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Gene Finding

BRAF None detected
ERBB2 None detected
KRAS None detected
NTRK1 None detected
NTRK2 None detected
NTRK3 None detected
RET None detected

Genomic Alteration Finding

Tumor Mutational Burden 6.63 Mut/Mb measured

Relevant Gallbladder Carcinoma Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC PIK3CA p.(E542K) c.1624G>A

phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha
Allele Frequency: 11.02%
Locus: chr3:178936082
Transcript: NM_006218.4

None* inavolisib + palbociclib + hormone
therapy 1, 2 / I

alpelisib + hormone therapy 1, 2 / II+

capivasertib + hormone therapy 1, 2 / II

+

aspirin II+

5

  
IIC FANCL deletion

Fanconi anemia complementation group L
Locus: chr2:58386886

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
FGFR3 p.(P250R) c.749C>G, MAP2K7 deletion, Microsatellite stable, TP53 p.(Q100*) c.298C>T, HLA-B deletion, Tumor
Mutational Burden

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

PIK3CA p.(E542K) c.1624G>A COSM760 chr3:178936082 11.02% NM_006218.4 missense

FGFR3 p.(P250R) c.749C>G . chr4:1803571 42.53% NM_000142.5 missense

TP53 p.(Q100*) c.298C>T . chr17:7579389 33.67% NM_000546.6 nonsense

MAML3 p.(Q489Tfs*29) c.1455_1506delACAGC
AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACAGA
CAGCCAGCAGCAGCA
GCAGCAGCAGCAA

. chr4:140811084 3.86% NM_018717.5 frameshift Block
Substitution

MAML3 p.(Q491Pfs*32) c.1455_1506delACAGC
AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACAGC
AACAGCCAGCAGCAG
CAGCAGCAGCAGCAA

. chr4:140811084 96.14% NM_018717.5 frameshift Block
Substitution

HLA-B p.([T118I;L119I]) c.353_355delCCCinsT
CA

. chr6:31324208 100.00% NM_005514.8 missense,
missense

TSC2 p.(A1185V) c.3554C>T . chr16:2130322 51.03% NM_000548.5 missense

RNF43 p.(S478P) c.1432T>C . chr17:56435705 63.47% NM_017763.6 missense

STK11 p.(S216F) c.647C>T . chr19:1220629 24.07% NM_000455.5 missense

CIC p.(R1214Q) c.3641G>A . chr19:42797279 77.54% NM_015125.5 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

FANCL chr2:58386886 1 0.93

MAP2K7 chr19:7968792 0.3 0.66

HLA-B chr6:31322252 0.2 0.64

Copy Number Variations

 

Variant Details

 
PIK3CA p.(E542K) c.1624G>A

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I
phosphatidylinositol 3-kinase (PI3K) enzyme70. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one
of four p110 catalytic subunits to activated tyrosine protein kinases71,72. The p110 catalytic subunits include p110α, β, δ, γ and are
encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively71. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-
bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog
(PTEN) catalyzes the reverse reaction73,74. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and
metabolism73,74,75,76. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR
pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion,
and genetic instability77,78,79.

Biomarker Descriptions

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Alterations and prevalence: Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9
and 20 due to exon 1 being untranslated)80,81. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon
21 kinase (codon H1047) domains, each having distinct mechanisms of activation82,83,84. Somatic mutations in PIK3CA are observed
in 50% of uterine corpus endometrial carcinoma, 35% of uterine carcinosarcoma, 32% of breast invasive carcinoma, 29% of cervical
squamous cell carcinoma, 28% of colorectal adenocarcinoma, 22% of bladder urothelial carcinoma, 17% of head and neck squamous
cell carcinoma, 16% of stomach adenocarcinoma, 11% of lung squamous cell carcinoma, 9% of esophageal adenocarcinoma, 8%
of brain lower grade glioma, 6% of cholangiocarcinoma, 5% of skin cutaneous melanoma and lung adenocarcinoma, 4% of liver
hepatocellular carcinoma, 3% of pancreatic adenocarcinoma and sarcoma, and 2% of mesothelioma, prostate adenocarcinoma,
testicular germ cell tumors, and ovarian serous cystadenocarcinoma8,9. PIK3CA is amplified in 38% of lung squamous cell carcinoma,
20% of ovarian serous cystadenocarcinoma, 18% of esophageal adenocarcinoma, 16% of head and neck squamous cell carcinoma,
15% of cervical squamous cell carcinoma, 11% of uterine carcinosarcoma, 7% of uterine corpus endometrial carcinoma, 5% of stomach
adenocarcinoma, 4% of bladder urothelial carcinoma, 3% of breast invasive carcinoma and pancreatic adenocarcinoma, and 2% of
prostate adenocarcinoma, lung adenocarcinoma, and kidney renal clear cell carcinoma8,9. Alterations in PIK3CA are also observed in
pediatric cancers9. Somatic mutations in PIK3CA are observed in 6% of non-Hodgkin Lymphoma (1 in 17 cases), 4% of glioma (11 in
297 cases), 3% of soft tissue sarcoma (1 in 38 patients), 2% of embryonal tumors (6 in 332 cases), 1% of leukemia (5 in 354 cases),
and less than 1% of bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (2 in 252 cases), and peripheral nervous
system tumors (1 in 1158 cases)9.

