

Patient Name: 정은순
Gender: F
Sample ID: N25-354

Primary Tumor Site: lung
Collection Date: 2025.12.11

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Alert Details	6
Relevant Therapy Summary	11

Report Highlights
2 Relevant Biomarkers
3 Therapies Available
19 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	None detected	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	KRAS p.(Q61H) c.183A>C	ROS1	None detected
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	2.86 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	FGFR3::TACC3 fusion fibroblast growth factor receptor 3 - transforming acidic coiled-coil containing protein 3 Locus: chr4:1808859 - chr4:1741434	erdafitinib	erdafitinib 1, 2 / II+	13
IIC	KRAS p.(Q61H) c.183A>C KRAS proto-oncogene, GTPase Allele Frequency: 5.46% Locus: chr12:25380275 Transcript: NM_033360.4	None*	avutometinib + defactinib 1 / II+ bevacizumab + chemotherapy ¹	6

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, PIK3CB p.(C551R) c.1651T>C, TP53 p.(M237K) c.710T>A, UGT1A1 p.(G71R) c.211G>A, HLA-B deletion, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
KRAS	p.(Q61H)	c.183A>C	COSM554	chr12:25380275	5.46%	NM_033360.4	missense
PIK3CB	p.(C551R)	c.1651T>C	COSM1039057	chr3:138417868	6.35%	NM_006219.3	missense
TP53	p.(M237K)	c.710T>A	COSM43952	chr17:7577571	4.66%	NM_000546.6	missense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	48.37%	NM_000463.3	missense
NQO1	p.(P187S)	c.559C>T	.	chr16:69745145	48.32%	NM_000903.3	missense
HLA-B	p.([T118I;L119I])	c.353_355delCCinsT CA	.	chr6:31324208	100.00%	NM_005514.8	missense, missense
TSC1	p.(S1039G)	c.3115A>G	.	chr9:135772002	53.81%	NM_000368.5	missense

Gene Fusions

Genes	Variant ID	Locus
FGFR3::TACC3	FGFR3-TACC3.F18T11del5.1	chr4:1808859 - chr4:1741434

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
HLA-B	chr6:31322252	0	0.57

Biomarker Descriptions

FGFR3::TACC3 fusion

fibroblast growth factor receptor 3, transforming acidic coiled-coil containing protein 3

Background: The FGFR3 gene encodes fibroblast growth receptor 3, a member of the fibroblast growth-factor receptor (FGFR) family that also includes FGFR1, 2, and 4¹. These proteins are single-transmembrane receptors composed of three extracellular immunoglobulin (Ig)-type domains and an intracellular kinase domain⁷⁹. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{80,81,82}.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions; the majority of these aberrations result in gain of function⁸³. Missense mutations that occur in the extracellular immunoglobulin-like and transmembrane domains of FGFR3, including S249C, R248C, and Y373C, cause ligand-independent dimerization and constitutive activation of FGFR3^{84,85,86}. Recurrent somatic mutations in FGFR3 are observed in 14% of bladder urothelial carcinoma, 5% of skin cutaneous melanoma, 4% of uterine corpus endometrial carcinoma, 3% of colorectal adenocarcinoma, and 2% of stomach adenocarcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, kidney renal papillary cell carcinoma, and uterine carcinosarcoma^{8,9}. FGFR3 fusions are observed in 2% of bladder urothelial carcinoma and cervical squamous cell carcinoma^{8,9}. FGFR3 amplification is observed in 14% of uterine carcinosarcoma, 5% of ovarian serous cystadenocarcinoma, 4% of bladder urothelial carcinoma, 3% of adrenocortical carcinoma, uterine corpus endometrial carcinoma, cholangiocarcinoma, and 2% of pancreatic adenocarcinoma, sarcoma, and esophageal adenocarcinoma^{8,9}. Alterations in FGFR3 are also observed in the pediatric population⁹. Somatic mutations are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of embryonal tumor (2

Biomarker Descriptions (continued)

in 332 cases), bone cancer (1 in 327 cases), and leukemia (1 in 354 cases)⁹. FGFR3 amplification is observed in 9% of Wilms tumor (12 in 136 cases) and 1% of B-lymphoblastic leukemia/lymphoma (9 in 731 cases) and leukemia (2 in 250 cases)⁹.

Potential relevance: The pan-FGFR inhibitor, erdafitinib⁸⁷, received FDA approval (2019) for the treatment of locally advanced or metastatic urothelial cancer that is positive for FGFR2 fusions, FGFR3 fusions including FGFR3::TACC3 and FGFR3::BAIAP2L1, and FGFR3 gene mutations including R248C, S249C, G370C, and Y373C. Unregulated activation of FGFR3 has been associated with resistance to tamoxifen in ER-positive breast cancer⁸⁸.

