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Gene Finding Gene Finding

ALK None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR None detected NTRK3 None detected
ERBB2 None detected RET None detected
KRAS KRAS p.(G12D) c.35G>A ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 1.95 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase
Allele Frequency: 19.40%
Locus: chr12:25398284
Transcript: NM_033360.4

None* avutometinib + defactinib 1 / II+

bevacizumab + chemotherapy I
39

  
IIC ATM p.(S2190*) c.6569C>A

ATM serine/threonine kinase
Allele Frequency: 15.37%
Locus: chr11:108192144
Transcript: NM_000051.4

None* None* 2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Prevalent cancer biomarkers without relevant evidence based on included data sources
Microsatellite stable, STK11 c.290+2_290+3delinsCTT, STK11 p.(D277Rfs*8) c.828_829insC, NQO1 p.(P187S) c.559C>T,
Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

KRAS p.(G12D) c.35G>A COSM521 chr12:25398284 19.40% NM_033360.4 missense

ATM p.(S2190*) c.6569C>A . chr11:108192144 15.37% NM_000051.4 nonsense

STK11 p.(?) c.290+2_290+3delinsC
TT

. chr19:1207204 14.10% NM_000455.5 unknown

STK11 p.(D277Rfs*8) c.828_829insC . chr19:1221304 90.89% NM_000455.5 frameshift
Insertion

NQO1 p.(P187S) c.559C>T . chr16:69745145 50.35% NM_000903.3 missense

HLA-A p.([I322F;T323A]) c.964_967delATCAinsT
TCG

. chr6:29912345 25.05% NM_001242758.1 missense,
missense

GATA3 p.(S147N) c.440G>A . chr10:8100466 49.07% NM_001002295.2 missense

CELF2 p.(?) c.977-2_977-1delinsTA
GT

. chr10:11356100 3.02% NM_006561.3 unknown

NPAP1 p.(K773N) c.2319A>C . chr15:24923333 1.58% NM_018958.3 missense

SLC12A1 p.(Y538Nfs*9) c.1611_1614delATATin
sGAATAC

. chr15:48539584 19.30% NM_001184832.2 frameshift Block
Substitution

DNA Sequence Variants

 

Variant Details

 
KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS
superfamily which also includes NRAS and HRAS15. RAS proteins mediate the transmission of growth signals from the cell surface to
the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival16,17,18.
Germline mutations in KRAS lead to several genetic disorders known as RASopathies, including Noonan syndrome, which results in
heart and congenital defects, growth inhibition, and facial dysmorphic features19. Somatic mutations in KRAS are commonly altered in
several cancers including non-small cell lung cancer, pancreatic cancer, and multiple myeloma19.

Alterations and prevalence: The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q618,20,21.
Mutations at A59, K117, and A146 have also been observed but are less frequent9,22. Somatic mutations in KRAS are observed
in 66% of pancreatic adenocarcinoma, 41% of colorectal adenocarcinoma, 30% of lung adenocarcinoma, 19% of uterine corpus
endometrial carcinoma, 12% of uterine carcinosarcoma, 9% of stomach adenocarcinoma, 8% of testicular germ cell tumors, 6% of
cholangiocarcinoma, 5% of cervical squamous cell carcinoma, acute myeloid leukemia, and diffuse large B-cell lymphoma, 4% of
bladder urothelial carcinoma, and 2% of skin cutaneous melanoma and kidney renal papillary cell carcinoma8,9. KRAS is amplified
in 9% of ovarian serous cystadenocarcinoma and testicular germ cell tumors, 8% of stomach adenocarcinoma , 7% of esophageal
adenocarcinoma and uterine carcinosarcoma, 6% of lung adenocarcinoma, 4% of pancreatic adenocarcinoma and bladder urothelial
carcinoma, 3% of lung squamous cell carcinoma, and 2% of sarcoma, mesothelioma, brain lower grade glioma, and uterine corpus
endometrial carcinoma8,9. Alterations in KRAS are also observed in pediatric cancers9. Somatic mutations in KRAS are observed in
10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of leukemia (29 in 354 cases), and in less than 1% of embryonal
tumors (2 in 332 cases), glioma (1 in 297 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system cancers (1 in 1158