Potential relevance: The PI3K inhibitor, alpelisib85, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients
with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or
metastatic breast cancer. Specifically, exon 21 H1047R mutations were associated with more durable clinical responses in comparison
to exon 10 E545K mutations86. However, alpelisib did not improve response when administered with letrozole in patients with ER
+ early breast cancer with PIK3CA mutations87. The FDA also approved the kinase inhibitor, capivasertib (2023)88 in combination
with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/
PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib89, is also FDA-approved (2024) in
combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and
HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response
in PIK3CA mutated refractory cancers90,91. In colorectal cancers, PIK3CA mutations predict significantly improved survival and reduced
disease recurrence with adjuvant aspirin therapy, compared to no benefit in wild-type PIK3CA tumors51,60,92,93. In 2025, the FDA granted
fast track designation to the PI3Kα inhibitor and degrader, ETX-63694, for the treatment of PIK3CA-mutant, HR-positive/HER-negative
advanced breast cancer.

FANCL deletion

Fanconi anemia complementation group L

Background: The FANCL gene encodes the FA complementation group L protein, a member of Fanconi Anemia (FA) family, which
also includes FANCA, FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (BRIP1), FANCM and
FANCN (PALB2)1. FA genes are tumor suppressors that are responsible for the maintenance of replication fork stability, DNA damage
repair through the removal of interstrand cross-links (ICL), and subsequent initiation of the homologous recombination repair (HRR)
pathway10,11. In response to DNA damage, FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM assemble to form the
FA core complex which is responsible for the monoubiquitination of the FANCI-FANCD2 (ID2) complex10. Monoubiquitination of the ID2
complex promotes co-localization with BRCA1/2, which is critical in BRCA mediated DNA repair12,13. Loss of function mutations in the
FA family and HRR pathway can result in the BRCAness phenotype, characterized by a defect in the HRR pathway, mimicking BRCA1
or BRCA2 loss14,15. Germline mutations in FA genes lead to Fanconi Anemia, a condition characterized by chromosomal instability and
congenital abnormalities, including bone marrow failure and cancer predisposition16,17.

Alterations and prevalence: Somatic mutations in FANCL are observed in 2% of diffuse large B-cell lymphoma (DLBCL), uterine corpus
endometrial carcinoma, colorectal adenocarcinoma, and cervical squamous cell carcinoma, and 1% of skin cutaneous melanoma,
uveal melanoma, lung squamous cell carcinoma, bladder urothelial carcinoma and stomach adenocarcinoma8,9.

Potential relevance: The PARP inhibitor, olaparib18 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with
deleterious or suspected deleterious germline or somatic mutations in HRR genes, including FANCL. Inhibitors targeting PARP induce
synthetic lethality in HRR deficient cells19. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex20,
for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

FGFR3 p.(P250R) c.749C>G

fibroblast growth factor receptor 3

Background: The FGFR3 gene encodes fibroblast growth receptor 3, a member of the fibroblast growth-factor receptor (FGFR)
family that also includes FGFR1, 2, and 41. These proteins are single-transmembrane receptors composed of three extracellular