KRAS p.(Q61H) c.183A>C

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS¹. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{10,11,12}. Germline mutations in KRAS lead to several genetic disorders known as RASopathies, including Noonan syndrome, which results in heart and congenital defects, growth inhibition, and facial dysmorphic features¹³. Somatic mutations in KRAS are commonly altered in several cancers including non-small cell lung cancer, pancreatic cancer, and multiple myeloma¹³.

Alterations and prevalence: The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{8,14,15}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{9,16}. Somatic mutations in KRAS are observed in 66% of pancreatic adenocarcinoma, 41% of colorectal adenocarcinoma, 30% of lung adenocarcinoma, 19% of uterine corpus endometrial carcinoma, 12% of uterine carcinosarcoma, 9% of stomach adenocarcinoma, 8% of testicular germ cell tumors, 6% of cholangiocarcinoma, 5% of cervical squamous cell carcinoma, acute myeloid leukemia, and diffuse large B-cell lymphoma, 4% of bladder urothelial carcinoma, and 2% of skin cutaneous melanoma and kidney renal papillary cell carcinoma^{8,9}. KRAS is amplified in 9% of ovarian serous cystadenocarcinoma and testicular germ cell tumors, 8% of stomach adenocarcinoma, 7% of esophageal adenocarcinoma and uterine carcinosarcoma, 6% of lung adenocarcinoma, 4% of pancreatic adenocarcinoma and bladder urothelial carcinoma, 3% of lung squamous cell carcinoma, and 2% of sarcoma, mesothelioma, brain lower grade glioma, and uterine corpus endometrial carcinoma^{8,9}. Alterations in KRAS are also observed in pediatric cancers⁹. Somatic mutations in KRAS are observed in 10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of leukemia (29 in 354 cases), and in less than 1% of embryonal tumors (2 in 332 cases), glioma (1 in 297 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system cancers (1 in 1158 cases)⁹. KRAS is amplified in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)⁹. Structural alterations in KRAS are observed in less than 1% of acute lymphoblastic leukemia (1 in 85 cases)⁹.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib¹⁷ (2021) and adagrasib¹⁸ (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma¹⁹. The FDA has approved the combination of kinase inhibitors, avutometinib and defactinib²⁰ (2025), for the treatment of adult patients with KRAS-mutated recurrent low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036²¹, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual inhibitor, elironrasib²², and the KRAS G12C inhibitor, D3S-001²³, were both granted breakthrough therapy designation (2025) for KRAS G12C-mutated locally advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding KRAS G12C inhibitors. The KRAS-G12C inhibitor, olomorasis²⁴, was granted breakthrough designation (2025) in combination with pembrolizumab²⁵ for unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression $\geq 50\%$. The RAF/MEK clamp, avutometinib²⁶ was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520²⁷, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib²⁸, was granted breakthrough designation (2025) for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor, GFH-375²⁹, was also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced or metastatic pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-001³⁰, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib³¹, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab³² and panitumumab³³, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)¹⁶. Additionally, KRAS mutations are associated with poor prognosis in NSCLC³⁴.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁵⁸. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{59,60}. MSI is closely tied to the status of the mismatch repair (MMR)

Biomarker Descriptions (continued)

genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁶¹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁶². Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁶². Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{63,64,65,66,67}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁶⁰. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{59,60,64,68}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{59,60,69,70}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{69,70}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab²⁵ (2014) and nivolumab⁷¹ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab²⁵ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication²⁵. Dostarlimab⁷² (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{65,73}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁷⁴ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{65,75,76}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁷⁶. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{77,78}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{77,78}.

PIK3CB p.(C551R) c.1651T>C

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta

Background: The PIK3CB gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta of the class I phosphatidylinositol 3-kinase (PI3K) enzyme⁸⁹. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{89,90}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively⁸⁹. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{91,92}. The reversible phosphorylation of inositol lipids regulate diverse aspects of cell growth and metabolism^{91,92,93,94}. Aberrations in PIK3CB that lead to activation of the PI3K/AKT/MTOR pathway have been observed to promote tumor formation, suggesting an oncogenic role for PIK3CB^{89,95,96}.

Alterations and prevalence: Somatic mutations in PIK3CB are predominantly missense with amino acid substitutions at D1067 being the most recurrent and observed to lead to hyperactivation of the PI3K pathway^{89,97}. PIK3CB mutations are observed in about 9% of uterine cancer and 2-3% of melanoma, glioblastoma, cholangiocarcinoma, colorectal, bladder, stomach, esophageal, and squamous lung cancers⁸⁹. Amplification of PIK3CB is also observed in 9% of squamous lung cancer, 7% of cervical cancer, and 5-6% of head and neck, ovarian, and esophageal cancers⁸⁹.

Potential relevance: Currently, no therapies are approved for PIK3CB aberrations.

