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Gene Finding Gene Finding

BRAF None detected KRAS KRAS p.(G12D) c.35G>A
BRCA1 None detected NRG1 None detected
BRCA2 None detected NTRK1 None detected
ERBB2 None detected NTRK2 None detected
FGFR1 None detected NTRK3 None detected
FGFR2 None detected PALB2 None detected
FGFR3 None detected RET None detected

Genomic Alteration Finding

Tumor Mutational Burden 5.75 Mut/Mb measured

Relevant Pancreatic Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase
Allele Frequency: 38.31%
Locus: chr12:25398284
Transcript: NM_033360.4

None* avutometinib + defactinib 1 / II+

bevacizumab + chemotherapy I
42

  
IIC MTAP deletion

methylthioadenosine phosphorylase
Locus: chr9:21802646

None* None* 16

  
IIC CDKN2A deletion

cyclin dependent kinase inhibitor 2A
Locus: chr9:21968178

None* None* 5

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 
  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

KRAS p.(G12D) c.35G>A  daraxonrasib 1

 GFH-375 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources
Microsatellite stable, TP53 p.(V216M) c.646G>A, UGT1A1 p.(G71R) c.211G>A, TBX3 deletion, NQO1 p.(P187S) c.559C>T,
DSC1 deletion, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

KRAS p.(G12D) c.35G>A COSM521 chr12:25398284 38.31% NM_033360.4 missense

TP53 p.(V216M) c.646G>A COSM10667 chr17:7578203 31.06% NM_000546.6 missense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 49.22% NM_000463.3 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 55.88% NM_000903.3 missense

MCL1 p.(*351W) c.1052A>G . chr1:150549852 18.20% NM_021960.5 stoploss

MSH3 p.(A61_P63dup) c.189_190insGCAGCG
CCC

. chr5:79950735 58.70% NM_002439.5 nonframeshift
Insertion

PTCH1 p.(R294H) c.881G>A . chr9:98242736 2.60% NM_000264.5 missense

MEN1 p.(S66G) c.196A>G . chr11:64577386 52.20% NM_000244.3 missense

TBC1D10C p.(P193S) c.577C>T . chr11:67173483 49.30% NM_198517.4 missense

AXIN2 p.(L250M) c.748T>A . chr17:63553991 34.92% NM_004655.4 missense

MAP2K6 p.(I39L) c.115A>C . chr17:67513027 63.18% NM_002758.4 missense

RBM10 p.(N728S) c.2183A>G . chrX:47044491 36.58% NM_001204468.1 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

MTAP chr9:21802646 0.1 0.62

CDKN2A chr9:21968178 0 0.33

TBX3 chr12:115109599 0.13 0.62

DSC1 chr18:28710424 0 0.53

RECQL4 chr8:145736758 7.73 2.15

CD276 chr15:73991923 0.3 0.66

Copy Number Variations

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS
superfamily which also includes NRAS and HRAS1. RAS proteins mediate the transmission of growth signals from the cell surface to
the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival2,3,4.
Germline mutations in KRAS lead to several genetic disorders known as RASopathies, including Noonan syndrome, which results in
heart and congenital defects, growth inhibition, and facial dysmorphic features5. Somatic mutations in KRAS are commonly altered in
several cancers including non-small cell lung cancer, pancreatic cancer, and multiple myeloma5.

