|------------------|-------------|----------------|
| NOTCH3 | p.(G1347R)        | c.4039G>C | .          | chr19:15288700 | 49.59%           | NM_000435.3 | missense       |

### Copy Number Variations

| Gene   | Locus         | Copy Number | CNV Ratio |
|--------|---------------|-------------|-----------|
| MAP2K7 | chr19:7968792 | 0.43        | 0.68      |
| HLA-B  | chr6:31322252 | 0           | 0.59      |

## Biomarker Descriptions

### BRAF p.(V600E) c.1799T>A

*B-Raf proto-oncogene, serine/threonine kinase*

**Background:** The BRAF gene encodes the B-Raf proto-oncogene serine/threonine kinase, a member of the RAF family of serine/threonine protein kinases which also includes ARAF and RAF1(CRAF)<sup>33</sup>. BRAF is among the most commonly mutated kinases in cancer. Activation of the MAPK pathway occurs through BRAF mutations and leads to an increase in cell division, dedifferentiation, and survival<sup>34,35</sup>. BRAF mutations are categorized into three distinct functional classes, namely, class 1, 2, and 3, and are defined by the dependency on the RAS pathway<sup>36</sup>. Class 1 and 2 BRAF mutants are RAS-independent in that they signal as active monomers (Class 1) or dimers (Class 2) and become uncoupled from RAS GTPase signaling, resulting in constitutive activation of BRAF<sup>36</sup>. Class 3 mutants are RAS dependent as the kinase domain function is impaired or dead<sup>36,37,38</sup>.

**Alterations and prevalence:** Somatic mutations in BRAF are observed in 59% of thyroid carcinoma, 53% of skin cutaneous melanoma, 12% of colorectal adenocarcinoma, 8% of lung adenocarcinoma, 5% of uterine corpus endometrial carcinoma, and 2-3% of bladder urothelial carcinoma, lung squamous cell carcinoma, stomach adenocarcinoma, cholangiocarcinoma, diffuse large B-cell lymphoma, glioblastoma multiforme, uterine carcinosarcoma, and head and neck squamous cell carcinoma<sup>8,9</sup>. Mutations at V600 belong to class 1 and include V600E, the most recurrent somatic BRAF mutation across diverse cancer types<sup>37,39</sup>. Class 2 mutations include K601E/N/T, L597Q/V, G469A/V/R, G464V/E, and BRAF fusions<sup>37</sup>. Class 3 mutations include D287H, V459L, G466V/E/A, S467L, G469E, and N581S/I<sup>37</sup>. BRAF V600E is universally present in hairy cell leukemia, mature B-cell cancers, and prevalent in histiocytic neoplasms<sup>40,41,42</sup>. Other recurrent BRAF somatic mutations cluster in the glycine-rich phosphate-binding loop at codons 464-469 in exon 11, as well as additional codons flanking V600 in the activation loop<sup>39</sup>. BRAF amplification is observed in 8% of ovarian serous cystadenocarcinoma, 4% of skin cutaneous melanoma, and 2% of sarcoma, uterine carcinosarcoma, and glioblastoma multiforme<sup>8,9</sup>. BRAF fusions are mutually exclusive to BRAF V600 mutations and have been described in melanoma, thyroid cancer, pilocytic astrocytoma, NSCLC, and several other cancer types<sup>43,44,45,46,47</sup>. Part of the oncogenic mechanism of BRAF gene fusions is the removal of the N-terminal auto-inhibitory domain, leading to constitutive kinase activation<sup>38,43,45</sup>. Alterations in BRAF are rare in pediatric cancers, with the most predominant being the V600E mutation and the BRAF::KIAA1549 fusion, both of which are observed in low-grade gliomas<sup>48</sup>. Somatic mutations are observed in 6% of glioma and less than 1% of bone cancer (2 in 327 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system cancers (1 in 1158 cases)<sup>8,9</sup>. Amplification of BRAF is observed in 1% or less of Wilms tumor (2 in 136 cases) and B-lymphoblastic leukemia/lymphoma (2 in 731 cases)<sup>8,9</sup>.