TP53 p.(M237K) c.710T>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis³⁵. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential³⁶. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{37,38}.

Biomarker Descriptions (continued)

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,39,40,41,42}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{8,9}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{43,44,45,46}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586⁴⁷ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{48,49}. TP53 mutations are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁵⁰. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{51,52,53,54,55}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁵⁶. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁵⁷.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,98}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{98,99}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹⁰⁰. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{100,101,102,103}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹⁰⁴.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁷.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

KRAS p.(Q61H) c.183A>C

cetuximab

Cancer type: Colorectal Cancer

Label as of: 2021-09-24

Variant class: KRAS Q61 mutation

Indications and usage:

Erbxitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-based therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

- in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

KRAS p.(Q61H) c.183A>C (continued)

🚫 panitumumab

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS Q61 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

- In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

Current NCCN Information

🚫 Contraindicated

⊖ Not recommended

🛡 Resistance

🚀 Breakthrough

🅰️ Fast Track

NCCN information is current as of 2025-11-03. To view the most recent and complete version of the guideline, go online to [NCCN.org](https://www.nccn.org).

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(Q61H) c.183A>C

🚫 cetuximab

Cancer type: Colon Cancer

Variant class: KRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]

KRAS p.(Q61H) c.183A>C (continued)

🚫 cetuximab

Cancer type: Rectal Cancer

Variant class: KRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]

🚫 panitumumab

Cancer type: Colon Cancer

Variant class: KRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]

🚫 panitumumab

Cancer type: Rectal Cancer

Variant class: KRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]

Current EMA Information

🚫 Contraindicated

➡ Not recommended

🛡 Resistance

🚀 Breakthrough

🅰️ Fast Track

EMA information is current as of 2025-11-25. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(Q61H) c.183A>C

🚫 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS Q61 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

🚫 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer

Label as of: 2025-05-07

Variant class: KRAS Q61 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Current ESMO Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

ESMO information is current as of 2025-11-03. For the most up-to-date information, search www.esmo.org.

KRAS p.(Q61H) c.183A>C

cetuximab

Cancer type: Colorectal Cancer

Variant class: KRAS Q61 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); <https://doi.org/10.1016/j.annonc.2022.10.003> (published)]

panitumumab

Cancer type: Colorectal Cancer

Variant class: KRAS Q61 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); <https://doi.org/10.1016/j.annonc.2022.10.003> (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERF1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERF1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type
 ○ In other cancer type
 ◐ In this cancer type and other cancer types
 ✗ No evidence

FGFR3::TACC3 fusion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
erdafitinib	○	◐	○	○	✗
ABSK061, ABSK-043	✗	✗	✗	✗	● (II)
futibatinib	✗	✗	✗	✗	● (II)
immune checkpoint inhibitor, pemigatinib	✗	✗	✗	✗	● (II)
pemigatinib	✗	✗	✗	✗	● (II)
sintilimab, pemigatinib	✗	✗	✗	✗	● (II)
TYRA-300	✗	✗	✗	✗	● (I/II)
afatinib, pemigatinib	✗	✗	✗	✗	● (I)
AMB-302	✗	✗	✗	✗	● (I)
LOXO-435	✗	✗	✗	✗	● (I)
TYRA-430	✗	✗	✗	✗	● (I)

KRAS p.(Q61H) c.183A>C

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
avutometinib + defactinib	○	○	✗	✗	✗
bevacizumab + CAPOX	✗	✗	✗	○	✗
bevacizumab + FOLFIRI	✗	✗	✗	○	✗
bevacizumab + FOLFOX	✗	✗	✗	○	✗
bevacizumab + FOLFOXIRI	✗	✗	✗	○	✗
daraxonrasib	✗	✗	✗	✗	● (III)
afatinib, selumetinib	✗	✗	✗	✗	● (I/II)
ERAS-0015	✗	✗	✗	✗	● (I/II)
zotatitin	✗	✗	✗	✗	● (I/II)
Nest-1	✗	✗	✗	✗	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	0.0%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. *Nat. Rev. Cancer.* 2011 Oct 13;11(11):761-74. PMID: 21993244
11. Karnoub et al. Ras oncogenes: split personalities. *Nat. Rev. Mol. Cell Biol.* 2008 Jul;9(7):517-31. PMID: 18568040
12. Scott et al. Therapeutic Approaches to RAS Mutation. *Cancer J.* 2016 May-Jun;22(3):165-74. doi: 10.1097/PPO.0000000000000187. PMID: 27341593
13. Johnson et al. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. *Cancer Discov.* 2022 Apr 1;12(4):913-923. PMID: 35373279
14. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. *Mol Cancer.* 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
15. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. *J Med Life.* 2014 Oct-Dec;7(4):581-7. PMID: 25713627
16. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. *J. Clin. Oncol.* 2016 Jan 10;34(2):179-85. PMID: 26438111
17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/214665Orig1s009correctedlbl.pdf
18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
19. NCCN Guidelines® - NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219616s000lbl.pdf
21. <https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf>
22. <https://ir.revmed.com/node/11881/pdf>
23. <https://www.prnewswire.com/news-releases/d3-bio-inc-announces-fda-breakthrough-therapy-designation-and-orphan-drug-designation-for-d3s-001-for-the-treatment-of-patients-with-kras-g12c-mutated-cancers-302540808.html>
24. <https://www.prnewswire.com/news-releases/lillys-olomorasib-receives-us-fdas-breakthrough-therapy-designation-for-the-treatment-of-certain-newly-diagnosed-metastatic-kras-g12c-mutant-lung-cancers-302545643.html>
25. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
26. <https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination>
27. <https://www.businesswire.com/news/home/20250109170439/en/>
28. <https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy>
29. <https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-vs-7375>
30. <https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation>
31. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation_-_July_2021.pdf
32. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
33. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