Alterations and prevalence: The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q616,7,8.
Mutations at A59, K117, and A146 have also been observed but are less frequent9,10. Somatic mutations in KRAS are observed
in 66% of pancreatic adenocarcinoma, 41% of colorectal adenocarcinoma, 30% of lung adenocarcinoma, 19% of uterine corpus
endometrial carcinoma, 12% of uterine carcinosarcoma, 9% of stomach adenocarcinoma, 8% of testicular germ cell tumors, 6% of
cholangiocarcinoma, 5% of cervical squamous cell carcinoma, acute myeloid leukemia, and diffuse large B-cell lymphoma, 4% of
bladder urothelial carcinoma, and 2% of skin cutaneous melanoma and kidney renal papillary cell carcinoma6,9. KRAS is amplified
in 9% of ovarian serous cystadenocarcinoma and testicular germ cell tumors, 8% of stomach adenocarcinoma , 7% of esophageal
adenocarcinoma and uterine carcinosarcoma, 6% of lung adenocarcinoma, 4% of pancreatic adenocarcinoma and bladder urothelial
carcinoma, 3% of lung squamous cell carcinoma, and 2% of sarcoma, mesothelioma, brain lower grade glioma, and uterine corpus
endometrial carcinoma6,9. Alterations in KRAS are also observed in pediatric cancers9. Somatic mutations in KRAS are observed in
10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of leukemia (29 in 354 cases), and in less than 1% of embryonal
tumors (2 in 332 cases), glioma (1 in 297 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system cancers (1 in 1158
cases)9. KRAS is amplified in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)9. Structural alterations in KRAS are
observed in less than 1% of acute lymphoblastic leukemia (1 in 85 cases)9.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib11 (2021) and adagrasib12 (2022), for the treatment
of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and
adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma13. The FDA has approved
the combination of kinase inhibitors, avutometinib and defactinib14 (2025), for the treatment of adult patients with KRAS-mutated
recurrent low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy
designation (2022) to the KRAS G12C inhibitor, GDC-603615, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual
inhibitor, elironrasib16, and the KRAS G12C inhibitor, D3S-00117, were both granted breakthrough therapy designation (2025) for KRAS
G12C-mutated locally advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding
KRAS G12C inhibitors. The KRAS-G12C inhibitor, olomorasib18, was granted breakthrough designation (2025) in combination with
pembrolizumab19 for unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression ≥ 50%. The RAF/
MEK clamp, avutometinib20 was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated
metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been previously treated with a
KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-852021, was granted fast track designation in 2025 for previously treated KRAS
G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib22, was granted breakthrough designation (2025)
for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor, GFH-37523, was
also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced or metastatic
pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-00124, was granted fast track designation in 2024 for KRAS G12C-mutated
patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib25, was granted fast track
designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic
colorectal cancer (mCRC). The EGFR antagonists, cetuximab26 and panitumumab27, are contraindicated for treatment of colorectal
cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)10.
Additionally, KRAS mutations are associated with poor prognosis in NSCLC28.

MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase1. Methylthioadenosine phosphorylase, a key enzyme in
polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine
(MTA) to adenine and 5-methylthioribose-1-phosphate84,85. Loss of MTAP function is commonly observed in cancer due to deletion
or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis
inhibitors and to methionine deprivation85.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be co-
deleted with CDKN2A in numerous solid and hematological cancers85,86. Consequently, biallelic loss of MTAP has been observed in
42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21%
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of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell
lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma,
stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma,
adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma6,9. Somatic mutations in MTAP have been found in 3% of
uterine corpus endometrial carcinoma6,9.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression1. CDKN2A,
also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)87. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb88,89,90. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both
of which exhibit differential tumor suppressor functions91. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and
CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation1,91,92. CDKN2A
aberrations commonly co-occur with CDKN2B87. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways,
leading to uncontrolled cell proliferation93. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and
pancreatic cancer94,95.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number
loss, truncating, or missense mutations96. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell
carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of
esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach
adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma6,9. Biallelic
deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32%
of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic
adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and
cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical
carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma,
3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney
chromophobe6,9. Alterations in CDKN2A are also observed in pediatric cancers9. Biallelic deletion of CDKN2A is observed in 68% of
T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of
embryonal tumors9. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic
leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)9.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary
diagnostic markers of malignant peripheral nerve sheath tumors97,98,99. Additionally, deletion of CDKN2B is a molecular marker used in
staging Grade 4 pediatric IDH-mutant astrocytoma100. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A
LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib101,102,103. Alternatively,
CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme104. CDKN2A (p16)
expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive
head and neck cancer105,106,107,108.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome63. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue64,65. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS266. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25067. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)67. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS68,69,70,71,72. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes65.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer64,65,69,73.

Biomarker Descriptions (continued)
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Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma64,65,74,75. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers74,75.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab19 (2014) and nivolumab76 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab19 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication19. Dostarlimab77 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer70,78. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab79 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location70,80,81. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients81. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors82,83. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers82,83.

