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Gene Finding

BRAF None detected
FGFR2 None detected
FGFR3 None detected
NTRK1 None detected
NTRK2 None detected
NTRK3 None detected
RET None detected

Genomic Alteration Finding

Tumor Mutational Burden 14.24 Mut/Mb measured

Relevant Bladder Urothelial Carcinoma Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC CDKN2A deletion

cyclin dependent kinase inhibitor 2A
Locus: chr9:21968178

None* None* 6

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
ARID1B p.(Q1522*) c.4564_4568delCAGACinsTG, ERBB2 p.(D277Y) c.829G>T, Microsatellite stable, TP53 p.(R248W)
c.742C>T, XRCC2 p.(L227Pfs*3) c.679_680insC, TPMT amplification, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

ARID1B p.(Q1522*) c.4564_4568delCAGAC
insTG

. chr6:157522043 37.55% NM_001371656.1 nonsense

ERBB2 p.(D277Y) c.829G>T . chr17:37866662 33.54% NM_004448.4 missense

TP53 p.(R248W) c.742C>T COSM10656 chr17:7577539 32.40% NM_000546.6 missense

XRCC2 p.(L227Pfs*3) c.679_680insC . chr7:152345890 18.17% NM_005431.2 frameshift
Insertion

NQO1 p.(P187S) c.559C>T . chr16:69745145 99.15% NM_000903.3 missense

PIK3C2B p.(K818M) c.2453A>T . chr1:204416600 26.22% NM_002646.4 missense

ASXL2 p.(E363Q) c.1087G>C . chr2:25976458 21.58% NM_018263.6 missense

MSH2 p.(A72G) c.215C>G . chr2:47635543 17.65% NM_000251.3 missense

APC p.(E56Q) c.166G>C . chr5:112102053 13.13% NM_000038.6 missense

RAD50 p.(Q104H) c.312G>C . chr5:131911567 10.49% NM_005732.4 missense

TPMT p.(D162Y) c.484G>T . chr6:18139204 4.31% NM_000367.5 missense

HLA-A p.(I121R) c.362_363delTAinsGG . chr6:29911063 41.65% NM_001242758.1 missense

NBN p.(D555N) c.1663G>A . chr8:90965654 15.76% NM_002485.5 missense

TSC1 p.(?) c.2209-1G>C . chr9:135778175 33.77% NM_000368.5 unknown

KMT2D p.(Q2553E) c.7657C>G . chr12:49433896 3.14% NM_003482.4 missense

KMT2D p.(S2455L) c.7364C>T . chr12:49434189 6.72% NM_003482.4 missense

KMT2D p.(P2390S) c.7168C>T . chr12:49434385 8.50% NM_003482.4 missense

KMT2D p.(S2312L) c.6935C>T . chr12:49434618 9.67% NM_003482.4 missense

MLH3 p.(E787Q) c.2359G>C . chr14:75514000 22.76% NM_001040108.2 missense

CD276 p.(S233R) c.699C>G . chr15:73995393 7.50% NM_001024736.2 missense

SMAD4 p.(R38T) c.113G>C . chr18:48573529 5.48% NM_005359.6 missense

SMARCA4 p.(D1127V) c.3380A>T . chr19:11138624 14.19% NM_001128849.3 missense

CCNE1 p.(R31S) c.93G>T . chr19:30303665 5.01% NM_001238.4 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

CDKN2A chr9:21968178 0.48 0.69

TPMT chr6:18130879 8.43 2.28

FOXA1 chr14:38060550 0.4 0.68

Copy Number Variations

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression1. CDKN2A,
also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)62. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb63,64,65. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both
of which exhibit differential tumor suppressor functions66. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and
CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation1,66,67. CDKN2A
aberrations commonly co-occur with CDKN2B62. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways,
leading to uncontrolled cell proliferation68. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and
pancreatic cancer69,70.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number
loss, truncating, or missense mutations71. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell
carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of
esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach
adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma6,7. Biallelic
deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32%
of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic
adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and
cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical
carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma,
3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney
chromophobe6,7. Alterations in CDKN2A are also observed in pediatric cancers7. Biallelic deletion of CDKN2A is observed in 68% of
T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of
embryonal tumors7. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic
leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)7.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary
diagnostic markers of malignant peripheral nerve sheath tumors72,73,74. Additionally, deletion of CDKN2B is a molecular marker used in
staging Grade 4 pediatric IDH-mutant astrocytoma75. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A
LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib76,77,78. Alternatively,
CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme79. CDKN2A (p16)
expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive
head and neck cancer80,81,82,83.

