

Patient Name: 박란규
Gender: Female
Sample ID: N25-365

Primary Tumor Site: lung
Collection Date: 2025.12.19

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Alert Details	5
Relevant Therapy Summary	11

Report Highlights
2 Relevant Biomarkers
2 Therapies Available
41 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	None detected	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	KRAS p.(G12D) c.35G>A	ROS1	None detected
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	1.95 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	KRAS p.(G12D) c.35G>A KRAS proto-oncogene, GTPase Allele Frequency: 19.40% Locus: chr12:25398284 Transcript: NM_033360.4	None*	avutometinib + defactinib ¹ / II+ bevacizumab + chemotherapy ¹	39
IIC	ATM p.(S2190*) c.6569C>A ATM serine/threonine kinase Allele Frequency: 15.37% Locus: chr11:108192144 Transcript: NM_000051.4	None*	None*	2

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, STK11 c.290+2_290+3delinsCTT, STK11 p.(D277Rfs*8) c.828_829insC, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
KRAS	p.(G12D)	c.35G>A	COSM521	chr12:25398284	19.40%	NM_033360.4	missense
ATM	p.(S2190*)	c.6569C>A	.	chr11:108192144	15.37%	NM_000051.4	nonsense
STK11	p.(?)	c.290+2_290+3delinsCTT	.	chr19:1207204	14.10%	NM_000455.5	unknown
STK11	p.(D277Rfs*8)	c.828_829insC	.	chr19:1221304	90.89%	NM_000455.5	frameshift Insertion
NQO1	p.(P187S)	c.559C>T	.	chr16:69745145	50.35%	NM_000903.3	missense
HLA-A	p.([I322F;T323A])	c.964_967delATCAinsTCG	.	chr6:29912345	25.05%	NM_001242758.1	missense, missense
GATA3	p.(S147N)	c.440G>A	.	chr10:8100466	49.07%	NM_001002295.2	missense
CELF2	p.(?)	c.977-2_977-1delinsTA GT	.	chr10:11356100	3.02%	NM_006561.3	unknown
NPAP1	p.(K773N)	c.2319A>C	.	chr15:24923333	1.58%	NM_018958.3	missense
SLC12A1	p.(Y538Nfs*9)	c.1611_1614delATATinsGAATAC	.	chr15:48539584	19.30%	NM_001184832.2	frameshift Block Substitution

Biomarker Descriptions

KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS¹⁵. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{16,17,18}. Germline mutations in KRAS lead to several genetic disorders known as RASopathies, including Noonan syndrome, which results in heart and congenital defects, growth inhibition, and facial dysmorphic features¹⁹. Somatic mutations in KRAS are commonly altered in several cancers including non-small cell lung cancer, pancreatic cancer, and multiple myeloma¹⁹.

Alterations and prevalence: The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{8,20,21}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{9,22}. Somatic mutations in KRAS are observed in 66% of pancreatic adenocarcinoma, 41% of colorectal adenocarcinoma, 30% of lung adenocarcinoma, 19% of uterine corpus endometrial carcinoma, 12% of uterine carcinosarcoma, 9% of stomach adenocarcinoma, 8% of testicular germ cell tumors, 6% of cholangiocarcinoma, 5% of cervical squamous cell carcinoma, acute myeloid leukemia, and diffuse large B-cell lymphoma, 4% of bladder urothelial carcinoma, and 2% of skin cutaneous melanoma and kidney renal papillary cell carcinoma^{8,9}. KRAS is amplified in 9% of ovarian serous cystadenocarcinoma and testicular germ cell tumors, 8% of stomach adenocarcinoma, 7% of esophageal adenocarcinoma and uterine carcinosarcoma, 6% of lung adenocarcinoma, 4% of pancreatic adenocarcinoma and bladder urothelial carcinoma, 3% of lung squamous cell carcinoma, and 2% of sarcoma, mesothelioma, brain lower grade glioma, and uterine corpus endometrial carcinoma^{8,9}. Alterations in KRAS are also observed in pediatric cancers⁹. Somatic mutations in KRAS are observed in 10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of leukemia (29 in 354 cases), and in less than 1% of embryonal tumors (2 in 332 cases), glioma (1 in 297 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system cancers (1 in 1158

