

Patient Name: 김길중
 Gender: F
 Sample ID: N25-357

Primary Tumor Site: pancreas
 Collection Date: 2025.02.07

Sample Cancer Type: Pancreatic Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	7
Relevant Therapy Summary	13

Report Highlights
 3 Relevant Biomarkers
 2 Therapies Available
 60 Clinical Trials

Relevant Pancreatic Cancer Findings

Gene	Finding	Gene	Finding
BRAF	None detected	KRAS	KRAS p.(G12D) c.35G>A
BRCA1	None detected	NRG1	None detected
BRCA2	None detected	NTRK1	None detected
ERBB2	None detected	NTRK2	None detected
FGFR1	None detected	NTRK3	None detected
FGFR2	None detected	PALB2	None detected
FGFR3	None detected	RET	None detected

Genomic Alteration	Finding
Tumor Mutational Burden	5.75 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	KRAS p.(G12D) c.35G>A KRAS proto-oncogene, GTPase Allele Frequency: 38.31% Locus: chr12:25398284 Transcript: NM_033360.4	None*	avutometinib + defactinib ^{1 / II+} bevacizumab + chemotherapy ¹	42
IIC	MTAP deletion methylthioadenosine phosphorylase Locus: chr9:21802646	None*	None*	16
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	5

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

Relevant Biomarkers (continued)

⚠ Alerts informed by public data sources: ∅ Contraindicated, ⚠ Resistance, ↗ Breakthrough, ⚠ Fast Track

KRAS *p.(G12D)* *c.35G>A*

↗ **daraxonrasib**¹

⚠ **GFH-375**¹

Public data sources included in alerts: FDA¹, NCCN, EMA², ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

*Microsatellite stable, TP53 *p.(V216M)* *c.646G>A*, UGT1A1 *p.(G71R)* *c.211G>A*, TBX3 deletion, NQO1 *p.(P187S)* *c.559C>T*, DSC1 deletion, Tumor Mutational Burden*

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
KRAS	<i>p.(G12D)</i>	<i>c.35G>A</i>	COSM521	chr12:25398284	38.31%	NM_033360.4	missense
TP53	<i>p.(V216M)</i>	<i>c.646G>A</i>	COSM10667	chr17:7578203	31.06%	NM_000546.6	missense
UGT1A1	<i>p.(G71R)</i>	<i>c.211G>A</i>	COSM4415616	chr2:234669144	49.22%	NM_000463.3	missense
NQO1	<i>p.(P187S)</i>	<i>c.559C>T</i>	.	chr16:69745145	55.88%	NM_000903.3	missense
MCL1	<i>p.(*351W)</i>	<i>c.1052A>G</i>	.	chr1:150549852	18.20%	NM_021960.5	stoploss
MSH3	<i>p.(A61_P63dup)</i>	<i>c.189_190insGCAGCG</i> CCC	.	chr5:79950735	58.70%	NM_002439.5	nonframeshift Insertion
PTCH1	<i>p.(R294H)</i>	<i>c.881G>A</i>	.	chr9:98242736	2.60%	NM_000264.5	missense
MEN1	<i>p.(S66G)</i>	<i>c.196A>G</i>	.	chr11:64577386	52.20%	NM_000244.3	missense
TBC1D10C	<i>p.(P193S)</i>	<i>c.577C>T</i>	.	chr11:67173483	49.30%	NM_198517.4	missense
AXIN2	<i>p.(L250M)</i>	<i>c.748T>A</i>	.	chr17:63553991	34.92%	NM_004655.4	missense
MAP2K6	<i>p.(I39L)</i>	<i>c.115A>C</i>	.	chr17:67513027	63.18%	NM_002758.4	missense
RBM10	<i>p.(N728S)</i>	<i>c.2183A>G</i>	.	chrX:47044491	36.58%	NM_001204468.1	missense