TP53 p.(V216M) c.646G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis34. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential35. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers36,37.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)6,9,38,39,40,41. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2826,9. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes42,43,44,45. Alterations in TP53 are also
observed in pediatric cancers6,9. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)6,9. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)6,9.

Potential relevance: The small molecule p53 reactivator, PC1458646 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation47,48. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma49. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)50,51,52,53,54. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant55. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system56.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily1,109. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites109,110. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance111. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
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drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation111,112,113,114. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-38115.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma6,9.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

TBX3 deletion

T-box 3

Background: TBX3 encodes T-box transcription factor 3 and belongs to the T-box family of transcription factors which also include
TBX1 and TBX21,57,58. T-box family of transcription factors are involved in developmental processes such as embryogenesis and
organogenesis1,57,58,59. Deregulation of TBX3 has been observed in several cancer types, including breast cancer, cervical cancer,
colorectal cancer, gastric cancer, melanoma, ovarian cancer, pancreatic cancer, and prostate cancer, and has been suggested to
promote tumorigenesis and invasiveness through involvement in several oncogenic pathways59,60,61,62.

Alterations and prevalence: Somatic mutations in TBX3 are observed in 5% of uterine corpus endometrial carcinoma, 4% of
colorectal adenocarcinoma, 3% of breast invasive carcinoma, cholangiocarcinoma, and skin cutaneous melanoma, and 2% of
lung adenocarcinoma, diffuse large B-cell lymphoma, bladder urothelial carcinoma, lung squamous cell carcinoma, stomach
adenocarcinoma, and cervical squamous cell carcinoma6,9. Amplification of TBX3 is found in 2% of adrenocortical carcinoma, bladder
urothelial carcinoma, and uterine carcinosarcoma6,9. Biallelic loss of TBX3 is observed in 1% of prostate adenocarcinoma and brain
lower grade glioma6,9.

Potential relevance: Currently, no therapies are approved for TBX3 aberrations.

DSC1 deletion

desmocollin 1

Background: The DSC1 gene encodes desmocollin 1, a member of the desmocollin (DSC) subfamily of the cadherin superfamily,
which also includes DSC2 and DSC31. DSCs along with desmogleins (DSGs) function as membrane-spanning constituents of the
desmosomes29. Desmosomes are protein complexes in the intracellular junctions that confer stability and strengthen cell-cell
adhesion30. Deregulation of DSC expression is suggested to impact β-catenin signaling and has been observed in a number of cancer
types, supporting a potential role for DSC1 in tumorigenesis29,31,32,33.

Alterations and prevalence: Somatic mutations in DSC1 are observed in 17% of skin cutaneous melanoma, 8% of uterine corpus
endometrial carcinoma, 4% of uterine carcinosarcoma, and 3% of lung adenocarcinoma, lung squamous cell carcinoma, and colorectal
adenocarcinoma6,9. Biallelic deletion of DSC1 is observed in 2% of pancreatic adenocarcinoma and esophageal adenocarcinoma6,9.

Potential relevance: Currently, no therapies are approved for DSC1 aberrations.
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

 

 cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer
 Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
 Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-

based therapy with fluorouracil.
 Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test
 in combination with FOLFIRI for first-line treatment,
 in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
 as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to

irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras
mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)
 in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF

V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
 

KRAS p.(G12D) c.35G>A
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 panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test)
Metastatic Colorectal Cancer (mCRC)*:

 In combination with FOLFOX for first-line treatment.
 As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-

containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*
 In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-

approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination
with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS
mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
 
 

 daraxonrasib

Cancer type: Pancreatic Cancer Variant class: KRAS G12 mutation

Supporting Statement:
The FDA has granted Breakthrough designation to the RAS inhibitor, daraxonrasib, for previously treated metastatic pancreatic
adenocarcinoma (PDAC) in patients with KRAS G12 mutations.

