

Patient Name: 이태희
Gender: F
Sample ID: N25-351

Primary Tumor Site: bronchus
Collection Date: 2025.11.05

Sample Cancer Type: Histiocytic and Dendritic Cell Neoplasms

Table of Contents

Variant Details
Biomarker Descriptions

Page

1
2

Report Highlights

0 Relevant Biomarkers
0 Therapies Available
0 Clinical Trials

Relevant Histiocytic and Dendritic Cell Neoplasms Findings

Gene	Finding	Gene	Finding
ALK	ALK imbalance	NRAS	None detected
ARAF	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
CSF1R	None detected	NTRK3	None detected
KRAS	None detected	PIK3CA	None detected
MAP2K1	None detected	RAF1	None detected
MAP2K2	None detected	RET	None detected

Relevant Biomarkers

No biomarkers associated with relevant evidence found in this sample

Prevalent cancer biomarkers without relevant evidence based on included data sources

ALK imbalance, Microsatellite stable, RNF43 p.(P660Sfs*87) c.1976_1977insG, UGT1A1 p.(G71R) c.211G>A, HLA-B deletion, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
RNF43	p.(P660Sfs*87)	c.1976_1977insG	.	chr17:56435160	38.24%	NM_017763.6	frameshift Insertion
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	53.73%	NM_000463.3	missense
DOCK3	p.(?)	c.2002-1G>T	.	chr3:51274920	2.86%	NM_004947.5	unknown

Variant Details (continued)

Gene Fusions

Genes	Variant ID	Locus
ALK	ALK	chr2:29455169

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
HLA-B	chr6:31322252	0.77	0.63

Biomarker Descriptions

ALK imbalance

ALK receptor tyrosine kinase

Background: The ALK gene encodes the ALK receptor tyrosine kinase (RTK), which has sequence similarity to the insulin receptor subfamily of kinases³⁶. ALK is frequently altered in cancer, most commonly through chromosomal rearrangements that generate fusion genes containing the intact ALK tyrosine kinase domain combined with various partner genes³⁷. ALK fusion kinases are constitutively activated and drive oncogenic transformation via activation of downstream STAT3, PI3K/AKT/MTOR, and RAS/RAF/MEK/ERK pathways^{37,38,39,40}.

Alterations and prevalence: ALK was discovered by positional cloning of translocations involving nucleophosmin 1 (NPM1) on 5q35 with a previously unidentified RTK on 2p23 (ALK), which occur in over 50% of adult and over 80% of pediatric anaplastic large cell lymphoma (ALCL) cases^{36,41,42}. In contrast, about 5% of non-small cell lung cancer (NSCLC) cases generate recurrent ALK fusions with EML4, KIF5B, and HIP1^{43,44,45}. Notably, ALK F1174L, F1245C, and R1275Q mutations are found in over 80% of ALK-mutated neuroblastoma⁴⁶. ALK mutations have also been reported in 5% of pediatric soft tissue sarcomas and less than 1.5% of other solid and hematological malignancies, including peripheral nervous system tumors, gliomas, leukemia, and bone cancer^{4,5}.

Potential relevance: The first-generation small molecule tyrosine kinase inhibitor (TKI), crizotinib⁴⁷, was FDA approved (2011) for the treatment of adults with ALK-positive advanced NSCLC, as well as pediatric and adult populations with ALK-positive ALCL or inflammatory myofibroblastic tumor (IMT). ALK fusions are a diagnostic marker of infant-type hemispheric glioma and ALK-rearranged renal cell carcinoma^{48,49,50}. Kinase domain mutations including L1196M, G1269A, F1174L, G1202R, as well as other variants, have been shown to confer acquired resistance to crizotinib in ALK-positive NSCLC^{51,52,53,54}. Other mechanisms of acquired resistance involve amplification of the ALK fusion gene and activation of alternate or bypass signaling pathways involving EGFR, KIT, MET, and IGF1R⁵⁵. In order to overcome acquired resistance, second- and third-generation ALK inhibitors including ceritinib⁵⁶ (2014), alectinib⁵⁷ (2015), brigatinib⁵⁸ (2017), lorlatinib⁵⁹ (2018), and ensartinib⁶⁰ (2024) were developed and approved for adults by the FDA. The FDA granted breakthrough therapy designation (2024) to NVL-655⁶¹ for locally advanced or metastatic ALK-positive NSCLC patients who have been previously treated with two or more ALK TKIs.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹⁴. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{15,16}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2¹⁷. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹⁸. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹⁸. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{19,20,21,22,23}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹⁶. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{15,16,20,24}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{15,16,25,26}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{25,26}.

Biomarker Descriptions (continued)

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab²⁷ (2014) and nivolumab²⁸ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab²⁷ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication²⁷. Dostarlimab²⁹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{21,30}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab³¹ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{21,32,33}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients³³. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{34,35}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{34,35}.

RNF43 p.(P660Sfs*87) c.1976_1977insG

ring finger protein 43

Background: The RNF43 gene encodes the ring finger protein 43¹. RNF43 is a transmembrane E3 ubiquitin ligase and a negative regulator of the Wnt signaling pathway^{2,3}. Wnt signaling leads to the expression of genes that control cell proliferation, migration, and cell polarity formation². RNF43 functions as a tumor suppressor and inhibits the Wnt pathway by ubiquitination and degradation of the Wnt receptor frizzled (FZD)^{2,3}.