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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cases)9. KRAS is amplified in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)9. Structural alterations in KRAS are
observed in less than 1% of acute lymphoblastic leukemia (1 in 85 cases)9.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib23 (2021) and adagrasib24 (2022), for the treatment
of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and
adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma25. The FDA has approved
the combination of kinase inhibitors, avutometinib and defactinib26 (2025), for the treatment of adult patients with KRAS-mutated
recurrent low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy
designation (2022) to the KRAS G12C inhibitor, GDC-603627, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual
inhibitor, elironrasib28, and the KRAS G12C inhibitor, D3S-00129, were both granted breakthrough therapy designation (2025) for KRAS
G12C-mutated locally advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding
KRAS G12C inhibitors. The KRAS-G12C inhibitor, olomorasib30, was granted breakthrough designation (2025) in combination with
pembrolizumab31 for unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression ≥ 50%. The RAF/
MEK clamp, avutometinib32 was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated
metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been previously treated with a
KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-852033, was granted fast track designation in 2025 for previously treated KRAS
G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib34, was granted breakthrough designation (2025)
for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor, GFH-37535, was
also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced or metastatic
pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-00136, was granted fast track designation in 2024 for KRAS G12C-mutated
patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib37, was granted fast track
designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic
colorectal cancer (mCRC). The EGFR antagonists, cetuximab38 and panitumumab39, are contraindicated for treatment of colorectal
cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)22.
Additionally, KRAS mutations are associated with poor prognosis in NSCLC40.

ATM p.(S2190*) c.6569C>A

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases
(PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)41. ATM and ATR act as master regulators of DNA
damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA
(ssDNA) repair42. ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB42,43. Upon
activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins44. ATM is
a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAness phenotype, which is characterized by
a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss45,46. Germline mutations in ATM often result in
Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal
instability47.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of
undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma
as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer8,9.

Potential relevance: The PARP inhibitor, olaparib48 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC)
with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib49 in
combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR
genes that includes ATM. Consistent with other genes associated with the BRCAness phenotype, ATM mutations may aid in selecting
patients likely to respond to PARP inhibitors45,50,51. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer,
four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib52. However, gene-level
analyses from the phase III PROfound trial indicate that ATM-mutated tumors do not experience meaningful radiographic progression-
free survival (rPFS) or overall survival (OS) benefit from olaparib, and that the observed survival advantage in the broader HRR-altered
population is largely driven by BRCA1/2 alterations rather than ATM53,54. In 2022, the FDA granted fast track designation to the small
molecule inhibitor, pidnarulex55, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and
ovarian cancers.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome56. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue57,58. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS259. Mutations and loss of expression in MMR genes,

Biomarker Descriptions (continued)
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known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25060. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)60. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS61,62,63,64,65. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes58.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer57,58,62,66.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma57,58,67,68. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers67,68.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab31 (2014) and nivolumab69 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab31 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication31. Dostarlimab70 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer63,71. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab72 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location63,73,74. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients74. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors75,76. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers75,76.

STK11 c.290+2_290+3delinsCTT, STK11 p.(D277Rfs*8) c.828_829insC

serine/threonine kinase 11

Background: The STK11 gene, also known as liver kinase B1 (LKB1), encodes the serine/threonine kinase 11 protein. STK11 is a tumor
suppressor with multiple substrates including AMP-activated protein kinase (AMPK) that regulates cell metabolism, growth, and
tumor suppression1. STK11 preserves hematopoietic stem cell homeostasis, and its loss drives metabolic dysfunction and promotes
leukemic progression in myeloproliferative neoplasms via ROS and HIF-1α activation2,3. Germline mutations in STK11 are associated
with Peutz-Jeghers syndrome, an autosomal dominant disorder, characterized by gastrointestinal polyp formation and elevated risk of
neoplastic development4,5.

Alterations and prevalence: Somatic mutations in STK11 are observed in 13% of lung adenocarcinoma, 4% of cervical squamous cell
carcinoma, 3% of cholangiocarcinoma and uterine corpus endometrial carcinoma, and 2% of skin cutaneous melanoma, pancreatic
adenocarcinoma, adrenocortical carcinoma, and esophageal adenocarcinoma6,7,8,9. Mutations in STK11 are found to co-occur with
KEAP1 and KRAS mutations in lung cancer8,9. Copy number deletion leads to inactivation of STK11 in cervical, ovarian, and lung
cancers, among others4,7,8,9,10. Biallelic loss of STK11 is observed in 3% of sarcoma, cervical squamous cell carcinoma, and ovarian
serous cystadenocarcinoma8,9. Alterations in STK11 are also observed in pediatric cancers11. Biallelic loss of STK11 is observed in
6% of B-lymphoblastic leukemia/lymphoma (45 in 731 cases), 2% of leukemia (4 in 250 cases), and less than 1% of Wilms tumor (1 in
136 cases)11. Somatic mutations are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of B-
lymphoblastic leukemia/lymphoma (2 in 252 cases) and glioma (1 in 297 cases)11.