ARID1B p.(Q1522*) c.4564_4568delCAGACinsTG

AT-rich interaction domain 1B

Background: The ARID1B gene encodes the AT-rich interaction domain 1B tumor suppressor protein1. ARID1B, also known as
BAF250B, belongs to the ARID1 subfamily that also includes ARID1A1,9. ARID1A and ARID1B are mutually exclusive subunits of the BAF
variant of the SWI/SNF chromatin remodeling complex9,10.The BAF complex is a multisubunit protein that consists of SMARCB1/IN1,
SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B10. The BAF complex remodels
chromatin at promoter and enhancer elements to alter and regulate gene expression10,11. Recurrent inactivating mutations in BAF
complex subunits, including ARID1B, lead to transcriptional dysfunction, suggesting ARID2B functions as a tumor suppressor9.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in
cancer and have been observed in 20% of all tumors11. Somatic mutations in ARID1B are observed in 9% of uterine corpus endometrial
carcinoma, 8% of cholangiocarcinoma, 7% of skin cutaneous melanoma, and 6% of stomach adenocarcinoma, bladder urothelial
carcinoma, and colorectal adenocarcinoma6,7. Biallelic loss of ARID1B is observed in 6% of uveal melanoma, 1% of bladder urothelial
carcinoma, stomach adenocarcinoma, skin cutaneous melanoma, and colorectal adenocarcinoma6,7.

Potential relevance: Currently, no therapies are approved for ARID1B aberrations. Mutations in chromatin modifying genes, including
ARID1B, are considered to be characteristic genetic features of hepatosplenic T-cell lymphoma (HSTL), as they have been observed in
up to 62% of cases12,13.

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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ERBB2 p.(D277Y) c.829G>T

erb-b2 receptor tyrosine kinase 2

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor
(HER) family1. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family84. All
ERBB/HER proteins encode transmembrane receptor tyrosine kinases85. However, ERBB2/HER2 is an orphan receptor with no known
ligand85. ERBB2 preferentially binds other ligand-bound ERBB/HER family members to form heterodimers resulting in the activation of
ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which
promote cell proliferation, differentiation, and survival86. Recurrent focal amplification of the ERBB2 gene leads to increased expression
in several cancer types86. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and
activation without ligand binding87,88,89.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-25% of breast, esophageal, and gastric cancers, 5-10% of bladder,
cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers6,7,90,91,92,93,94,95. ERBB2 gene amplification in
pediatric population is observed in 2% of peripheral nervous system cancers (2 in 91 patients) and less than 1% of leukemia (1 in 250
cases)7. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types7,96,97. In breast,
bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and
V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include
in-frame exon 20 insertions, particularly Y772_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of
trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER298,99. Trastuzumab100 was
FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and
gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for
HER2-positive breast cancer including pertuzumab101 (2012), a humanized monoclonal antibody that inhibits HER2 dimerization,
and ado-trastuzumab emtansine102 (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination
of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer103. In
addition to monoclonal antibodies, the small molecule inhibitor lapatinib104, with specificity for both EGFR and ERBB2, was FDA
approved (2007) for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including
trastuzumab. In 2017, the FDA approved the use of neratinib105, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4,
for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved
neratinib105 in combination with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2-
directed therapies. Also in 2020, the TKI irbinitinib106 was FDA approved for HER2 overexpressing or amplified breast cancer
in combination with trastuzumab and capecitabine. In 2021, the PD-1 blocking antibody, pembrolizumab, in combination with
trastuzumab, fluoropyrimidine- and platinum-based chemotherapy, was approved for HER2 amplified gastric or gastroesophageal
(GEJ) adenocarcinoma in the first line50. In 2024, a bispecific HER2 antibody, zanidatamab107, was approved for the treatment of adults
with previously treated, unresectable or metastatic ERBB2 overexpressing biliary tract cancer. In 2018 fast track designation was
granted to the monoclonal antibody margetuximab108 in patients with ERBB2 positive breast cancer previously treated with an anti-
HER2 therapy. Additionally, in 2019, zanidatamab109, received fast track designation in combination with standard chemotherapy for
patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA). The humanized anti-HER2 antibody drug conjugate
disitamab vedotin110 (2020) received breakthrough designation for adult patients with HER2-positive urothelial cancer after previous
platinum-chemotherapy treatment. In 2021, the antibody-drug conjugate ARX788111 received fast track designation as a monotherapy
for advanced or metastatic HER2-positive breast cancer that have progressed on one or more anti-HER2 regimens. Certain activating
mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacomitinib in early and
ongoing clinical studies112,113,114,115,116. ERBB2 kinase domain mutations R896G and V659E both showed response to afatinib in two
NSCLC case studies117,118. Additionally, acquired HER2 mutations in estrogen receptor-positive (ER+) breast cancer have been shown
to confer resistance to hormone therapy119. However, this was shown to be overcome by neratinib in combination with therapies
targeting ER119. Additionally, in 2025, FDA approved the kinase inhibitors zongertinib120 and sevabertinib121 for the treatment of adult
patients with unresectable or metastatic non-squamous non-small cell lung cancer (NSCLC) whose tumors have HER2 tyrosine kinase
domain activating mutations. In 2025, a 9 amino acid transmembrane peptide of the HER2/neu protein, GLSI-100 (GP-2)122, received
fast track designation for the prevention of breast cancer recurrence following surgery.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome37. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue38,39. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS240. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25041. Tumors with instability in one of the five markers were defined as

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)41. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS42,43,44,45,46. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes39.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer38,39,43,47.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma38,39,48,49. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers48,49.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab50 (2014) and nivolumab51 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab50 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication50. Dostarlimab52 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer44,53. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab54 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location44,55,56. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients56. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors57,58. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers57,58.