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
MTAP	chr9:21802646	0.1	0.62
CDKN2A	chr9:21968178	0	0.33
TBX3	chr12:115109599	0.13	0.62
DSC1	chr18:28710424	0	0.53
RECQL4	chr8:145736758	7.73	2.15
CD276	chr15:73991923	0.3	0.66

Biomarker Descriptions

KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS¹. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{2,3,4}. Germline mutations in KRAS lead to several genetic disorders known as RASopathies, including Noonan syndrome, which results in heart and congenital defects, growth inhibition, and facial dysmorphic features⁵. Somatic mutations in KRAS are commonly altered in several cancers including non-small cell lung cancer, pancreatic cancer, and multiple myeloma⁵.

Alterations and prevalence: The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{6,7,8}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{9,10}. Somatic mutations in KRAS are observed in 66% of pancreatic adenocarcinoma, 41% of colorectal adenocarcinoma, 30% of lung adenocarcinoma, 19% of uterine corpus endometrial carcinoma, 12% of uterine carcinosarcoma, 9% of stomach adenocarcinoma, 8% of testicular germ cell tumors, 6% of cholangiocarcinoma, 5% of cervical squamous cell carcinoma, acute myeloid leukemia, and diffuse large B-cell lymphoma, 4% of bladder urothelial carcinoma, and 2% of skin cutaneous melanoma and kidney renal papillary cell carcinoma^{6,9}. KRAS is amplified in 9% of ovarian serous cystadenocarcinoma and testicular germ cell tumors, 8% of stomach adenocarcinoma, 7% of esophageal adenocarcinoma and uterine carcinosarcoma, 6% of lung adenocarcinoma, 4% of pancreatic adenocarcinoma and bladder urothelial carcinoma, 3% of lung squamous cell carcinoma, and 2% of sarcoma, mesothelioma, brain lower grade glioma, and uterine corpus endometrial carcinoma^{6,9}. Alterations in KRAS are also observed in pediatric cancers⁹. Somatic mutations in KRAS are observed in 10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of leukemia (29 in 354 cases), and in less than 1% of embryonal tumors (2 in 332 cases), glioma (1 in 297 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system cancers (1 in 1158 cases)⁹. KRAS is amplified in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)⁹. Structural alterations in KRAS are observed in less than 1% of acute lymphoblastic leukemia (1 in 85 cases)⁹.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib¹¹ (2021) and adagrasib¹² (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma¹³. The FDA has approved the combination of kinase inhibitors, avutometinib and defactinib¹⁴ (2025), for the treatment of adult patients with KRAS-mutated recurrent low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036¹⁵, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual inhibitor, elironrasib¹⁶, and the KRAS G12C inhibitor, D3S-001¹⁷, were both granted breakthrough therapy designation (2025) for KRAS G12C-mutated locally advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding KRAS G12C inhibitors. The KRAS-G12C inhibitor, olomorasis¹⁸, was granted breakthrough designation (2025) in combination with pembrolizumab¹⁹ for unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression $\geq 50\%$. The RAF/MEK clamp, avutometinib²⁰ was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520²¹, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib²², was granted breakthrough designation (2025) for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor, GFH-375²³, was also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced or metastatic pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-001²⁴, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib²⁵, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab²⁶ and panitumumab²⁷, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)¹⁰. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²⁸.

MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase¹. Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thiadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate^{84,85}. Loss of MTAP function is commonly observed in cancer due to deletion or promoter methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation⁸⁵.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be co-deleted with CDKN2A in numerous solid and hematological cancers^{85,86}. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21%

Biomarker Descriptions (continued)

of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma^{6,9}. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma^{6,9}.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁸⁷. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{88,89,90}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions⁹¹. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation^{1,91,92}. CDKN2A aberrations commonly co-occur with CDKN2B⁸⁷. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation⁹³. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{94,95}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁹⁶. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{6,9}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{6,9}. Alterations in CDKN2A are also observed in pediatric cancers⁹. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors⁹. Somatic mutations in CDKN2A are observed in less than 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)⁹.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{97,98,99}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma¹⁰⁰. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{101,102,103}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme¹⁰⁴. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{105,106,107,108}.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁶³. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{64,65}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁶⁶. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁶⁷. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁶⁷. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{68,69,70,71,72}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁶⁵. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{64,65,69,73}.

