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Gene Finding Gene Finding

ALK None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR None detected NTRK3 None detected
ERBB2 None detected RET None detected
KRAS None detected ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 5.75 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC IDH2 p.(R172M) c.515G>T

isocitrate dehydrogenase (NADP(+)) 2,
mitochondrial
Allele Frequency: 4.90%
Locus: chr15:90631838
Transcript: NM_002168.4

None* vorasidenib 1, 2 / II+ 0

  
IIC BRCA2 deletion

BRCA2, DNA repair associated
Locus: chr13:32890491

None* niraparib II+

olaparib II+

rucaparib II+

2

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
MAP2K1 p.(Q56P) c.167A>C, Microsatellite stable, TP53 p.(I195F) c.583A>T, ERAP2 deletion, HLA-A deletion, HLA-B
deletion, Tumor Mutational Burden

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

IDH2 p.(R172M) c.515G>T COSM33732 chr15:90631838 4.90% NM_002168.4 missense

MAP2K1 p.(Q56P) c.167A>C COSM1235481 chr15:66727451 9.58% NM_002755.4 missense

TP53 p.(I195F) c.583A>T COSM44633 chr17:7578266 6.57% NM_000546.6 missense

KCNA10 p.(F122I) c.364T>A . chr1:111061046 8.81% NM_005549.2 missense

DNMT3A p.(?) c.2597+2T>C . chr2:25458574 2.55% NM_022552.5 unknown

BARD1 p.(K754N) c.2262A>T . chr2:215593472 8.94% NM_000465.4 missense

KIT p.(S929*) c.2786C>G . chr4:55603430 50.83% NM_000222.3 nonsense

MAML3 p.(Q488_Q494delinsHD
S)

c.1455_1506delACAGC
AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACACG
ACAGCCAGCAGCAGC
AGCAGCAGCAGCAA

. chr4:140811084 2.84% NM_018717.5 nonframeshift
Block
Substitution

MAML3 p.(Q491Pfs*32) c.1455_1506delACAGC
AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACAGC
AACAGCCAGCAGCAG
CAGCAGCAGCAGCAA

. chr4:140811084 96.21% NM_018717.5 frameshift Block
Substitution

FAT1 p.(D513G) c.1538A>G . chr4:187629444 2.35% NM_005245.4 missense

HCN1 p.(G79E) c.236G>A . chr5:45695960 12.22% NM_021072.4 missense

KEAP1 p.(P492S) c.1474C>T . chr19:10600381 14.50% NM_203500.2 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

BRCA2 chr13:32890491 1 0.95

ERAP2 chr5:96219500 0 0.48

HLA-A chr6:29910229 0 0.43

HLA-B chr6:31322252 0 0.54

Copy Number Variations

 

Variant Details

 
IDH2 p.(R172M) c.515G>T

isocitrate dehydrogenase (NADP(+)) 2, mitochondrial

Background: The IDH1 and IDH2 genes encode homologous isocitrate dehydrogenase enzymes that catalyze the conversion of
isocitrate to α-ketoglutarate (α-KG)106. The IDH1 gene encodes the NADP+ dependent cytoplasmic isocitrate dehydrogenase enzyme;
IDH2 encodes the mitochondrial isoform106.

Alterations and prevalence: Recurrent somatic mutations in IDH1 and IDH2 are mutually exclusive and observed in several
malignancies, including glioma, chondrosarcoma, intrahepatic cholangiocarcinoma, acute myeloid leukemia (AML), and
myelodysplastic syndrome (MDS)107. Recurrent IDH2 variants include predominantly R140Q, R172K, and other substitutions at lower

Biomarker Descriptions

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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frequencies108. These gain-of-function variants confer neomorphic enzyme activity109. Although wild-type enzymatic activity is ablated,
recurrent IDH2 variants catalyze the conversion of α-KG to D-2-hydroxyglutarate, an oncometabolite with diverse effects on cellular
metabolism, epigenetic regulation, redox states, and DNA repair106,110. Recurrent IDH2 mutations are present in 10-20% of patients with
AML and 5% of patients with MDS111,112,113. Alterations in IDH2 are rare in pediatric cancers8,9. Somatic mutations in IDH2 are observed
in 1% of leukemia (4 in 311 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (1 in 297 cases),
and bone cancer (1 in 327 cases)8,9.