Alterations and prevalence: Somatic mutations in RNF43 are observed in 14% endometrial carcinoma, 8% gastroesophageal junction cancer and colorectal adenocarcinoma, and 6% pancreatic adenocarcinoma^{4,5}. Somatic frameshift mutations in RNF43 including R117fs and G659fs are frequently observed in colorectal and endometrial cancers with microsatellite instability^{2,6,7}.

Potential relevance: Currently, no therapies are approved for RNF43 aberrations.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,62}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{62,63}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance⁶⁴. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{64,65,66,67}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38⁶⁸.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{4,5}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁸. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M⁹. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{10,11,12}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B¹³.

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{4,5}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{4,5}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,

Genes Assayed (continued)

Genes Assayed with Full Exon Coverage (continued)

CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERF1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	0.0%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hao et al. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer. *Cancers (Basel)*. 2016 Jun 8;8(6). PMID: 27338477
3. Tsukiyama et al. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. *Mol. Cell. Biol.* 2015 Jun 1;35(11):2007-23. PMID: 25825523
4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
5. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
6. Fennell et al. RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers. *Fam. Cancer.* 2018 Jan;17(1):63-69. PMID: 28573495
7. Giannakis et al. RNF43 is frequently mutated in colorectal and endometrial cancers. *Nat. Genet.* 2014 Dec;46(12):1264-6. PMID: 25344691
8. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
9. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
10. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
11. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
12. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
13. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel)*. 2020 Jul 2;12(7). PMID: 32630675
14. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
15. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
16. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
17. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
18. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
19. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
20. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
21. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
22. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
23. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
24. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
25. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
26. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
27. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
28. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
29. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
30. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf

References (continued)

32. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
33. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
34. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
35. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
36. Webb et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. *Expert Rev Anticancer Ther.* 2009 Mar;9(3):331-56. PMID: 19275511
37. Shaw et al. Tyrosine kinase gene rearrangements in epithelial malignancies. *Nat. Rev. Cancer.* 2013 Nov;13(11):772-87. PMID: 24132104
38. Chiarle et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. *Nat. Med.* 2005 Jun;11(6):623-9. PMID: 15895073
39. Bai et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. *Blood.* 2000 Dec 15;96(13):4319-27. PMID: 11110708
40. Hrustanovic et al. RAS signaling in ALK fusion lung cancer. *Small GTPases.* 2016;7(1):32-3. PMID: 26901483
41. Morris et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. *Science.* 1994 Mar 4;263(5151):1281-4. PMID: 8122112
42. Shreenivas et al. ALK fusions in the pan-cancer setting: another tumor-agnostic target?. *NPJ Precis Oncol.* 2023 Sep 29;7(1):101. PMID: 37773318
43. Kwak et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. *N. Engl. J. Med.* 2010 Oct 28;363(18):1693-703. PMID: 20979469
44. Yu et al. Frequencies of ALK rearrangements in lung adenocarcinoma subtypes: a study of 2299 Chinese cases. *Springerplus.* 2016 Jun 27;5(1):894. doi: 10.1186/s40064-016-2607-5. eCollection 2016. PMID: 27386342
45. Dai et al. Incidence and patterns of ALK FISH abnormalities seen in a large unselected series of lung carcinomas. *Send to Mol Cytogenet.* 2012 Dec 3;5(1):44. doi: 10.1186/1755-8166-5-44. PMID: 23198868
46. Rosswog et al. Genomic ALK alterations in primary and relapsed neuroblastoma. *Br J Cancer.* 2023 Apr;128(8):1559-1571. PMID: 36807339
47. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202570s036lbl.pdf
48. NCCN Guidelines® - NCCN-Pediatric Central Nervous System Cancers [Version 3.2025]
49. Mossé. Anaplastic Lymphoma Kinase as a Cancer Target in Pediatric Malignancies. *Clin Cancer Res.* 2016 Feb 1;22(3):546-52. PMID: 26503946
50. Zhang et al. Genomic alterations and diagnosis of renal cancer. *Virchows Arch.* 2024 Feb;484(2):323-337. PMID: 37999735
51. Choi et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. *N. Engl. J. Med.* 2010 Oct 28;363(18):1734-9. PMID: 20979473
52. Awad et al. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. *Clin Adv Hematol Oncol.* 2014 Jul;12(7):429-39. PMID: 25322323
53. Kim et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. *J Thorac Oncol.* 2013 Apr;8(4):415-22. PMID: 23344087
54. Katayama et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. *Sci Transl Med.* 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25. PMID: 22277784
55. Katayama. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. *Cancer Sci.* 2018 Mar;109(3):572-580. PMID: 29336091
56. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/211225s004lbl.pdf
57. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208434s015lbl.pdf
58. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208772s013lbl.pdf
59. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf
60. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218171s000lbl.pdf
61. <https://investors.nuvalent.com/2024-05-16-Nuvalent-Receives-U-S-FDA-Breakthrough-Therapy-Designation-for-NVL-655>

References (continued)

62. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxification. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
63. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
64. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
65. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
66. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget.* 2017 Jan 10;8(2):3640-3648. PMID: 27690298
67. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One.* 2015;10(5):e0127524. PMID: 26010150
68. Karas et al. *JCO Oncol Pract.* 2021 Dec 3:OP2100624. PMID: 34860573