Biomarker Descriptions (continued)

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{64,65,74,75}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{74,75}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹⁹ (2014) and nivolumab⁷⁶ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹⁹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹⁹. Dostarlimab⁷⁷ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{70,78}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁷⁹ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{70,80,81}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁸¹. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{82,83}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{82,83}.

TP53 p.(V216M) c.646G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis³⁴. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential³⁵. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{36,37}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{6,9,38,39,40,41}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{6,9}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{42,43,44,45}. Alterations in TP53 are also observed in pediatric cancers^{6,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{6,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{6,9}.

Potential relevance: The small molecule p53 reactivator, PC14586⁴⁶ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{47,48}. TP53 mutations are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁴⁹. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{50,51,52,53,54}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁵⁵. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁵⁶.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,109}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{109,110}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹¹¹. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active

Biomarker Descriptions (continued)

drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{111,112,113,114}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹¹⁵.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{6,9}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

TBX3 deletion

T-box 3

Background: TBX3 encodes T-box transcription factor 3 and belongs to the T-box family of transcription factors which also include TBX1 and TBX2^{1,57,58}. T-box family of transcription factors are involved in developmental processes such as embryogenesis and organogenesis^{1,57,58,59}. Deregulation of TBX3 has been observed in several cancer types, including breast cancer, cervical cancer, colorectal cancer, gastric cancer, melanoma, ovarian cancer, pancreatic cancer, and prostate cancer, and has been suggested to promote tumorigenesis and invasiveness through involvement in several oncogenic pathways^{59,60,61,62}.

Alterations and prevalence: Somatic mutations in TBX3 are observed in 5% of uterine corpus endometrial carcinoma, 4% of colorectal adenocarcinoma, 3% of breast invasive carcinoma, cholangiocarcinoma, and skin cutaneous melanoma, and 2% of lung adenocarcinoma, diffuse large B-cell lymphoma, bladder urothelial carcinoma, lung squamous cell carcinoma, stomach adenocarcinoma, and cervical squamous cell carcinoma^{6,9}. Amplification of TBX3 is found in 2% of adrenocortical carcinoma, bladder urothelial carcinoma, and uterine carcinosarcoma^{6,9}. Biallelic loss of TBX3 is observed in 1% of prostate adenocarcinoma and brain lower grade glioma^{6,9}.

Potential relevance: Currently, no therapies are approved for TBX3 aberrations.

DSC1 deletion

desmocollin 1

Background: The DSC1 gene encodes desmocollin 1, a member of the desmocollin (DSC) subfamily of the cadherin superfamily, which also includes DSC2 and DSC3¹. DSCs along with desmogleins (DSGs) function as membrane-spanning constituents of the desmosomes²⁹. Desmosomes are protein complexes in the intracellular junctions that confer stability and strengthen cell-cell adhesion³⁰. Deregulation of DSC expression is suggested to impact β -catenin signaling and has been observed in a number of cancer types, supporting a potential role for DSC1 in tumorigenesis^{29,31,32,33}.

Alterations and prevalence: Somatic mutations in DSC1 are observed in 17% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 4% of uterine carcinosarcoma, and 3% of lung adenocarcinoma, lung squamous cell carcinoma, and colorectal adenocarcinoma^{6,9}. Biallelic deletion of DSC1 is observed in 2% of pancreatic adenocarcinoma and esophageal adenocarcinoma^{6,9}.