Biomarker Descriptions (continued)

cases)⁹. KRAS is amplified in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)⁹. Structural alterations in KRAS are observed in less than 1% of acute lymphoblastic leukemia (1 in 85 cases)⁹.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib²³ (2021) and adagrasib²⁴ (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma²⁵. The FDA has approved the combination of kinase inhibitors, avutometinib and defactinib²⁶ (2025), for the treatment of adult patients with KRAS-mutated recurrent low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036²⁷, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual inhibitor, elironrasib²⁸, and the KRAS G12C inhibitor, D3S-001²⁹, were both granted breakthrough therapy designation (2025) for KRAS G12C-mutated locally advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding KRAS G12C inhibitors. The KRAS-G12C inhibitor, olomorasisib³⁰, was granted breakthrough designation (2025) in combination with pembrolizumab³¹ for unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression $\geq 50\%$. The RAF/MEK clamp, avutometinib³² was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520³³, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib³⁴, was granted breakthrough designation (2025) for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor, GFH-375³⁵, was also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced or metastatic pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-001³⁶, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib³⁷, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab³⁸ and panitumumab³⁹, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)²². Additionally, KRAS mutations are associated with poor prognosis in NSCLC⁴⁰.

ATM p.(S2190*) c.6569C>A

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases (PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)⁴¹. ATM and ATR act as master regulators of DNA damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA (ssDNA) repair⁴². ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB^{42,43}. Upon activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins⁴⁴. ATM is a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAness phenotype, which is characterized by a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss^{45,46}. Germline mutations in ATM often result in Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal instability⁴⁷.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer^{8,9}.

Potential relevance: The PARP inhibitor, olaparib⁴⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib⁴⁹ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes ATM. Consistent with other genes associated with the BRCAness phenotype, ATM mutations may aid in selecting patients likely to respond to PARP inhibitors^{45,50,51}. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer, four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib⁵². However, gene-level analyses from the phase III PROfound trial indicate that ATM-mutated tumors do not experience meaningful radiographic progression-free survival (rPFS) or overall survival (OS) benefit from olaparib, and that the observed survival advantage in the broader HRR-altered population is largely driven by BRCA1/2 alterations rather than ATM^{53,54}. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnaruslex⁵⁵, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁵⁶. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{57,58}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁵⁹. Mutations and loss of expression in MMR genes,

Biomarker Descriptions (continued)

known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁶⁰. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁶⁰. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{61,62,63,64,65}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁵⁸. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{57,58,62,66}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{57,58,67,68}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{67,68}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab³¹ (2014) and nivolumab⁶⁹ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab³¹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication³¹. Dostarlimab⁷⁰ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/ MSI-H advanced or metastatic colon or rectal cancer^{63,71}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁷² (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{63,73,74}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁷⁴. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{75,76}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{75,76}.

STK11 c.290+2_290+3delinsCTT, STK11 p.(D277Rfs*8) c.828_829insC

serine/threonine kinase 11

Background: The STK11 gene, also known as liver kinase B1 (LKB1), encodes the serine/threonine kinase 11 protein. STK11 is a tumor suppressor with multiple substrates including AMP-activated protein kinase (AMPK) that regulates cell metabolism, growth, and tumor suppression¹. STK11 preserves hematopoietic stem cell homeostasis, and its loss drives metabolic dysfunction and promotes leukemic progression in myeloproliferative neoplasms via ROS and HIF-1α activation^{2,3}. Germline mutations in STK11 are associated with Peutz-Jeghers syndrome, an autosomal dominant disorder, characterized by gastrointestinal polyp formation and elevated risk of neoplastic development^{4,5}.

Alterations and prevalence: Somatic mutations in STK11 are observed in 13% of lung adenocarcinoma, 4% of cervical squamous cell carcinoma, 3% of cholangiocarcinoma and uterine corpus endometrial carcinoma, and 2% of skin cutaneous melanoma, pancreatic adenocarcinoma, adrenocortical carcinoma, and esophageal adenocarcinoma^{6,7,8,9}. Mutations in STK11 are found to co-occur with KEAP1 and KRAS mutations in lung cancer^{8,9}. Copy number deletion leads to inactivation of STK11 in cervical, ovarian, and lung cancers, among others^{4,7,8,9,10}. Biallelic loss of STK11 is observed in 3% of sarcoma, cervical squamous cell carcinoma, and ovarian serous cystadenocarcinoma^{8,9}. Alterations in STK11 are also observed in pediatric cancers¹¹. Biallelic loss of STK11 is observed in 6% of B-lymphoblastic leukemia/lymphoma (45 in 731 cases), 2% of leukemia (4 in 250 cases), and less than 1% of Wilms tumor (1 in 136 cases)¹¹. Somatic mutations are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases) and glioma (1 in 297 cases)¹¹.