References (continued)

34. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. *N. Engl. J. Med.* 1990 Aug 30;323(9):561-5. PMID: 2199829
35. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
36. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
37. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
38. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
39. Peter S et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
40. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
41. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
42. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
43. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
44. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514
45. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene.* 2007 Apr 2;26(15):2157-65. PMID: 17401424
46. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
47. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
48. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
49. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165
50. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
51. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood.* 2022 Sep 22;140(12):1345-1377. PMID: 35797463
52. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
53. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
54. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 1.2026]
55. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
56. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
57. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
58. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
59. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
60. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
61. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
62. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339

References (continued)

63. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
64. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
65. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
66. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
67. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
68. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
69. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
70. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
71. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
72. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
73. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
74. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
75. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
76. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
77. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
78. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
79. Mohammadi et al. Structural basis for fibroblast growth factor receptor activation. *Cytokine Growth Factor Rev.* 2005 Apr;16(2):107-37. PMID: 15863029
80. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. *Nat. Rev. Cancer.* 2017 May;17(5):318-332. PMID: 28303906
81. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. *Biochim. Biophys. Acta.* 2012 Apr;1823(4):850-60. PMID: 22273505
82. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. *Nat Commun.* 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
83. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. *Clin. Cancer Res.* 2016 Jan 1;22(1):259-67. PMID: 26373574
84. di Martino et al. A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges. *Adv Urol.* 2012;2012:429213. doi: 10.1155/2012/429213. Epub 2012 Jul 31. PMID: 22899908
85. Kim et al. Fibroblast growth factor receptor 3 (FGFR3) aberrations in muscle-invasive urothelial carcinoma. *BMC Urol.* 2018 Jul 31;18(1):68. doi: 10.1186/s12894-018-0380-1. PMID: 30064409
86. Del Piccolo et al. Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization. *Biophys. J.* 2015 Jan 20;108(2):272-8. PMID: 25606676
87. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/212018s011lbl.pdf
88. Tomlinson et al. Mechanisms of FGFR3 actions in endocrine resistant breast cancer. *Int. J. Cancer.* 2012 Jun 15;130(12):2857-66. PMID: 21792889
89. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. *Signal Transduct Target Ther.* 2017;2:17063. PMID: 29279775
90. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. *Apoptosis.* 2004 Nov;9(6):667-76. PMID: 15505410
91. Cantley. The phosphoinositide 3-kinase pathway. *Science.* 2002 May 31;296(5573):1655-7. PMID: 12040186
92. Fruman et al. The PI3K Pathway in Human Disease. *Cell.* 2017 Aug 10;170(4):605-635. PMID: 28802037
93. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. *Nat. Rev. Genet.* 2006 Aug;7(8):606-19. PMID: 16847462

References (continued)

94. Vanhaesbroeck et al. PI3K signalling: the path to discovery and understanding. *Nat. Rev. Mol. Cell Biol.* 2012 Feb 23;13(3):195-203. PMID: 22358332
95. Pazarentzos et al. Oncogenic activation of the PI3-kinase p110 β isoform via the tumor-derived PIK3C β (D1067V) kinase domain mutation. *Oncogene.* 2016 Mar 3;35(9):1198-205. PMID: 25982275
96. Crowder et al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. *Cancer Res.* 2009 May 1;69(9):3955-62. PMID: 19366795
97. Nakanishi et al. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110 β . *Cancer Res.* 2016 Mar 1;76(5):1193-203. PMID: 26759240
98. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
99. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
100. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
101. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
102. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget.* 2017 Jan 10;8(2):3640-3648. PMID: 27690298
103. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One.* 2015;10(5):e0127524. PMID: 26010150
104. Karas et al. JCO Oncol Pract. 2021 Dec 3:OP2100624. PMID: 34860573