Potential relevance: Currently, no therapies are approved for DSC1 aberrations.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colorectal Cancer

Label as of: 2021-09-24

Variant class: KRAS G12 mutation

Indications and usage:

Erbxitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-based therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

- in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

KRAS p.(G12D) c.35G>A (continued)

🚫 panitumumab

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

- In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

👉 daraxonrasib

Cancer type: Pancreatic Cancer

Variant class: KRAS G12 mutation

Supporting Statement:

The FDA has granted Breakthrough designation to the RAS inhibitor, daraxonrasib, for previously treated metastatic pancreatic adenocarcinoma (PDAC) in patients with KRAS G12 mutations.

Reference:

<https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy>

🅰 GFH-375

Cancer type: Pancreatic Cancer

Variant class: KRAS G12D mutation

Supporting Statement:

The FDA has granted Fast Track designation to an oral KRAS G12D (ON/OFF) inhibitor, GFH-375 (VS-7375), for the first-line treatment of patients with KRAS G12D-mutated locally advanced or metastatic adenocarcinoma of the pancreas (PDAC) and for the treatment of patients with KRAS G12D-mutated locally advanced or metastatic PDAC who have received at least one prior line of standard systemic therapy.

Reference:

<https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375>

Current NCCN Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

NCCN information is current as of 2025-11-03. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colon Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]

cetuximab

Cancer type: Rectal Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]

panitumumab

Cancer type: Colon Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]

KRAS p.(G12D) c.35G>A (continued)

🚫 panitumumab

Cancer type: Rectal Cancer

Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]

Current EMA Information

🚫 Contraindicated

🚫 Not recommended

⚠ Resistance

↗ Breakthrough

▲ Fast Track

EMA information is current as of 2025-11-25. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(G12D) c.35G>A

🚫 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

🚫 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer

Label as of: 2025-05-07

Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Current ESMO Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

ESMO information is current as of 2025-11-03. For the most up-to-date information, search www.esmo.org.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colorectal Cancer

Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed".
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); <https://doi.org/10.1016/j.annonc.2022.10.003> (published)]

panitumumab

Cancer type: Colorectal Cancer

Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed".
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); <https://doi.org/10.1016/j.annonc.2022.10.003> (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERF1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERF1, ESR1, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type
 ○ In other cancer type
 ◐ In this cancer type and other cancer types
 ✖ No evidence

KRAS p.(G12D) c.35G>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
avutometinib + defactinib	○	○	✖	✖	✖
bevacizumab + CAPOX	✖	✖	✖	○	✖
bevacizumab + FOLFIRI	✖	✖	✖	○	✖
bevacizumab + FOLFOX	✖	✖	✖	○	✖
bevacizumab + FOLFOXIRI	✖	✖	✖	○	✖
daraxonrasib	✖	✖	✖	✖	● (III)
daratumumab, TG-01 (Targovax), QS-21 Stimulon, nivolumab	✖	✖	✖	✖	● (II)
HRS-4642, chemotherapy	✖	✖	✖	✖	● (II)
HRS-4642, nimotuzumab, chemotherapy	✖	✖	✖	✖	● (II)
almonertinib, palbociclib	✖	✖	✖	✖	● (I/II)
ANOC-003, chemotherapy	✖	✖	✖	✖	● (I/II)
anti-KRAS G12D mTCR	✖	✖	✖	✖	● (I/II)
ARV-806	✖	✖	✖	✖	● (I/II)
DN-022150	✖	✖	✖	✖	● (I/II)
ERAS-0015	✖	✖	✖	✖	● (I/II)
GFH-375	✖	✖	✖	✖	● (I/II)
GFH-375, chemotherapy, pembrolizumab	✖	✖	✖	✖	● (I/II)
HRS-4642, nimotuzumab	✖	✖	✖	✖	● (I/II)
HRS-4642, SHR-A1904, SHR-1921	✖	✖	✖	✖	● (I/II)
QLC-1101, QL1203, pembrolizumab (Qilu Pharmaceutical), iparomlimab and tuvonalimab, chemotherapy	✖	✖	✖	✖	● (I/II)
RNK-08954	✖	✖	✖	✖	● (I/II)
TNG-462, RMC-9805, daraxonrasib	✖	✖	✖	✖	● (I/II)
TSN-1611	✖	✖	✖	✖	● (I/II)
YL-15293	✖	✖	✖	✖	● (I/II)
ASP 3082, chemotherapy	✖	✖	✖	✖	● (I)
ASP-4396	✖	✖	✖	✖	● (I)
ASP-5834	✖	✖	✖	✖	● (I)
AST-NS2101	✖	✖	✖	✖	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✗ No evidence