**Potential relevance:** Vemurafenib<sup>49</sup> (2011) is the first targeted therapy approved for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E mutation, and it is also approved for BRAF V600E-positive Erdheim-Chester Disease (2017). BRAF class 1 mutations, including V600E, are sensitive to vemurafenib, whereas class 2 and 3 mutations are insensitive<sup>37</sup>. BRAF kinase inhibitors including dabrafenib<sup>50</sup> (2013) and encorafenib<sup>51</sup> (2018) are also approved for the treatment of patients with unresectable or metastatic melanoma with BRAF V600E/K mutations. Encorafenib<sup>51</sup> is approved in combination with cetuximab<sup>52</sup> (2020) for the treatment of BRAF V600E mutated colorectal cancer. Due to the tight coupling of RAF and MEK signaling, several MEK inhibitors have been approved for patients harboring BRAF alterations<sup>37</sup>. The MEK inhibitors, trametinib<sup>53</sup> (2013) and binimetinib<sup>54</sup> (2018), were approved for the treatment of metastatic melanoma with BRAF V600E/K mutations. Combination therapies of BRAF plus MEK inhibitors have been approved in melanoma and NSCLC<sup>55</sup>. The combinations of dabrafenib/trametinib<sup>53</sup> (2015) and vemurafenib/cobimetinib<sup>56</sup> (2015) were approved for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E/K mutation. Subsequently, the combination of dabrafenib and trametinib was approved for metastatic NSCLC (2017), children with low-grade gliomas, and children and adults with solid tumors (2022) harboring a BRAF V600E mutation<sup>50</sup>. The PD-L1 antibody, atezolizumab<sup>57</sup>, has also been approved in combination with cobimetinib and vemurafenib for BRAF V600 mutation-positive unresectable or metastatic melanoma. The FDA has granted fast track designation (2023) to ABM-1310<sup>58</sup> for BRAF V600E-mutated

## Biomarker Descriptions (continued)

glioblastoma (GBM) patients. In 2018, binimetinib<sup>59</sup> was also granted breakthrough designation in combination with cetuximab and encorafenib for BRAF V600E mutant metastatic colorectal cancer. The ERK inhibitor ulixertinib<sup>60</sup> was granted fast track designation in 2020 for the treatment of patients with non-colorectal solid tumors harboring BRAF mutations G469A/V, L485W, or L597Q. The FDA granted fast track designation (2022) to the pan-RAF inhibitor, KIN-2787<sup>61</sup>, for the treatment of BRAF class II or III alteration-positive malignant or unresectable melanoma. The FDA also granted fast track designation (2023) to the BRAF inhibitor, plixorafenib (PLX-8394)<sup>62</sup>, for BRAF Class I (V600) and Class II (including fusions) altered cancer patients who have already undergone previous treatments. BRAF fusion is a suggested mechanism of resistance to BRAF targeted therapy in melanoma<sup>63</sup>. Additional mechanisms of resistance to BRAF targeted therapy include BRAF amplification, alternative splice transcripts, as well as activation of PI3K signaling and activating mutations in KRAS, NRAS, and MAP2K1/2 (MEK1/2)<sup>64,65,66,67,68,69,70</sup>. Clinical responses to sorafenib and trametinib in limited case studies of patients with BRAF fusions have been reported<sup>47</sup>.

### CDKN2A p.(E69\*) c.205G>T

*cyclin dependent kinase inhibitor 2A*

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression<sup>1</sup>. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)<sup>97</sup>. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb<sup>98,99,100</sup>. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions<sup>101</sup>. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation<sup>1,101,102</sup>. CDKN2A aberrations commonly co-occur with CDKN2B<sup>97</sup>. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation<sup>103</sup>. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer<sup>104,105</sup>.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations<sup>106</sup>. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma<sup>8,9</sup>. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe<sup>8,9</sup>. Alterations in CDKN2A are also observed in pediatric cancers<sup>9</sup>. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors<sup>9</sup>. Somatic mutations in CDKN2A are observed in less than 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)<sup>9</sup>.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors<sup>107,108,109</sup>. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma<sup>110</sup>. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib<sup>111,112,113</sup>. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme<sup>114</sup>. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer<sup>115,116,117,118</sup>.