Biomarker Descriptions (continued)
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immunoglobulin (Ig)-type domains and an intracellular kinase domain95. Upon FGF-mediated stimulation, FGFRs activate several
oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell
proliferation, migration, and survival96,97,98.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions; the
majority of these aberrations result in gain of function99. Missense mutations that occur in the extracellular immunoglobulin-like and
transmembrane domains of FGFR3, including S249C, R248C, and Y373C, cause ligand-independent dimerization and constitutive
activation of FGFR3100,101,102. Recurrent somatic mutations in FGFR3 are observed in 14% of bladder urothelial carcinoma, 5% of
skin cutaneous melanoma, 4% of uterine corpus endometrial carcinoma, 3% of colorectal adenocarcinoma, and 2% of stomach
adenocarcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, kidney renal papillary cell carcinoma, and
uterine carcinosarcoma8,9. FGFR3 fusions are observed in 2% of bladder urothelial carcinoma and cervical squamous cell carcinoma8,9.
FGFR3 amplification is observed in 14% of uterine carcinosarcoma, 5% of ovarian serous cystadenocarcinoma, 4% of bladder urothelial
carcinoma, 3% of adrenocortical carcinoma, uterine corpus endometrial carcinoma, cholangiocarcinoma, and 2% of pancreatic
adenocarcinoma, sarcoma, and esophageal adenocarcinoma8,9. Alterations in FGFR3 are also observed in the pediatric population9.
Somatic mutations are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of embryonal tumor (2
in 332 cases), bone cancer (1 in 327 cases), and leukemia (1 in 354 cases)9. FGFR3 amplification is observed in 9% of Wilms tumor (12
in 136 cases) and 1% of B-lymphoblastic leukemia/lymphoma (9 in 731 cases) and leukemia (2 in 250 cases)9.

Potential relevance: The pan-FGFR inhibitor, erdafitinib103, received FDA approval (2019) for the treatment of locally advanced or
metastatic urothelial cancer that is positive for FGFR2 fusions, FGFR3 fusions including FGFR3::TACC3 and FGFR3::BAIAP2L1, and
FGFR3 gene mutations including R248C, S249C, G370C, and Y373C. Unregulated activation of FGFR3 has been associated with
resistance to tamoxifen in ER-positive breast cancer104.

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK71. MAP2K7 is involved
in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK1066,67,68. Activation of MAPK
proteins occurs through a kinase signaling cascade66,67,69. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family
members66,67,69. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved
in several cellular processes including cell proliferation, differentiation, and inflammation66,67,69.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal
adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma8,9. Biallelic deletions are observed in
4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma8,9.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome44. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue45,46. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS247. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25048. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)48. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS49,50,51,52,53. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes46.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer45,46,50,54.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma45,46,55,56. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers55,56.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab57 (2014) and nivolumab58 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab57 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be

Biomarker Descriptions (continued)
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approved with a tumor agnostic indication57. Dostarlimab59 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer51,60. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab61 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location51,62,63. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients63. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors64,65. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers64,65.

TP53 p.(Q100*) c.298C>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis21. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential22. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers23,24.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)8,9,25,26,27,28. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,9. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes29,30,31,32. Alterations in TP53 are also
observed in pediatric cancers8,9. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)8,9. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)8,9.

Potential relevance: The small molecule p53 reactivator, PC1458633 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation34,35. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma36. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)37,38,39,40,41. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant42. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system43.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self4,5,6. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B7.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma8,9. Biallelic loss of HLA-
B is observed in 5% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Biomarker Descriptions (continued)
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ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).



Report Date: 02 Jan 2026 7 of 12

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

alpelisib + fulvestrant     

capivasertib + fulvestrant     

inavolisib + palbociclib + fulvestrant     

aspirin     

ETX-636      (I/II)

HTL-0039732, atezolizumab      (I/II)

JS-105      (I)

RLY-2608      (I)

SNV-4818, hormone therapy      (I)

PIK3CA p.(E542K) c.1624G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pamiparib, tislelizumab      (II)

FANCL deletion

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 35.14%
BRCA1 LOH, 17q21.31(41197602-41276231)x2
BRCA2 LOH, 13q13.1(32890491-32972932)x2
BRIP1 LOH, 17q23.2(59760627-59938976)x2
CDK12 LOH, 17q12(37618286-37687611)x2
FANCL CNV, CN:1.0
FANCL LOH, 2p16.1(58386886-58468467)x1
RAD51C LOH, 17q22(56769933-56811619)x2
RAD51D LOH, 17q12(33427950-33446720)x2

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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