KRAS p.(G12D) c.35G>A (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ATP-150, ATP-152, VSV-GP-154, ezabenlimab, ATP-162	✗	✗	✗	✗	● (I)
BPI-442096	✗	✗	✗	✗	● (I)
GDC-7035	✗	✗	✗	✗	● (I)
HS-10529	✗	✗	✗	✗	● (I)
imatinib, trametinib	✗	✗	✗	✗	● (I)
IX-001	✗	✗	✗	✗	● (I)
JAB-3312	✗	✗	✗	✗	● (I)
KQB-548	✗	✗	✗	✗	● (I)
KRAS TCR, aldesleukin, SLATE 001, chemotherapy	✗	✗	✗	✗	● (I)
Nest-1	✗	✗	✗	✗	● (I)
NT-112, AZD-0240	✗	✗	✗	✗	● (I)
NW-301D	✗	✗	✗	✗	● (I)
PT-0253	✗	✗	✗	✗	● (I)
QLC-1101	✗	✗	✗	✗	● (I)
RMC-9805, daraxonrasib	✗	✗	✗	✗	● (I)
TCR-T cell therapy, aldesleukin, chemotherapy	✗	✗	✗	✗	● (I)
toripalimab, chemotherapy, KRAS peptide vaccine	✗	✗	✗	✗	● (I)
ZEN-3694, binimatinib	✗	✗	✗	✗	● (I)

MTAP deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
MRTX-1719, chemotherapy	✗	✗	✗	✗	● (II/III)
AMG 193	✗	✗	✗	✗	● (I/II)
CTS-3497	✗	✗	✗	✗	● (I/II)
IDE397	✗	✗	✗	✗	● (I/II)
PH020-803	✗	✗	✗	✗	● (I/II)
TNG-456, abemaciclib	✗	✗	✗	✗	● (I/II)
TNG-462	✗	✗	✗	✗	● (I/II)
TNG-462, RMC-9805, daraxonrasib	✗	✗	✗	✗	● (I/II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ● In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

MTAP deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ABSK-131	✖	✖	✖	✖	● (I)
GH-56	✖	✖	✖	✖	● (I)
GTA-182	✖	✖	✖	✖	● (I)
HSK-41959	✖	✖	✖	✖	● (I)
ISM-3412	✖	✖	✖	✖	● (I)
MRTX-1719	✖	✖	✖	✖	● (I)
S-095035, TNG-462	✖	✖	✖	✖	● (I)
SYH-2039	✖	✖	✖	✖	● (I)

