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Gene Finding Gene Finding

ALK None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR None detected NTRK3 None detected
ERBB2 None detected RET None detected
KRAS None detected ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 14.22 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC PIK3CA p.(E545K) c.1633G>A

phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha
Allele Frequency: 21.37%
Locus: chr3:178936091
Transcript: NM_006218.4

None* inavolisib + palbociclib + hormone
therapy 1, 2 / I

alpelisib + hormone therapy 1, 2 / II+

capivasertib + hormone therapy 1, 2 / II

+

aspirin II+

5

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
Microsatellite stable, PARP4 p.(E422*) c.1264G>T, TP53 p.(R273P) c.818G>C, HLA-B deletion, Tumor Mutational Burden

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

PIK3CA p.(E545K) c.1633G>A COSM763 chr3:178936091 21.37% NM_006218.4 missense

PARP4 p.(E422*) c.1264G>T . chr13:25060394 3.32% NM_006437.4 nonsense

TP53 p.(R273P) c.818G>C COSM43896 chr17:7577120 21.44% NM_000546.6 missense

SPEN p.(E1427Q) c.4279G>C . chr1:16257014 6.05% NM_015001.3 missense

PRG4 p.(S169C) c.506C>G . chr1:186273962 17.84% NM_005807.6 missense

OR2L2 p.(A172D) c.515C>A . chr1:248202084 16.84% NM_001004686.2 missense

EML4 p.(L970R) c.2909T>G . chr2:42557310 60.24% NM_019063.5 missense

CASP8 p.(R489T) c.1466G>C . chr2:202150025 14.00% NM_001080125.2 missense

PARP3 p.(E158Q) c.472G>C . chr3:51978565 5.41% NM_001003931.4 missense

HLA-A p.(Q67H) c.201G>C . chr6:29910661 10.20% NM_001242758.1 missense

KMT2C p.(?) c.14032-3C>G . chr7:151842383 13.69% NM_170606.3 unknown

MDM2 p.(T126I) c.377C>T . chr12:69218161 65.45% NM_002392.5 missense

PARP4 p.(R419K) c.1256G>A . chr13:25060402 5.07% NM_006437.4 missense

FANCM p.(G1711V) c.5132G>T . chr14:45658357 13.47% NM_020937.4 missense

OR4M2 p.(E173K) c.517G>A . chr15:22369092 8.81% NM_001004719.2 missense

FANCI p.(S759F) c.2276C>T . chr15:89836279 6.56% NM_001113378.2 missense

ZFHX3 p.(E3252K) c.9754G>A . chr16:72822421 9.20% NM_006885.4 missense

NF1 p.(?) c.7190-1G>C . chr17:29676137 18.96% NM_001042492.3 unknown

PRKACA p.(N217K) c.651C>G . chr19:14208287 12.35% NM_002730.4 missense

TPTE p.(I526M) c.1578T>G . chr21:10906983 3.70% NM_199261.4 missense

BTK p.(T191M) c.572C>T . chrX:100617177 31.24% NM_000061.3 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

HLA-B chr6:31322252 0.2 0.64

RUNX1T1 chr8:92982878 0.23 0.64

Copy Number Variations

 

Variant Details

 
PIK3CA p.(E545K) c.1633G>A

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I
phosphatidylinositol 3-kinase (PI3K) enzyme64. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one
of four p110 catalytic subunits to activated tyrosine protein kinases65,66. The p110 catalytic subunits include p110α, β, δ, γ and are
encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively65. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-
bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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(PTEN) catalyzes the reverse reaction67,68. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and
metabolism67,68,69,70. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR
pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion,
and genetic instability71,72,73.

Alterations and prevalence: Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9
and 20 due to exon 1 being untranslated)74,75. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon
21 kinase (codon H1047) domains, each having distinct mechanisms of activation76,77,78. Somatic mutations in PIK3CA are observed
in 50% of uterine corpus endometrial carcinoma, 35% of uterine carcinosarcoma, 32% of breast invasive carcinoma, 29% of cervical
squamous cell carcinoma, 28% of colorectal adenocarcinoma, 22% of bladder urothelial carcinoma, 17% of head and neck squamous
cell carcinoma, 16% of stomach adenocarcinoma, 11% of lung squamous cell carcinoma, 9% of esophageal adenocarcinoma, 8%
of brain lower grade glioma, 6% of cholangiocarcinoma, 5% of skin cutaneous melanoma and lung adenocarcinoma, 4% of liver
hepatocellular carcinoma, 3% of pancreatic adenocarcinoma and sarcoma, and 2% of mesothelioma, prostate adenocarcinoma,
testicular germ cell tumors, and ovarian serous cystadenocarcinoma8,9. PIK3CA is amplified in 38% of lung squamous cell carcinoma,
20% of ovarian serous cystadenocarcinoma, 18% of esophageal adenocarcinoma, 16% of head and neck squamous cell carcinoma,
15% of cervical squamous cell carcinoma, 11% of uterine carcinosarcoma, 7% of uterine corpus endometrial carcinoma, 5% of stomach
adenocarcinoma, 4% of bladder urothelial carcinoma, 3% of breast invasive carcinoma and pancreatic adenocarcinoma, and 2% of
prostate adenocarcinoma, lung adenocarcinoma, and kidney renal clear cell carcinoma8,9. Alterations in PIK3CA are also observed in
pediatric cancers9. Somatic mutations in PIK3CA are observed in 6% of non-Hodgkin Lymphoma (1 in 17 cases), 4% of glioma (11 in
297 cases), 3% of soft tissue sarcoma (1 in 38 patients), 2% of embryonal tumors (6 in 332 cases), 1% of leukemia (5 in 354 cases),
and less than 1% of bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (2 in 252 cases), and peripheral nervous
system tumors (1 in 1158 cases)9.