### MAP2K7 deletion

*mitogen-activated protein kinase kinase 7*

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7<sup>1</sup>. MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10<sup>93,94,95</sup>. Activation of MAPK proteins occurs through a kinase signaling cascade<sup>93,94,96</sup>. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members<sup>93,94,96</sup>. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation<sup>93,94,96</sup>.

## Biomarker Descriptions (continued)

**Alterations and prevalence:** Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma<sup>8,9</sup>. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma<sup>8,9</sup>.

**Potential relevance:** Currently, no therapies are approved for MAP2K7 aberrations.

### **Microsatellite stable**

**Background:** Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome<sup>71</sup>. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue<sup>72,73</sup>. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2<sup>74</sup>. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250<sup>75</sup>. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)<sup>75</sup>. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS<sup>76,77,78,79,80</sup>. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes<sup>73</sup>. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer<sup>72,73,77,81</sup>.

**Alterations and prevalence:** The MSI-H phenotype is observed in 30% of uterine corpus endometrial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma<sup>72,73,82,83</sup>. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers<sup>82,83</sup>.

**Potential relevance:** Anti-PD-1 immune checkpoint inhibitors including pembrolizumab<sup>84</sup> (2014) and nivolumab<sup>85</sup> (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab<sup>84</sup> is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication<sup>84</sup>. Dostarlimab<sup>86</sup> (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer<sup>78,87</sup>. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab<sup>88</sup> (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location<sup>78,89,90</sup>. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients<sup>90</sup>. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors<sup>91,92</sup>. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers<sup>91,92</sup>.

### **TP53 c.375+1G>T**

*tumor protein p53*

**Background:** The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair<sup>1</sup>. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis<sup>10</sup>. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential<sup>11</sup>. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers<sup>12,13</sup>.

**Alterations and prevalence:** TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)<sup>8,9,14,15,16,17</sup>. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282<sup>8,9</sup>. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes<sup>18,19,20,21</sup>. Alterations in TP53 are also observed in pediatric cancers<sup>8,9</sup>. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)<sup>8,9</sup>. Biallelic loss

## Biomarker Descriptions (continued)

of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)<sup>8,9</sup>.

Potential relevance: The small molecule p53 reactivator, PC14586<sup>22</sup> (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation<sup>23,24</sup>. TP53 mutations are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma<sup>25</sup>. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)<sup>26,27,28,29,30</sup>. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant<sup>31</sup>. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system<sup>32</sup>.

### UGT1A1 p.(G71R) c.211G>A

*UDP glucuronosyltransferase family 1 member A1*

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily<sup>1,119</sup>. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites<sup>119,120</sup>. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance<sup>121</sup>. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation<sup>121,122,123,124</sup>. Furthermore, UGT1A1 polymorphisms, such as UGT1A1\*28, UGT1A1\*93, and UGT1A1\*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38<sup>125</sup>.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma<sup>8,9</sup>.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

### HLA-B deletion

*major histocompatibility complex, class I, B*

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B<sup>1</sup>. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells<sup>2</sup>. MHC class I molecules are heterodimers composed of two polypeptide chains,  $\alpha$  and B2M<sup>3</sup>. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the  $\alpha$  polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self<sup>4,5,6</sup>. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B<sup>7</sup>.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma<sup>8,9</sup>. Biallelic loss of HLA-B is observed in 5% of DLBCL<sup>8,9</sup>.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

## Alerts Informed By Public Data Sources

### Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search [www.fda.gov](http://www.fda.gov).

#### BRAF p.(V600E) c.1799T>A

##### binimatinib + cetuximab + encorafenib

Cancer type: Colorectal Cancer

Variant class: BRAF V600E mutation

##### Supporting Statement:

The FDA has granted Breakthrough Therapy designation to the MEK inhibitor, binimatinib, in combination with cetuximab and encorafenib for BRAF V600E mutant metastatic colorectal cancer.