Potential relevance: Currently, no therapies are approved for STK11 aberrations. However, in 2023, the FDA granted fast track designation to a first-in-class inhibitor of the CoREST complex (Co-repressor of Repressor Element-1 Silencing Transcription), TNG-260¹² in combination with an anti-PD-1 antibody, for advanced non-small cell lung cancer harboring STK11-mutations. The presence of STK11 mutations may be a mechanism of resistance to immunotherapies. Mutations in STK11 are associated with reduced expression of PD-L1, which may contribute to the ineffectiveness of anti-PD-1 immunotherapy in STK11 mutant tumors¹³. In a phase III clinical trial of nivolumab in lung adenocarcinoma, patients with KRAS and STK11 co-mutations demonstrated a worse (0/6) objective response rate (ORR) in comparison to patients with KRAS and TP53 co-mutations (4/7) or KRAS mutations only (2/11) (ORR= 0% vs 57.1% vs 18.25%, respectively)¹⁴.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colorectal Cancer

Label as of: 2021-09-24

Variant class: KRAS G12 mutation

Indications and usage:

Erbxitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-based therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

- in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

KRAS p.(G12D) c.35G>A (continued)

🚫 panitumumab

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

- In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

👉 daraxonrasib

Cancer type: Pancreatic Cancer

Variant class: KRAS G12 mutation

Supporting Statement:

The FDA has granted Breakthrough designation to the RAS inhibitor, daraxonrasib, for previously treated metastatic pancreatic adenocarcinoma (PDAC) in patients with KRAS G12 mutations.

Reference:

<https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy>

🅰 GFH-375

Cancer type: Pancreatic Cancer

Variant class: KRAS G12D mutation

Supporting Statement:

The FDA has granted Fast Track designation to an oral KRAS G12D (ON/OFF) inhibitor, GFH-375 (VS-7375), for the first-line treatment of patients with KRAS G12D-mutated locally advanced or metastatic adenocarcinoma of the pancreas (PDAC) and for the treatment of patients with KRAS G12D-mutated locally advanced or metastatic PDAC who have received at least one prior line of standard systemic therapy.

Reference:

<https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375>

Current NCCN Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

NCCN information is current as of 2025-11-03. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colon Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]

cetuximab

Cancer type: Rectal Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]

panitumumab

Cancer type: Colon Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]

KRAS p.(G12D) c.35G>A (continued)

🚫 panitumumab

Cancer type: Rectal Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]

Current EMA Information

🚫 Contraindicated

🚫 Not recommended

⚠ Resistance

↗ Breakthrough

▲ Fast Track

EMA information is current as of 2025-11-25. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(G12D) c.35G>A

🚫 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

🚫 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer

Label as of: 2025-05-07

Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Current ESMO Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

ESMO information is current as of 2025-11-03. For the most up-to-date information, search www.esmo.org.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colorectal Cancer

Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed".
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); <https://doi.org/10.1016/j.annonc.2022.10.003> (published)]

panitumumab

Cancer type: Colorectal Cancer

Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed".
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); <https://doi.org/10.1016/j.annonc.2022.10.003> (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type
 ○ In other cancer type
 ◐ In this cancer type and other cancer types
 ✗ No evidence