CDKN2A deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	✖	✖	✖	✖	● (II)
palbociclib, abemaciclib	✖	✖	✖	✖	● (II)
AMG 193	✖	✖	✖	✖	● (I/II)
ABSK-131	✖	✖	✖	✖	● (I)
CID-078	✖	✖	✖	✖	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. *Nat. Rev. Cancer.* 2011 Oct 13;11(11):761-74. PMID: 21993244
3. Karnoub et al. Ras oncogenes: split personalities. *Nat. Rev. Mol. Cell Biol.* 2008 Jul;9(7):517-31. PMID: 18568040
4. Scott et al. Therapeutic Approaches to RAS Mutation. *Cancer J.* 2016 May-Jun;22(3):165-74. doi: 10.1097/PPO.0000000000000187. PMID: 27341593
5. Johnson et al. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. *Cancer Discov.* 2022 Apr 1;12(4):913-923. PMID: 35373279
6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
7. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. *Mol Cancer.* 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
8. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. *J Med Life.* 2014 Oct-Dec;7(4):581-7. PMID: 25713627
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. *J. Clin. Oncol.* 2016 Jan 10;34(2):179-85. PMID: 26438111
11. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/2146650orig1s009correctedlbl.pdf
12. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
13. NCCN Guidelines® - NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
14. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219616s000lbl.pdf
15. <https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf>
16. <https://ir.revmed.com/node/11881/pdf>
17. <https://www.prnewswire.com/news-releases/d3-bio-inc-announces-fda-breakthrough-therapy-designation-and-orphan-drug-designation-for-d3s-001-for-the-treatment-of-patients-with-kras-g12c-mutated-cancers-302540808.html>
18. <https://www.prnewswire.com/news-releases/lillys-olomorabib-receives-us-fdas-breakthrough-therapy-designation-for-the-treatment-of-certain-newly-diagnosed-metastatic-kras-g12c-mutant-lung-cancers-302545643.html>
19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
20. <https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination>
21. <https://www.businesswire.com/news/home/20250109170439/en/>
22. <https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy>
23. <https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375>
24. <https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation>
25. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation_-_July_2021.pdf
26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
27. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
28. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. *N. Engl. J. Med.* 1990 Aug 30;323(9):561-5. PMID: 2199829
29. Chidgey et al. Desmosomes: a role in cancer?. *Br J Cancer.* 2007 Jun 18;96(12):1783-7. PMID: 17519903
30. Dubash et al. Desmosomes. *Curr Biol.* 2011 Jul 26;21(14):R529-31. PMID: 21783027
31. Hardman et al. Desmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation. *Mol Cell Biol.* 2005 Feb;25(3):969-78. PMID: 15657425
32. Wang et al. Lower DSC1 expression is related to the poor differentiation and prognosis of head and neck squamous cell carcinoma (HNSCC). *J Cancer Res Clin Oncol.* 2016 Dec;142(12):2461-2468. PMID: 27601166
33. Oshiro et al. Epigenetic silencing of DSC3 is a common event in human breast cancer. *Breast Cancer Res.* 2005;7(5):R669-80. PMID: 16168112

References (continued)

34. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
35. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
36. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
37. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
38. Peter S et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
39. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
40. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
41. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
42. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
43. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514
44. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene.* 2007 Apr 2;26(15):2157-65. PMID: 17401424
45. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
46. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
47. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
48. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165
49. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
50. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood.* 2022 Sep 22;140(12):1345-1377. PMID: 35797463
51. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
52. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
53. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 1.2026]
54. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
55. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
56. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
57. Willmer et al. The T-Box transcription factor 3 in development and cancer. *Biosci Trends.* 2017 Jul 24;11(3):254-266. PMID: 28579578
58. Krstic et al. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG. *J Pathol.* 2019 Jun;248(2):191-203. PMID: 30697731
59. Krstic et al. Isoform-specific promotion of breast cancer tumorigenicity by TBX3 involves induction of angiogenesis. *Lab Invest.* 2020 Mar;100(3):400-413. PMID: 31570773
60. Rodriguez et al. Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. *Cancer Res.* 2008 Oct 1;68(19):7872-81. PMID: 18829543
61. Krstic et al. The transcriptional regulator TBX3 promotes progression from non-invasive to invasive breast cancer. *BMC Cancer.* 2016 Aug 23;16(1):671. PMID: 27553211

References (continued)