Potential relevance: The PI3K inhibitor, alpelisib79, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients
with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or
metastatic breast cancer. Specifically, exon 21 H1047R mutations were associated with more durable clinical responses in comparison
to exon 10 E545K mutations80. However, alpelisib did not improve response when administered with letrozole in patients with ER
+ early breast cancer with PIK3CA mutations81. The FDA also approved the kinase inhibitor, capivasertib (2023)82 in combination
with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/
PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib83, is also FDA-approved (2024) in
combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and
HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response
in PIK3CA mutated refractory cancers84,85. In colorectal cancers, PIK3CA mutations predict significantly improved survival and reduced
disease recurrence with adjuvant aspirin therapy, compared to no benefit in wild-type PIK3CA tumors49,58,86,87. In 2025, the FDA granted
fast track designation to the PI3Kα inhibitor and degrader, ETX-63688, for the treatment of PIK3CA-mutant, HR-positive/HER-negative
advanced breast cancer.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome42. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue43,44. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS245. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25046. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)46. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS47,48,49,50,51. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes44.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer43,44,48,52.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma43,44,53,54. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers53,54.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab55 (2014) and nivolumab56 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab55 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication55. Dostarlimab57 (2021) is also approved for dMMR recurrent or advanced endometrial

Biomarker Descriptions (continued)
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carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer49,58. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab59 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location49,60,61. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients61. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors62,63. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers62,63.

PARP4 p.(E422*) c.1264G>T

poly(ADP-ribose) polymerase family member 4

Background: The PARP4 gene encodes the poly(ADP-ribose) polymerase 4 protein1. PARP4 belongs to the large PARP protein family
that also includes PARP1, PARP2, and PARP310. PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADP-
ribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis,
nucleic acid metabolism, and regulation of chromatin structure10,11. PARP enzymes are involved in several DNA repair pathways10,11.
Although the functional role of PARP4 is not well understood, PARP4 has been predicted to function in base excision repair (BER) due
to its BRCA1 C Terminus (BRCT) domain which is found in other DNA repair pathway proteins12.

Alterations and prevalence: Somatic mutations in PARP4 are observed in 9% of skin cutaneous melanoma, 8% of uterine corpus
endometrial carcinoma, 5% of bladder urothelial carcinoma, 4% of stomach adenocarcinoma, and 3% of lung squamous cell
carcinoma8,9. Biallelic deletions in PARP4 are observed in 2% of diffuse large B-cell lymphoma (DLBCL)8,9.

Potential relevance: Currently, no therapies are approved for PARP4 aberrations. However, PARP inhibition is known to induce synthetic
lethality in certain cancer types that are homologous recombination repair (HRR) deficient (HRD) due to mutations in the HRR pathway.
This is achieved from PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently
resulting in cell death13,14. Although not indicated for specific alterations in PARP4, several PARPis including olaparib, rucaparib,
talazoparib, and niraparib have been approved in various cancer types with HRD. Olaparib15 (2014) was the first PARPi to be approved
by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the
maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian,
fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the
treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally,
olaparib15 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious,
germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib16 (2016) was the first PARPi approved for the treatment
of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020)
for deleterious gBRCAm or sBRCAm mCRPC. Talazoparib17 (2018) is indicated for the treatment of gBRCAm HER2-negative locally
advanced or metastatic breast cancer. Niraparib18 (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian
tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

TP53 p.(R273P) c.818G>C

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis19. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential20. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers21,22.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)8,9,23,24,25,26. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,9. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes27,28,29,30. Alterations in TP53 are also
observed in pediatric cancers8,9. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)8,9. Biallelic loss
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of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)8,9.

Potential relevance: The small molecule p53 reactivator, PC1458631 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation32,33. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma34. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)35,36,37,38,39. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant40. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system41.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self4,5,6. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B7.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma8,9. Biallelic loss of HLA-
B is observed in 5% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Biomarker Descriptions (continued)

 

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed
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KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

alpelisib + fulvestrant     

capivasertib + fulvestrant     

inavolisib + palbociclib + fulvestrant     

aspirin     

ETX-636      (I/II)

PIK3CA p.(E545K) c.1633G>A

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

HTL-0039732, atezolizumab      (I/II)

JS-105      (I)

RLY-2608      (I)

SNV-4818, hormone therapy      (I)

PIK3CA p.(E545K) c.1633G>A (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 34.5%
BRCA1 LOH, 17q21.31(41197602-41276231)x2
BRCA2 LOH, 13q13.1(32890491-32972932)x2
BRIP1 LOH, 17q23.2(59760627-59938976)x2
CDK12 LOH, 17q12(37618286-37687611)x2
CHEK2 LOH, 22q12.1(29083868-29130729)x2
PALB2 LOH, 16p12.2(23614759-23652528)x2
RAD51B LOH, 14q24.1(68290164-69061406)x2
RAD51C LOH, 17q22(56769933-56811619)x2

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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