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Gene Finding Gene Finding

ALK ALK imbalance NRAS None detected
ARAF None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
CSF1R None detected NTRK3 None detected
KRAS None detected PIK3CA None detected
MAP2K1 None detected RAF1 None detected
MAP2K2 None detected RET None detected

Relevant Histiocytic and Dendritic Cell Neoplasms Findings

 

Relevant Biomarkers
 
No biomarkers associated with relevant evidence found in this sample

Prevalent cancer biomarkers without relevant evidence based on included data sources
ALK imbalance, Microsatellite stable, RNF43 p.(P660Sfs*87) c.1976_1977insG, UGT1A1 p.(G71R) c.211G>A, HLA-B deletion,
Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

RNF43 p.(P660Sfs*87) c.1976_1977insG . chr17:56435160 38.24% NM_017763.6 frameshift
Insertion

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 53.73% NM_000463.3 missense

DOCK3 p.(?) c.2002-1G>T . chr3:51274920 2.86% NM_004947.5 unknown

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Genes Variant ID Locus

ALK ALK chr2:29455169

Gene Fusions

 

 
Gene Locus Copy Number CNV Ratio

HLA-B chr6:31322252 0.77 0.63

Copy Number Variations

 

Variant Details (continued)

 
ALK imbalance

ALK receptor tyrosine kinase

Background: The ALK gene encodes the ALK receptor tyrosine kinase (RTK), which has sequence similarity to the insulin receptor
subfamily of kinases36. ALK is frequently altered in cancer, most commonly through chromosomal rearrangements that generate
fusion genes containing the intact ALK tyrosine kinase domain combined with various partner genes37. ALK fusion kinases are
constitutively activated and drive oncogenic transformation via activation of downstream STAT3, PI3K/AKT/MTOR, and RAS/RAF/
MEK/ERK pathways37,38,39,40.

Alterations and prevalence: ALK was discovered by positional cloning of translocations involving nucleophosmin 1 (NPM1) on 5q35
with a previously unidentified RTK on 2p23 (ALK), which occur in over 50% of adult and over 80% of pediatric anaplastic large cell
lymphoma (ALCL) cases36,41,42. In contrast, about 5% of non-small cell lung cancer (NSCLC) cases generate recurrent ALK fusions
with EML4, KIF5B, and HIP143,44,45. Notably, ALK F1174L, F1245C, and R1275Q mutations are found in over 80% of ALK-mutated
neuroblastoma46. ALK mutations have also been reported in 5% of pediatric soft tissue sarcomas and less than 1.5% of other solid and
hematological malignancies, including peripheral nervous system tumors, gliomas, leukemia, and bone cancer4,5.

Potential relevance: The first-generation small molecule tyrosine kinase inhibitor (TKI), crizotinib47, was FDA approved (2011) for
the treatment of adults with ALK-positive advanced NSCLC, as well as pediatric and adult populations with ALK-positive ALCL or
inflammatory myofibroblastic tumor (IMT). ALK fusions are a diagnostic marker of infant-type hemispheric glioma and ALK-rearranged
renal cell carcinoma48,49,50. Kinase domain mutations including L1196M, G1269A, F1174L, G1202R, as well as other variants, have been
shown to confer acquired resistance to crizotinib in ALK-positive NSCLC51,52,53,54. Other mechanisms of acquired resistance involve
amplification of the ALK fusion gene and activation of alternate or bypass signaling pathways involving EGFR, KIT, MET, and IGF1R55.
In order to overcome acquired resistance, second- and third-generation ALK inhibitors including ceritinib56 (2014), alectinib57 (2015),
brigatinib58 (2017), lorlatinib59 (2018), and ensartinib60 (2024) were developed and approved for adults by the FDA. The FDA granted
breakthrough therapy designation (2024) to NVL-65561 for locally advanced or metastatic ALK-positive NSCLC patients who have been
previously treated with two or more ALK TKIs.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome14. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue15,16. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS217. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25018. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)18. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS19,20,21,22,23. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes16.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer15,16,20,24.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma15,16,25,26. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers25,26.

Biomarker Descriptions

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab27 (2014) and nivolumab28 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab27 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication27. Dostarlimab29 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer21,30. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab31 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location21,32,33. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients33. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors34,35. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers34,35.

RNF43 p.(P660Sfs*87) c.1976_1977insG

ring finger protein 43

Background: The RNF43 gene encodes the ring finger protein 431. RNF43 is a transmembrane E3 ubiquitin ligase and a negative
regulator of the Wnt signaling pathway2,3. Wnt signaling leads to the expression of genes that control cell proliferation, migration, and
cell polarity formation2. RNF43 functions as a tumor suppressor and inhibits the Wnt pathway by ubiquitination and degradation of the
Wnt receptor frizzled (FZD)2,3.

Alterations and prevalence: Somatic mutations in RNF43 are observed in 14% endometrial carcinoma, 8% gastroesophageal junction
cancer and colorectal adenocarcinoma, and 6% pancreatic adenocarcinoma4,5. Somatic frameshift mutations in RNF43 including
R117fs and G659fs are frequently observed in colorectal and endometrial cancers with microsatellite instability2,6,7.

Potential relevance: Currently, no therapies are approved for RNF43 aberrations.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily1,62. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites62,63. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance64. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation64,65,66,67. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-3868.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma4,5.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells8. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M9. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self10,11,12. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B13.

Biomarker Descriptions (continued)

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma4,5. Biallelic loss of HLA-
B is observed in 5% of DLBCL4,5.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Biomarker Descriptions (continued)

 

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,

Genes Assayed with Full Exon Coverage

 

Genes Assayed

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage (continued)

 

Genes Assayed (continued)

 

 
Gene/Genomic Alteration Finding

LOH percentage 0.0%
Not Detected Not Applicable

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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