Potential relevance: Currently, no therapies are approved for STK11 aberrations. However, in 2023, the FDA granted fast track
designation to a first-in-class inhibitor of the CoREST complex (Co-repressor of Repressor Element-1 Silencing Transcription),
TNG-26012 in combination with an anti-PD-1 antibody, for advanced non-small cell lung cancer harboring STK11-mutations. The
presence of STK11 mutations may be a mechanism of resistance to immunotherapies. Mutations in STK11 are associated with
reduced expression of PD-L1, which may contribute to the ineffectiveness of anti-PD-1 immunotherapy in STK11 mutant tumors13. In a
phase III clinical trial of nivolumab in lung adenocarcinoma, patients with KRAS and STK11 co-mutations demonstrated a worse (0/6)
objective response rate (ORR) in comparison to patients with KRAS and TP53 co-mutations (4/7) or KRAS mutations only (2/11) (ORR=
0% vs 57.1% vs 18.25%, respectively)14.

Biomarker Descriptions (continued)
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

 

 cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer
 Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
 Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-

based therapy with fluorouracil.
 Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test
 in combination with FOLFIRI for first-line treatment,
 in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
 as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to

irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras
mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)
 in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF

V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
 

KRAS p.(G12D) c.35G>A

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test)
Metastatic Colorectal Cancer (mCRC)*:

 In combination with FOLFOX for first-line treatment.
 As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-

containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*
 In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-

approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination
with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS
mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
 
 

 daraxonrasib

Cancer type: Pancreatic Cancer Variant class: KRAS G12 mutation

Supporting Statement:
The FDA has granted Breakthrough designation to the RAS inhibitor, daraxonrasib, for previously treated metastatic pancreatic
adenocarcinoma (PDAC) in patients with KRAS G12 mutations.

Reference:

https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy
 
 

 GFH-375

Cancer type: Pancreatic Cancer Variant class: KRAS G12D mutation

Supporting Statement:
The FDA has granted Fast Track designation to an oral KRAS G12D (ON/OFF) inhibitor, GFH-375 (VS-7375), for the first-line
treatment of patients with KRAS G12D-mutated locally advanced or metastatic adenocarcinoma of the pancreas (PDAC) and for
the treatment of patients with KRAS G12D-mutated locally advanced or metastatic PDAC who have received at least one prior line
of standard systemic therapy.

Reference:

https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375
 

KRAS p.(G12D) c.35G>A (continued)
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Current NCCN Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

NCCN information is current as of 2025-11-03. To view the most recent and complete version of the guideline, go online to
NCCN.org.
For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific
variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate
for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their
content.

 

 cetuximab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
 
 

 cetuximab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
 
 

 panitumumab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
 

KRAS p.(G12D) c.35G>A
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 panitumumab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
 

KRAS p.(G12D) c.35G>A (continued)

Current EMA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

EMA information is current as of 2025-11-25. For the most up-to-date information, search www.ema.europa.eu.

 

 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf
 
 

 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf
 

KRAS p.(G12D) c.35G>A
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Current ESMO Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

ESMO information is current as of 2025-11-03. For the most up-to-date information, search www.esmo.org.

 

 cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 
 

 panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 

KRAS p.(G12D) c.35G>A

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

avutometinib + defactinib     

bevacizumab + CAPOX     

bevacizumab + FOLFIRI     

bevacizumab + FOLFOX     

bevacizumab + FOLFOXIRI     

ASKC-202, limertinib      (III)

daraxonrasib      (III)

daratumumab, TG-01 (Targovax), QS-21 Stimulon,
nivolumab      (II)

afatinib, selumetinib      (I/II)

almonertinib, palbociclib      (I/II)

anti-KRAS G12D mTCR      (I/II)

ARV-806      (I/II)

DN-022150      (I/II)

ERAS-0015      (I/II)

GFH-375      (I/II)

HRS-4642, SHR-A1904, SHR-1921      (I/II)

pembrolizumab, chemotherapy, daraxonrasib,
RMC-9805      (I/II)

QLC-1101, QL1203, pembrolizumab (Qilu
Pharmaceutical), iparomlimab and tuvonralimab,
chemotherapy

     (I/II)

RNK-08954      (I/II)

TSN-1611      (I/II)

YL-15293      (I/II)

zotatifin      (I/II)

ASP 3082, chemotherapy, pembrolizumab      (I)

ASP-4396      (I)

ASP-5834      (I)

AST-NS2101      (I)

BDTX-4933      (I)

KRAS p.(G12D) c.35G>A

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

BPI-442096      (I)

GDC-7035      (I)

HS-10529      (I)

imatinib, trametinib      (I)

JAB-3312      (I)

KQB-548      (I)

KRAS peptide vaccine, poly-ICLC, nivolumab,
ipilimumab      (I)

KRAS TCR, aldesleukin, SLATE 001, chemotherapy      (I)

Nest-1      (I)

NT-112, AZD-0240      (I)

NW-301D      (I)

PT-0253      (I)

QLC-1101      (I)

RMC-9805, daraxonrasib      (I)

toripalimab, chemotherapy, KRAS peptide vaccine      (I)

KRAS p.(G12D) c.35G>A (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

talazoparib      (II)

tuvusertib, PL-0264      (I)

ATM p.(S2190*) c.6569C>A

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

Not Detected Not Applicable

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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