KRAS p.(G12D) c.35G>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
avutometinib + defactinib	○	○	✗	✗	✗
bevacizumab + CAPOX	✗	✗	✗	○	✗
bevacizumab + FOLFIRI	✗	✗	✗	○	✗
bevacizumab + FOLFOX	✗	✗	✗	○	✗
bevacizumab + FOLFOXIRI	✗	✗	✗	○	✗
ASKC-202, limertinib	✗	✗	✗	✗	● (III)
daraxonrasib	✗	✗	✗	✗	● (III)
daratumumab, TG-01 (Targovax), QS-21 Stimulon, nivolumab	✗	✗	✗	✗	● (II)
afatinib, selumetinib	✗	✗	✗	✗	● (I/II)
almonertinib, palbociclib	✗	✗	✗	✗	● (I/II)
anti-KRAS G12D mTCR	✗	✗	✗	✗	● (I/II)
ARV-806	✗	✗	✗	✗	● (I/II)
DN-022150	✗	✗	✗	✗	● (I/II)
ERAS-0015	✗	✗	✗	✗	● (I/II)
GFH-375	✗	✗	✗	✗	● (I/II)
HRS-4642, SHR-A1904, SHR-1921	✗	✗	✗	✗	● (I/II)
pembrolizumab, chemotherapy, daraxonrasib, RMC-9805	✗	✗	✗	✗	● (I/II)
QLC-1101, QL1203, pembrolizumab (Qilu Pharmaceutical), iparomlimab and tuvonalimab, chemotherapy	✗	✗	✗	✗	● (I/II)
RNK-08954	✗	✗	✗	✗	● (I/II)
TSN-1611	✗	✗	✗	✗	● (I/II)
YL-15293	✗	✗	✗	✗	● (I/II)
zotarotin	✗	✗	✗	✗	● (I/II)
ASP 3082, chemotherapy, pembrolizumab	✗	✗	✗	✗	● (I)
ASP-4396	✗	✗	✗	✗	● (I)
ASP-5834	✗	✗	✗	✗	● (I)
AST-NS2101	✗	✗	✗	✗	● (I)
BDTX-4933	✗	✗	✗	✗	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

KRAS p.(G12D) c.35G>A (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
BPI-442096	✖	✖	✖	✖	● (I)
GDC-7035	✖	✖	✖	✖	● (I)
HS-10529	✖	✖	✖	✖	● (I)
imatinib, trametinib	✖	✖	✖	✖	● (I)
JAB-3312	✖	✖	✖	✖	● (I)
KQB-548	✖	✖	✖	✖	● (I)
KRAS peptide vaccine, poly-ICLC, nivolumab, ipilimumab	✖	✖	✖	✖	● (I)
KRAS TCR, aldesleukin, SLATE 001, chemotherapy	✖	✖	✖	✖	● (I)
Nest-1	✖	✖	✖	✖	● (I)
NT-112, AZD-0240	✖	✖	✖	✖	● (I)
NW-301D	✖	✖	✖	✖	● (I)
PT-0253	✖	✖	✖	✖	● (I)
QLC-1101	✖	✖	✖	✖	● (I)
RMC-9805, daraxonrasib	✖	✖	✖	✖	● (I)
toripalimab, chemotherapy, KRAS peptide vaccine	✖	✖	✖	✖	● (I)

ATM p.(S2190*) c.6569C>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
talazoparib	✖	✖	✖	✖	● (II)
tuvusertib, PL-0264	✖	✖	✖	✖	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. Li et al. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). *Oncol. Rep.* 2015 Dec;34(6):2821-6. PMID: 26398719
2. Gan et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. *Nature.* 2010 Dec 2;468(7324):701-4. PMID: 21124456
3. Marinaccio et al. LKB1/ STK11 Is a Tumor Suppressor in the Progression of Myeloproliferative Neoplasms. *Cancer Discov.* 2021 Jun;11(6):1398-1410. PMID: 33579786
4. Zhou et al. LKB1 Tumor Suppressor: Therapeutic Opportunities Knock when LKB1 Is Inactivated. *Genes Dis.* 2014 Sep 1;1(1):64-74. PMID: 25679014
5. Hemminki et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. *Nature.* 1998 Jan 8;391(6663):184-7. PMID: 9428765
6. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
7. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature.* 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Sanchez-Cespedes et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. *Cancer Res.* 2002 Jul 1;62(13):3659-62. PMID: 12097271
11. De Braekeleer et al. ETV6 fusion genes in hematological malignancies: a review. *Leuk. Res.* 2012 Aug;36(8):945-61. PMID: 22578774
12. <https://ir.tangotx.com//news-releases/news-release-details/tango-therapeutics-announces-first-patient-dosed-tng260-phase-12>
13. Koyama et al. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment. *Cancer Res.* 2016 Mar 1;76(5):999-1008. PMID: 26833127
14. Skoulidis et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. *Cancer Discov.* 2018 Jul;8(7):822-835. PMID: 29773717
15. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
16. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. *Nat. Rev. Cancer.* 2011 Oct 13;11(11):761-74. PMID: 21993244
17. Karnoub et al. Ras oncogenes: split personalities. *Nat. Rev. Mol. Cell Biol.* 2008 Jul;9(7):517-31. PMID: 18568040
18. Scott et al. Therapeutic Approaches to RAS Mutation. *Cancer J.* 2016 May-Jun;22(3):165-74. doi: 10.1097/PPO.0000000000000187. PMID: 27341593
19. Johnson et al. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. *Cancer Discov.* 2022 Apr 1;12(4):913-923. PMID: 35373279
20. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. *Mol Cancer.* 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
21. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. *J Med Life.* 2014 Oct-Dec;7(4):581-7. PMID: 25713627
22. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. *J. Clin. Oncol.* 2016 Jan 10;34(2):179-85. PMID: 26438111
23. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/214665Orig1s009correctedlbl.pdf
24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
25. NCCN Guidelines® - NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219616s000lbl.pdf
27. <https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf>
28. <https://ir.revmed.com/node/11881/pdf>
29. <https://www.prnewswire.com/news-releases/d3-bio-inc-announces-fda-breakthrough-therapy-designation-and-orphan-drug-designation-for-d3s-001-for-the-treatment-of-patients-with-kras-g12c-mutated-cancers-302540808.html>
30. <https://www.prnewswire.com/news-releases/lillys-olomorasisib-receives-us-fdas-breakthrough-therapy-designation-for-the-treatment-of-certain-newly-diagnosed-metastatic-kras-g12c-mutant-lung-cancers-302545643.html>