Potential relevance: The IDH1 and IDH2 inhibitor vorasidenib114 is FDA-approved (2024) for the treatment of adults and children with
Grade 2 astrocytoma or oligodendroglioma with IDH2 R172G/K/M/S/W mutations. Enasidenib115 is FDA-approved (2017) for the
treatment of AML patients with IDH2 R140G/L/Q/W and R172G/K/M/S/W mutations. Acquired resistance to enasidenib in AML has
been linked to the emergence of Q316E or I319M mutations116. IDH2 mutations are associated with a favorable outcome in lower-
grade gliomas, astrocytoma, and oligodendroglioma with 1p/19 codeletion117,118. IDH2 R172 and R140Q mutations are associated
with poor risk in MDS27,119. IDH2 mutations are associated with inferior overall survival in polycythemia vera (PV) and essential
thrombocythemia (ET), as well as inferior leukemia-free survival in primary myelofibrosis (PMF)120,121. Mutations in IDH2 are diagnostic
of IDH-mutated astrocytoma and oligodendroglioma with 1p/19q-codeletion subtypes of central nervous system (CNS) tumors25,117.

BRCA2 deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered
as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function
and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged
DNA55,56. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and
compromise genome integrity55,56. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast
and ovarian cancer and in men for breast and prostate cancer57,58,59. For individuals diagnosed with inherited pathogenic or likely
pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian
cancer by 70 years was 20-48%57,60.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian
cancer, 5-10% of breast cancer, and 1-4% of prostate cancer61,62,63,64,65,66,67,68. Somatic alterations in BRCA2 are observed in 5-15% of
uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, stomach adenocarcinoma, colorectal
adenocarcinoma, lung squamous cell carcinoma, lung adenocarcinoma, and uterine carcinosarcoma, 3-4% of cervical squamous
cell carcinoma, head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma,
cholangiocarcinoma, breast invasive carcinoma, renal papillary cell carcinoma, and 2% of renal clear cell carcinoma, hepatocellular
carcinoma, thymoma, prostate adenocarcinoma, sarcoma, and glioblastoma multiforme8,9.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity
to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)69. Inhibitors targeting
PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells70,71. Consequently, several PARP inhibitors have
been FDA approved for BRCA1/2-mutated cancers. Olaparib72 (2014) was the first PARPi to be approved by the FDA for BRCA1/2
aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment
of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary
peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with
gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib72 is approved
(2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic
mutations in HRR genes that includes BRCA2. Rucaparib73 is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and
ovarian cancer. Talazoparib74 (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast
cancer. Additionally, talazoparib74 in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes
that includes BRCA2. Niraparib75 (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary
peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib in combination with abiraterone acetate76

received FDA approval (2023) for the treatment of deleterious or suspected deleterious BRCA-mutated (BRCAm) mCRPC. In 2019,
niraparib77 received breakthrough designation for the treatment of patients with BRCA1/2 gene-mutated mCRPC who have received
prior taxane chemotherapy and androgen receptor (AR)-targeted therapy. Despite tolerability and efficacy, acquired resistance to
PARP inhibition has been clinically reported78. One of the most common mechanisms of resistance includes secondary intragenic
mutations that restore BRCA1/2 functionality79. In addition to PARP inhibitors, other drugs which promote synthetic lethality have
been investigated for BRCA mutations. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex80,
for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi,
pidnarulex promotes synthetic lethality but through an alternative mechanism which involves stabilization of G-quadruplexes at the
replication fork leading to DNA breaks and genomic instability.

Biomarker Descriptions (continued)
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MAP2K1 p.(Q56P) c.167A>C

mitogen-activated protein kinase kinase 1

Background: The MAP2K1 gene encodes the mitogen-activated protein kinase kinase 1, also known as MEK11. MAP2K1 is a member
of the mitogen-activated protein kinase 2 (MAP2K) subfamily which also includes MAP2K2, MAP2K3, MAP2K4, MAP2K5, and
MAP2K681. MAP2K1 is involved in the ERK1/2 signaling pathway along with MAPK1, MAPK3, MAP2K2, BRAF, and RAF181,82. Activation
of MAPK proteins occurs through a kinase signaling cascade81,83,84. Specifically, MAP3Ks are responsible for phosphorylation of
MAP2K family members81,83,84. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose
signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation81,83,84. MAP2K1 and
MAP2K2 are 80% homologous, with 90% amino acid identity shared by their kinase domains85.

Alterations and prevalence: MAP2K1 is activated by both gene amplification and somatic mutations. MAP2K1 mutations are found
in 5-7% of melanoma, 4% of diffuse large B-cell lymphoma (DLBCL), 3% of uterine cancer and cholangiocarcinoma, and 1% of non-
small cell lung cancer (NSCLC) associated with smoking8,9,86,87. The most common recurrent somatic mutations occur in the negative
regulatory region at the F53, Q56, and K57 positions, and in the kinase domain positions P124 and E20388,89. Amplifications occur
in 4% of mesothelioma, and 2% of pancreatic and ovarian cancers8,9,90,91. Alterations in MAP2K1 are also observed in the pediatric
population9. Somatic mutations are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases), Hodgkin lymphoma (1
in 61 cases), and less than 1% of glioma (2 in 297 cases), bone cancer (1 in 327 cases), and peripheral nervous system cancers (1 in
1158 cases)9. Amplification of MAP2K1 is observed in less than 1% of Wilms tumor (1 in 136 cases), leukemia (1 in 250 cases), and B-
lymphoblastic leukemia/lymphoma (2 in 731 cases)9.