TP53 p.(R248W) c.742C>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis14. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential15. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers16,17.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)6,7,18,19,20,21. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2826,7. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes22,23,24,25. Alterations in TP53 are also
observed in pediatric cancers6,7. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)6,7. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)6,7.

Potential relevance: The small molecule p53 reactivator, PC1458626 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation27,28. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma29. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)30,31,32,33,34. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant35. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system36.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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XRCC2 p.(L227Pfs*3) c.679_680insC

X-ray repair cross complementing 2

Background: The XRCC2 gene encodes the X-ray repair cross complementing 2 protein, also known as FANCU, a member of the RAD51
recombinase family that also includes RAD51, RAD51C, RAD51D, and XRCC3 paralogs1,2,3. XRCC2 forms the BCDX2 complex with
other RAD51 paralogs, RAD51B, RAD51C, and RAD51D2,3. The BCDX2 complex binds single- and double-stranded DNA to hydrolyze
ATP4. XRCC2 regulates the assembly of RAD51 filaments to assist in strand-exchange activity during homologous recombination
repair (HRR)2,3. XRCC2 germline biallelic mutations result in Fanconi Anemia (FA) complementation group U, an atypical form of FA
associated with defects in HRR5.

Alterations and prevalence: Somatic mutations in XRCC2 are observed in 3% of uterine corpus endometrial carcinoma and 2% of
diffuse large B-cell lymphoma (DLBCL), uterine carcinosarcoma, and colorectal adenocarcinoma6,7. Biallelic deletions in XRCC2 are
observed in 2% of acute myeloid leukemia (AML), sarcoma, and esophageal adenocarcinoma6,7.

Potential relevance: Currently, no therapies are approved for XRCC2 aberrations. Pre-clinical evidence suggests that XRCC2 biallelic
mutations may demonstrate sensitivity to the PARP inhibitor olaparib8.

TPMT amplification

thiopurine S-methyltransferase

Background: The TPMT gene encodes thiopurine S-methyltransferase, a cytosolic enzyme that methylates aromatic and heterocyclic
sulfhydryl compounds such as thiopurines1,59,60. TPMT is the major enzyme responsible for the metabolic inactivation of thiopurine
chemotherapeutic drugs used in the treatment of acute lymphoblastic leukemia (ALL), including, 6-mercaptopurine, 6-thioguanine,
and azathioprine59,60,61. Inherited TPMT polymorphisms, including TPMT*2, TPMT*3A, TPMT*3B, TPMT*3C, and TPMT*8, can result in
TPMT deficiency, which is characterized by impaired enzymatic activity and confers an increased risk of severe toxicity to thiopurine
drugs due to an increase in systemic drug exposure59,61.

Alterations and prevalence: Somatic mutations in TPMT are observed in 2% of uterine corpus endometrial carcinoma and colorectal
adenocarcinoma6,7. Biallelic loss of TPMT is observed in 1% of stomach adenocarcinoma, esophageal adenocarcinoma, and
adrenocortical carcinoma6,7. Amplification of TPMT is observed in 7% of ovarian serous cystadenocarcinoma, 6% of bladder urothelial
carcinoma, 4% of diffuse large B-cell lymphoma, uveal melanoma, uterine carcinosarcoma, and skin cutaneous melanoma, 3%
of cholangiocarcinoma, and 2% of breast invasive carcinoma, uterine corpus endometrial carcinoma, and liver hepatocellular
carcinoma6,7. Alterations in TPMT are also observed in pediatric cancers7. Somatic mutations are observed in less than 1% of
peripheral nervous system tumors (1 in 1158 cases)7. Amplification of TPMT is observed in 1% of peripheral nervous system tumors (1
in 91 cases)7.

Potential relevance: Currently, no therapies are approved for TPMT aberrations.

Biomarker Descriptions (continued)

 

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib      (II)

palbociclib, abemaciclib      (II)

AMG 193      (I/II)

tislelizumab, palbociclib      (I/II)

ABSK-131      (I)

CID-078      (I)

CDKN2A deletion

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 18.93%
RAD51B LOH, 14q24.1(68290164-69061406)x2

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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