##### Reference:

<https://markets.businessinsider.com/news/stocks/array-biopharma-receives-fda-breakthrough-therapy-designation-for-braftovi-in-combination-with-mektovi-and-cetuximab-for-brafv600e-mutant-metastatic-colorectal-cancer-1027437791>

#### plixorafenib

Cancer type: Solid Tumor

Variant class: BRAF V600 mutation

##### Supporting Statement:

The FDA has granted Fast Track designation to a novel small molecule inhibitor, plixorafenib (PLX-8394), for the treatment of patients with cancers harboring BRAF Class 1 (V600) and Class 2 (including fusions) alterations who have exhausted prior therapies.

##### Reference:

<https://fore.bio/fore-biotherapeutics-announces-fast-track-designation-granted-by-fda-to-fore8394-for-the-treatment-of-cancers-harboring-braf-class-1-and-class-2-alterations/>

#### ABM-1310

Cancer type: Glioblastoma IDH-wildtype  
(Grade 4)

Variant class: BRAF V600E mutation

##### Supporting Statement:

The FDA has granted Fast Track designation to ABM-1310 for the treatment of glioblastoma (GBM) patients with BRAF V600E mutation.

##### Reference:

<https://www.prnewswire.com/news-releases/abm-therapeutics-abm-1310-granted-fast-track-designation-by-the-fda-following-orphan-drug-designation-301937168.html>

## Genes Assayed

#### Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,

## Genes Assayed (continued)

### Genes Assayed for the Detection of DNA Sequence Variants (continued)

IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

### Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANC, FANCF, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

### Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

### Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANC, FANCF, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

## Relevant Therapy Summary

● In this cancer type     
 ○ In other cancer type     
 ◐ In this cancer type and other cancer types     
 ✗ No evidence

### BRAF p.(V600E) c.1799T>A

| Relevant Therapy                         | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|------------------------------------------|-----|------|-----|------|------------------|
| dabrafenib + trametinib                  | ◐   | ◐    | ○   | ◐    | ✗                |
| dabrafenib                               | ○   | ◐    | ○   | ✗    | ● (II)           |
| vemurafenib                              | ○   | ◐    | ○   | ✗    | ✗                |
| cobimetinib + vemurafenib                | ○   | ○    | ○   | ○    | ● (II/III)       |
| binimetinib + encorafenib                | ○   | ○    | ○   | ○    | ✗                |
| cetuximab + encorafenib                  | ○   | ○    | ○   | ○    | ✗                |
| trametinib                               | ○   | ○    | ○   | ✗    | ✗                |
| atezolizumab + cobimetinib + vemurafenib | ○   | ○    | ✗   | ✗    | ✗                |
| cetuximab + encorafenib + FOLFOX         | ○   | ○    | ✗   | ✗    | ✗                |
| encorafenib                              | ✗   | ○    | ✗   | ○    | ✗                |
| dabrafenib + pembrolizumab + trametinib  | ✗   | ○    | ✗   | ✗    | ✗                |
| encorafenib + panitumumab                | ✗   | ○    | ✗   | ✗    | ✗                |
| encorafenib + panitumumab + FOLFOX       | ✗   | ○    | ✗   | ✗    | ✗                |
| selumetinib                              | ✗   | ○    | ✗   | ✗    | ✗                |
| tovorafenib                              | ✗   | ○    | ✗   | ✗    | ✗                |
| anti-PD-1                                | ✗   | ✗    | ✗   | ○    | ✗                |
| bevacizumab + CAPOX                      | ✗   | ✗    | ✗   | ○    | ✗                |
| bevacizumab + FOLFOX                     | ✗   | ✗    | ✗   | ○    | ✗                |
| bevacizumab + FOLFOXIRI                  | ✗   | ✗    | ✗   | ○    | ✗                |
| dabrafenib + MEK inhibitor               | ✗   | ✗    | ✗   | ○    | ✗                |
| ipilimumab                               | ✗   | ✗    | ✗   | ○    | ✗                |
| ipilimumab + nivolumab                   | ✗   | ✗    | ✗   | ○    | ✗                |
| nivolumab                                | ✗   | ✗    | ✗   | ○    | ✗                |
| nivolumab + relatlimab                   | ✗   | ✗    | ✗   | ○    | ✗                |
| pembrolizumab                            | ✗   | ✗    | ✗   | ○    | ✗                |
| dabrafenib, trametinib, cabozantinib     | ✗   | ✗    | ✗   | ✗    | ● (III)          |
| trametinib, dabrafenib                   | ✗   | ✗    | ✗   | ✗    | ● (III)          |
| dabrafenib, trametinib                   | ✗   | ✗    | ✗   | ✗    | ● (II)           |
| plixorafenib, cobicistat                 | ✗   | ✗    | ✗   | ✗    | ● (II)           |

\* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## Relevant Therapy Summary (continued)

● In this cancer type     
 ○ In other cancer type     
 ● In this cancer type and other cancer types     
 ✖ No evidence

### BRAF p.(V600E) c.1799T>A (continued)

| Relevant Therapy                          | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|-------------------------------------------|-----|------|-----|------|------------------|
| vemurafenib, cobimetinib                  | ✖   | ✖    | ✖   | ✖    | ● (II)           |
| RX208, serplulimab                        | ✖   | ✖    | ✖   | ✖    | ● (I/II)         |
| RX208, trametinib                         | ✖   | ✖    | ✖   | ✖    | ● (I/II)         |
| BDTX-4933                                 | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| dabrafenib, trametinib, radiation therapy | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| exarafenib, binimetinib                   | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| HSK42360                                  | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| JSI-1187                                  | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| PF-07799933, cetuximab, binimetinib       | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| RO-7276389, cobimetinib                   | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| RX208                                     | ✖   | ✖    | ✖   | ✖    | ● (I)            |
| ZEN-3694, binimetinib                     | ✖   | ✖    | ✖   | ✖    | ● (I)            |

\* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## HRR Details

| Gene/Genomic Alteration | Finding               |
|-------------------------|-----------------------|
| LOH percentage          | 0.0%                  |
| Not Detected            | <b>Not Applicable</b> |

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from [www.fda.gov](http://www.fda.gov) and is current as of 2025-11-25. NCCN information was sourced from [www.nccn.org](http://www.nccn.org) and is current as of 2025-11-03. EMA information was sourced from [www.ema.europa.eu](http://www.ema.europa.eu) and is current as of 2025-11-25. ESMO information was sourced from [www.esmo.org](http://www.esmo.org) and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search [www.clinicaltrials.gov](http://www.clinicaltrials.gov) by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

## References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
11. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
12. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
13. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
14. Peter S et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
15. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
16. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
17. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
18. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
19. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514
20. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene.* 2007 Apr 2;26(15):2157-65. PMID: 17401424
21. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
22. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
23. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
24. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165
25. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
26. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood.* 2022 Sep 22;140(12):1345-1377. PMID: 35797463
27. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
28. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
29. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 1.2026]