References (continued)

31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
32. <https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination>
33. <https://www.businesswire.com/news/home/20250109170439/en/>
34. <https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy>
35. <https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375>
36. <https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation>
37. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation_-_July_2021.pdf
38. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
39. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
40. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. *N. Engl. J. Med.* 1990 Aug 30;323(9):561-5. PMID: 2199829
41. Maréchal et al. DNA damage sensing by the ATM and ATR kinases. *Cold Spring Harb Perspect Biol.* 2013 Sep 1;5(9). PMID: 24003211
42. Matsuoka et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. *Science.* 2007 May 25;316(5828):1160-6. PMID: 17525332
43. Ditch et al. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. *Trends Biochem. Sci.* 2012 Jan;37(1):15-22. PMID: 22079189
44. Kozlov et al. Autophosphorylation and ATM activation: additional sites add to the complexity. *J. Biol. Chem.* 2011 Mar 18;286(11):9107-19. PMID: 21149446
45. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. *Endocr. Relat. Cancer.* 2016 Jun;23(6):R267-85. PMID: 27226207
46. Lord et al. BRCAness revisited. *Nat. Rev. Cancer.* 2016 Feb;16(2):110-20. PMID: 26775620
47. Cynthia et al. Ataxia telangiectasia: a review. *Orphanet J Rare Dis.* 2016 Nov 25;11(1):159. PMID: 27884168
48. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/208558s031lbl.pdf
49. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/217439s003lbl.pdf
50. Gilardini Montani et al. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. *CR.* PMID: 24252502
51. Pennington et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. *Clin. Cancer Res.* 2014 Feb 1;20(3):764-75. PMID: 24240112
52. Mateo et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. *N. Engl. J. Med.* 2015 Oct 29;373(18):1697-708. PMID: 26510020
53. Naqvi et al. Heterogeneity of the Treatment Effect with PARP Inhibitors in Metastatic Castration-resistant Prostate Cancer: A Living Interactive Systematic Review and Meta-analysis. *Eur Urol.* 2025 Jun;87(6):626-640. PMID: 39848867
54. Evans et al. Exploring the Impact of Treatment Switching on Overall Survival from the PROfound Study in Homologous Recombination Repair (HRR)-Mutated Metastatic Castration-Resistant Prostate Cancer (mCRPC). *Target Oncol.* 2021 Sep;16(5):613-623. PMID: 34478046
55. <https://www.senhwabio.com//en/news/20220125>
56. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
57. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
58. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
59. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
60. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
61. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358

References (continued)

62. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis*. 2008 Apr;29(4):673-80. PMID: 17942460
63. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
64. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers*. 2004;20(4-5):199-206. PMID: 15528785
65. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore)*. 2015 Dec;94(50):e2260. PMID: 26683947
66. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
67. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun*. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
68. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol*. 2017;2017. PMID: 29850653
69. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
70. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
71. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
72. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
73. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
74. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
75. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med*. 2019 Jan 16;9(1). PMID: 30654522
76. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031