62. Carlson et al. Tbx3 impinges on the p53 pathway to suppress apoptosis, facilitate cell transformation and block myogenic differentiation. *Oncogene*. 2002 May 30;21(24):3827-35. PMID: 12032820
63. Lander et al. Initial sequencing and analysis of the human genome. *Nature*. 2001 Feb 15;409(6822):860-921. PMID: 11237011
64. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol*. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
65. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J*. 2018;17:159-168. PMID: 29743854
66. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol*. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
67. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res*. 1998 Nov 15;58(22):5248-57. PMID: 9823339
68. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res*. 2002 Jan 1;62(1):53-7. PMID: 11782358
69. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis*. 2008 Apr;29(4):673-80. PMID: 17942460
70. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
71. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers*. 2004;20(4-5):199-206. PMID: 15528785
72. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore)*. 2015 Dec;94(50):e2260. PMID: 26683947
73. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol*. 2019 Feb 1;37(4):286-295. PMID: 30376427
74. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun*. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
75. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol*. 2017;2017. PMID: 29850653
76. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
77. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
78. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
79. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
80. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
81. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
82. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med*. 2019 Jan 16;9(1). PMID: 30654522
83. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
84. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). *Leukemia*. 2002 Sep;16(9):1799-807. PMID: 12200696
85. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. *Cancer Biol Ther*. 2011 Apr 1;11(7):627-32. PMID: 21301207
86. Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. [10.1146/annurev-cancerbio-030419-033444](https://doi.org/10.1146/annurev-cancerbio-030419-033444)
87. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. *Nat Commun*. 2021 Apr 6;12(1):2047. PMID: 33824349
88. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. *Am. J. Respir. Cell Mol. Biol.* 2018 Aug;59(2):200-214. PMID: 29420051
89. Roussel. The INK4 family of cell cycle inhibitors in cancer. *Oncogene*. 1999 Sep 20;18(38):5311-7. PMID: 10498883
90. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). *Biochem. Biophys. Res. Commun.* 1999 Aug 27;262(2):534-8. PMID: 10462509
91. Hill et al. The genetics of melanoma: recent advances. *Annu Rev Genomics Hum Genet*. 2013;14:257-79. PMID: 23875803

References (continued)

92. Kim et al. The regulation of INK4/ARF in cancer and aging. *Cell*. 2006 Oct 20;127(2):265-75. PMID: 17055429
93. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. *Mayo Clin. Proc.* 2008 Jul;83(7):825-46. PMID: 18613999
94. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. *J. Invest. Dermatol.* 2007 May;127(5):1234-43. PMID: 17218939
95. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. *Ann. Surg.* 2002 Dec;236(6):730-7. PMID: 12454511
96. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. *Clin Cancer Res.* 2021 Jul 15;27(14):4025-4035. PMID: 34074656
97. NCCN Guidelines® - NCCN-Mesothelioma: Peritoneal [Version 2.2026]
98. NCCN Guidelines® - NCCN-Mesothelioma: Pleural [Version 2.2026]
99. NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 1.2025]
100. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. *Brain Pathol.* 2020 Jul;30(4):844-856. PMID: 32307792
101. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. *J Transl Med.* 2019 Jul 29;17(1):245. PMID: 31358010
102. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. *Anticancer Res.* 2013 Aug;33(8):2997-3004. PMID: 23898052
103. von Witzleben et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmacological Inhibitors of the CDK4/6 Cell-Cycle Pathway. *Cancer Res.* 2015 Sep 15;75(18):3823-31. PMID: 26183925
104. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. *Neuro-oncology.* 2012 Jul;14(7):870-81. PMID: 22711607
105. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. *Oncotarget.* 2018 Sep 7;9(70):33247-33248. PMID: 30279955
106. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. *J. Clin. Oncol.* 2014 Dec 10;32(35):3930-8. PMID: 25267748
107. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. *J. Natl. Cancer Inst.* 2018 Dec 1;110(12):1393-1399. PMID: 29878161
108. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. *Cancer Clin Oncol.* 2013;2(1):51-61. PMID: 23935769
109. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
110. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
111. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
112. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
113. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget.* 2017 Jan 10;8(2):3640-3648. PMID: 27690298
114. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One.* 2015;10(5):e0127524. PMID: 26010150
115. Karas et al. JCO Oncol Pract. 2021 Dec 3:OP2100624. PMID: 34860573