Potential relevance: Since MEK1 is positioned downstream of BRAF and is known to form a high-affinity complex with BRAF, MEK
inhibitors have demonstrated efficacy in cancers harboring BRAF mutations92. Several MEK inhibitors have been approved alone
or in combination with BRAF inhibitors, including trametinib93 (2013) alone or in combination with dabrafenib in BRAF V600E/K
mutant melanoma and BRAF V600E mutant NSCLC, cobimetinib94 (2018) in combination with vemurafenib in BRAF V600E/K mutant
melanoma, and binimetinib95 (2018) in combination with encorafenib in BRAF V600E/K mutant melanoma. MEK inhibitors, cobimetinib
and trametinib, have also shown efficacy in treating MAPK-mutated histiocytic neoplasms, including Langerhans cell histiocytosis
(LCH), Erdheim-Chester disease (ECD), and Rosai-Dorfman disease (RDD)96,97,98,99,100,101. LCH patients harboring MAP2K1 K57_G61del
and E102_I103del mutations exhibit positive responses to trametinib98,99,100. ECD patients with MAP2K1 P105_I107del and Q56P
mutations respond to cobimetinib, with the Q56P mutation also showing sensitivity to trametinib97,101. Trametinib is effective in mixed
histiocytosis ECD/RDD patients with K57N and F53L mutations97. In mixed histiocytosis ECD/LCH patients, the C121S mutation is
responsive to trametinib, whereas the P124L mutation is responsive to cobimetinib97,101. Although MAP2K1 mutations occur at multiple
sites throughout the gene, recent studies have suggested that allele-specific mutations can be categorized based on mechanisms of
activation, with one group leading to MEK inhibitor unresponsiveness due to RAF and phosphorylation-independent mechanisms102.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome33. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue34,35. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS236. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25037. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)37. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS38,39,40,41,42. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes35.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer34,35,39,43.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma34,35,44,45. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers44,45.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab46 (2014) and nivolumab47 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab46 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication46. Dostarlimab48 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/

Biomarker Descriptions (continued)
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MSI-H advanced or metastatic colon or rectal cancer40,49. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab50 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location40,51,52. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients52. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors53,54. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers53,54.

TP53 p.(I195F) c.583A>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis10. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential11. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers12,13.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)8,9,14,15,16,17. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,9. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes18,19,20,21. Alterations in TP53 are also
observed in pediatric cancers8,9. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)8,9. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)8,9.

Potential relevance: The small molecule p53 reactivator, PC1458622 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation23,24. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma25. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)26,27,28,29,30. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant31. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system32.

ERAP2 deletion

endoplasmic reticulum aminopeptidase 2

Background: The ERAP2 gene encodes the endoplasmic reticulum aminopeptidase 2 protein. ERAP2, and structurally related ERAP1,
are zinc metallopeptidases which play a role in antigen processing within the immune response pathway103,104. Upon uptake by an
immune cell, antigens are first processed by the proteasome and then transported into the endoplasmic reticulum where ERAP1 and
ERAP2 excise peptide N-terminal extensions to generate mature antigen peptides for presentation on MHC class I molecules103,105.
The polymorphic variability in ERAP2 is hypothesized to affect the severity of cytotoxic responses to transformed cells and potentially
influence their chances to gain mutations that evade the immune system and become tumorigenic103.

Alterations and prevalence: Somatic mutations in ERAP2 are observed in 7% of uterine corpus endometrial carcinoma and skin
cutaneous melanoma, and 2% of colorectal adenocarcinoma, uterine carcinosarcoma, head and neck squamous cell carcinoma, and
stomach adenocarcinoma8,9. Deletions are observed in 2% of ovarian serous cystadenocarcinoma, prostate adenocarcinoma, and 1%
of colorectal adenocarcinoma, mesothelioma, esophageal adenocarcinoma, and lung squamous cell carcinoma8,9.

Potential relevance: Currently, no therapies are approved for ERAP2 aberrations.
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HLA-A deletion

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self4,5,6. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-A7.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical
squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus
endometrial carcinoma and stomach adenocarcinoma8,9. Biallelic loss of HLA-A is observed in 4% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self4,5,6. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B7.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma8,9. Biallelic loss of HLA-
B is observed in 5% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Biomarker Descriptions (continued)

 

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

vorasidenib     

IDH2 p.(R172M) c.515G>T

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

niraparib     

rucaparib     

pamiparib, tislelizumab      (II)

BRCA2 deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 11.88%
BRCA2 CNV, CN:1.0
BRCA2 LOH, 13q13.1(32890491-32972932)x1
BARD1 SNV, K754N, AF:0.09

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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