## References (continued)

30. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
31. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
32. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
33. Yuryev et al. The RAF family: an expanding network of post-translational controls and protein-protein interactions. *Cell Res.* 1998 Jun;8(2):81-98. PMID: 9669024
34. Cheng et al. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. *Mod. Pathol.* 2018 Jan;31(1):24-38. PMID: 29148538
35. Alrabadi et al. Detection of driver mutations in BRAF can aid in diagnosis and early treatment of dedifferentiated metastatic melanoma. *Mod. Pathol.* 2019 Mar;32(3):330-337. PMID: 30315274
36. Quan et al. The association between BRAF mutation class and clinical features in BRAF-mutant Chinese non-small cell lung cancer patients. *Journal of Translational Medicine*, 29 Aug 2019, 17(1):298. PMID: 31470866
37. Yao et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. *Nature*. 2017 Aug 10;548(7666):234-238. PMID: 28783719
38. Bracht et al. BRAF Mutations Classes I, II, and III in NSCLC Patients Included in the SLLIP Trial: The Need for a New Pre-Clinical Treatment Rationale. *Cancers (Basel)*. 2019 Sep 17;11(9). PMID: 31533235
39. Wan et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. *Cell*. 2004 Mar 19;116(6):855-67. PMID: 15035987
40. Tacci et al. BRAF mutations in hairy-cell leukemia. *N. Engl. J. Med.* 2011 Jun 16;364(24):2305-15. PMID: 21663470
41. Diamond et al. Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. *Cancer Discov.* 2016 Feb;6(2):154-65. doi: 10.1158/2159-8290.CD-15-0913. Epub 2015 Nov 13. PMID: 26566875
42. Imielinski et al. Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma. *J Clin Invest.* 2014 Apr;124(4):1582-6. doi: 10.1172/JCI72763. Epub 2014 Feb 24. PMID: 24569458
43. Ciampi et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. *J. Clin. Invest.* 2005 Jan;115(1):94-101. PMID: 15630448
44. Palanisamy et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. *Nat. Med.* 2010 Jul;16(7):793-8. PMID: 20526349
45. Jones et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. *Cancer Res.* 2008 Nov 1;68(21):8673-7. PMID: 18974108
46. Cin et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. *Acta Neuropathol.* 2011 Jun;121(6):763-74. doi: 10.1007/s00401-011-0817-z. Epub 2011 Mar 20. PMID: 21424530
47. Ross et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. *Int. J. Cancer*. 2016 Feb 15;138(4):881-90. PMID: 26314551
48. Tan et al. Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. *Cancers (Basel)*. 2021 Feb 4;13(4). PMID: 33557011
49. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2020/202429s019lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/202429s019lbl.pdf)
50. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/202806s038,217514s009lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/202806s038,217514s009lbl.pdf)
51. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/210496s018lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/210496s018lbl.pdf)
52. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2021/125084s279lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf)
53. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/204114s038,217513s009lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/204114s038,217513s009lbl.pdf)
54. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/210498s011lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/210498s011lbl.pdf)
55. Subbiah et al. Clinical Development of BRAF plus MEK Inhibitor Combinations. *Trends Cancer*. 2020 Sep;6(9):797-810. PMID: 32540454
56. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2023/206192s006lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/206192s006lbl.pdf)
57. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/761034s058lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761034s058lbl.pdf)
58. <https://www.prnewswire.com/news-releases/abm-therapeutics-abm-1310-granted-fast-track-designation-by-the-fda-following-orphan-drug-designation-301937168.html>
59. <https://markets.businessinsider.com/news/stocks/array-biopharma-receives-fda-breakthrough-therapy-designation-for-braftovi-in-combination-with-mektovi-and-cetuximab-for-brafv600e-mutant-metastatic-colorectal-cancer-1027437791>

## References (continued)

60. <https://biomed-valley.com/news/#press-releases>
61. <https://investors.kinnate.com/news-releases/news-release-details/kinnate-biopharma-inc-receives-fast-track-designation-us-food>
62. <https://fore.bio/fore-biotherapeutics-announces-fast-track-designation-granted-by-fda-to-fore8394-for-the-treatment-of-cancers-harboring-braf-class-1-and-class-2-alterations/>
63. Kulkarni et al. BRAF Fusion as a Novel Mechanism of Acquired Resistance to Vemurafenib in BRAFV600E Mutant Melanoma. *Clin. Cancer Res.* 2017 Sep 15;23(18):5631-5638. PMID: 28539463
64. Johnson et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. *Eur. J. Cancer.* 2015 Dec;51(18):2792-9. PMID: 26608120
65. Nazarian et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. *Nature.* 2010 Dec 16;468(7326):973-7. doi: 10.1038/nature09626. Epub 2010 Nov 24. PMID: 21107323
66. Rizos et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. *Clin. Cancer Res.* 2014 Apr 1;20(7):1965-77. PMID: 24463458
67. Shi et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. *Cancer Discov.* 2014 Jan;4(1):69-79. PMID: 24265152
68. Van Allen et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. *Cancer Discov.* 2014 Jan;4(1):94-109. doi: 10.1158/2159-8290.CD-13-0617. Epub 2013 Nov 21. PMID: 24265153
69. Villanueva et al. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. *Cell Rep.* 2013 Sep 26;4(6):1090-9. PMID: 24055054
70. Shi et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. *Cancer Discov.* 2014 Jan;4(1):80-93. PMID: 24265155
71. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
72. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
73. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
74. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
75. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
76. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
77. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
78. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
79. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
80. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
81. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
82. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
83. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
84. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/125514s178lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf)
85. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/125554s131lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf)
86. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2024/761174s009lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf)
87. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
88. [https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2025/125377s136lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf)
89. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608