Reference:

https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy
 
 

 GFH-375

Cancer type: Pancreatic Cancer Variant class: KRAS G12D mutation

Supporting Statement:
The FDA has granted Fast Track designation to an oral KRAS G12D (ON/OFF) inhibitor, GFH-375 (VS-7375), for the first-line
treatment of patients with KRAS G12D-mutated locally advanced or metastatic adenocarcinoma of the pancreas (PDAC) and for
the treatment of patients with KRAS G12D-mutated locally advanced or metastatic PDAC who have received at least one prior line
of standard systemic therapy.

Reference:

https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375
 

KRAS p.(G12D) c.35G>A (continued)

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Current NCCN Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

NCCN information is current as of 2025-11-03. To view the most recent and complete version of the guideline, go online to
NCCN.org.
For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific
variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate
for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their
content.

 

 cetuximab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
 
 

 cetuximab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
 
 

 panitumumab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
 

KRAS p.(G12D) c.35G>A

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 panitumumab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
 

KRAS p.(G12D) c.35G>A (continued)

Current EMA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

EMA information is current as of 2025-11-25. For the most up-to-date information, search www.ema.europa.eu.

 

 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf
 
 

 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf
 

KRAS p.(G12D) c.35G>A

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Current ESMO Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

ESMO information is current as of 2025-11-03. For the most up-to-date information, search www.esmo.org.

 

 cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 
 

 panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 

KRAS p.(G12D) c.35G>A

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

avutometinib + defactinib     

bevacizumab + CAPOX     

bevacizumab + FOLFIRI     

bevacizumab + FOLFOX     

bevacizumab + FOLFOXIRI     

daraxonrasib      (III)

daratumumab, TG-01 (Targovax), QS-21 Stimulon,
nivolumab      (II)

HRS-4642, chemotherapy      (II)

HRS-4642, nimotuzumab, chemotherapy      (II)

almonertinib, palbociclib      (I/II)

ANOC-003, chemotherapy      (I/II)

anti-KRAS G12D mTCR      (I/II)

ARV-806      (I/II)

DN-022150      (I/II)

ERAS-0015      (I/II)

GFH-375      (I/II)

GFH-375, chemotherapy, pembrolizumab      (I/II)

HRS-4642, nimotuzumab      (I/II)

HRS-4642, SHR-A1904, SHR-1921      (I/II)

QLC-1101, QL1203, pembrolizumab (Qilu
Pharmaceutical), iparomlimab and tuvonralimab,
chemotherapy

     (I/II)

RNK-08954      (I/II)

TNG-462, RMC-9805, daraxonrasib      (I/II)

TSN-1611      (I/II)

YL-15293      (I/II)

ASP 3082, chemotherapy      (I)

ASP-4396      (I)

ASP-5834      (I)

AST-NS2101      (I)

KRAS p.(G12D) c.35G>A

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

ATP-150, ATP-152, VSV-GP-154, ezabenlimab,
ATP-162      (I)

BPI-442096      (I)

GDC-7035      (I)

HS-10529      (I)

imatinib, trametinib      (I)

IX-001      (I)

JAB-3312      (I)

KQB-548      (I)

KRAS TCR, aldesleukin, SLATE 001, chemotherapy      (I)

Nest-1      (I)

NT-112, AZD-0240      (I)

NW-301D      (I)

PT-0253      (I)

QLC-1101      (I)

RMC-9805, daraxonrasib      (I)

TCR-T cell therapy, aldesleukin, chemotherapy      (I)

toripalimab, chemotherapy, KRAS peptide vaccine      (I)

ZEN-3694, binimetinib      (I)

KRAS p.(G12D) c.35G>A (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

MRTX-1719, chemotherapy      (II/III)

AMG 193      (I/II)

CTS-3497      (I/II)

IDE397      (I/II)

PH020-803      (I/II)

TNG-456, abemaciclib      (I/II)

TNG-462      (I/II)

TNG-462, RMC-9805, daraxonrasib      (I/II)

MTAP deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

ABSK-131      (I)

GH-56      (I)

GTA-182      (I)

HSK-41959      (I)

ISM-3412      (I)

MRTX-1719      (I)

S-095035, TNG-462      (I)

SYH-2039      (I)

MTAP deletion (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib      (II)

palbociclib, abemaciclib      (II)

AMG 193      (I/II)

ABSK-131      (I)

CID-078      (I)

CDKN2A deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

Not Detected Not Applicable

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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