## References (continued)

90. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
91. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
92. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
93. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. *Clin. Cancer Res.* 2013 May 1;19(9):2301-9. PMID: 23406774
94. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. *Br J Pharmacol.* 2014 Jan;171(1):24-37. PMID: 24117156
95. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. *Microbiol Mol Biol Rev.* 2011 Mar;75(1):50-83. PMID: 21372320
96. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int J Mol Sci.* 2020 Feb 7;21(3). PMID: 32046099
97. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. *Nat Commun.* 2021 Apr 6;12(1):2047. PMID: 33824349
98. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. *Am. J. Respir. Cell Mol. Biol.* 2018 Aug;59(2):200-214. PMID: 29420051
99. Roussel. The INK4 family of cell cycle inhibitors in cancer. *Oncogene.* 1999 Sep 20;18(38):5311-7. PMID: 10498883
100. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). *Biochem. Biophys. Res. Commun.* 1999 Aug 27;262(2):534-8. PMID: 10462509
101. Hill et al. The genetics of melanoma: recent advances. *Annu Rev Genomics Hum Genet.* 2013;14:257-79. PMID: 23875803
102. Kim et al. The regulation of INK4/ARF in cancer and aging. *Cell.* 2006 Oct 20;127(2):265-75. PMID: 17055429
103. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. *Mayo Clin. Proc.* 2008 Jul;83(7):825-46. PMID: 18613999
104. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. *J. Invest. Dermatol.* 2007 May;127(5):1234-43. PMID: 17218939
105. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. *Ann. Surg.* 2002 Dec;236(6):730-7. PMID: 12454511
106. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. *Clin Cancer Res.* 2021 Jul 15;27(14):4025-4035. PMID: 34074656
107. NCCN Guidelines® - NCCN-Mesothelioma: Peritoneal [Version 2.2026]
108. NCCN Guidelines® - NCCN-Mesothelioma: Pleural [Version 2.2026]
109. NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 1.2025]
110. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. *Brain Pathol.* 2020 Jul;30(4):844-856. PMID: 32307792
111. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. *J Transl Med.* 2019 Jul 29;17(1):245. PMID: 31358010
112. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. *Anticancer Res.* 2013 Aug;33(8):2997-3004. PMID: 23898052
113. von Witzleben et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmacological Inhibitors of the CDK4/6 Cell-Cycle Pathway. *Cancer Res.* 2015 Sep 15;75(18):3823-31. PMID: 26183925
114. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. *Neuro-oncology.* 2012 Jul;14(7):870-81. PMID: 22711607
115. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. *Oncotarget.* 2018 Sep 7;9(70):33247-33248. PMID: 30279955
116. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. *J. Clin. Oncol.* 2014 Dec 10;32(35):3930-8. PMID: 25267748
117. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. *J. Natl. Cancer Inst.* 2018 Dec 1;110(12):1393-1399. PMID: 29878161

## References (continued)

118. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. *Cancer Clin Oncol.* 2013;2(1):51-61. PMID: 23935769
119. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
120. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
121. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
122. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
123. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget.* 2017 Jan 10;8(2):3640-3648. PMID: 27690298
124. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One.* 2015;10(5):e0127524. PMID: 26010150
125. Karas et al. JCO Oncol Pract. 2021 Dec 3:OP2100624. PMID: 34860573