

Patient Name: 송진숙
Gender: F
Sample ID: N25-348

Primary Tumor Site: gallbladder
Collection Date: 2025.12.08

Sample Cancer Type: Gallbladder Carcinoma

Table of Contents

Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	7

Page

Report Highlights

2 Relevant Biomarkers
4 Therapies Available
6 Clinical Trials

Relevant Gallbladder Carcinoma Findings

Gene	Finding
BRAF	None detected
ERBB2	None detected
KRAS	None detected
NTRK1	None detected
NTRK2	None detected
NTRK3	None detected
RET	None detected
Genomic Alteration	Finding
Tumor Mutational Burden	6.63 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	<i>PIK3CA p.(E542K) c.1624G>A</i> phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha Allele Frequency: 11.02% Locus: chr3:178936082 Transcript: NM_006218.4	None*	inavolisib + palbociclib + hormone therapy ^{1,2 / I} alpelisib + hormone therapy ^{1,2 / II+} capivasertib + hormone therapy ^{1,2 / II} + aspirin ^{II+}	5
IIC	<i>FANCL deletion</i> Fanconi anemia complementation group L Locus: chr2:58386886	None*	None*	1

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

FGFR3 p.(P250R) c.749C>G, MAP2K7 deletion, Microsatellite stable, TP53 p.(Q100) c.298C>T, HLA-B deletion, Tumor Mutational Burden*

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
PIK3CA	p.(E542K)	c.1624G>A	COSM760	chr3:178936082	11.02%	NM_006218.4	missense
FGFR3	p.(P250R)	c.749C>G	.	chr4:1803571	42.53%	NM_000142.5	missense
TP53	p.(Q100*)	c.298C>T	.	chr17:7579389	33.67%	NM_000546.6	nonsense
MAML3	p.(Q489Tfs*29)	c.1455_1506delACAGC . AACAGCAACAGCAGC AGCAGCAGCAGCAGC AGCAGCAGCAGCAGC AGinsGCAGCAACAGA CAGCCAGCAGCAGCA GCAGCAGCAGCAA	.	chr4:140811084	3.86%	NM_018717.5	frameshift Block Substitution
MAML3	p.(Q491Pfs*32)	c.1455_1506delACAGC . AACAGCAACAGCAGC AGCAGCAGCAGCAGC AGCAGCAGCAGCAGC AGinsGCAGCAACAGC AACAGCCAGCAGCAG CAGCAGCAGCAGCAA	.	chr4:140811084	96.14%	NM_018717.5	frameshift Block Substitution
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT . CA	.	chr6:31324208	100.00%	NM_005514.8	missense, missense
TSC2	p.(A1185V)	c.3554C>T	.	chr16:2130322	51.03%	NM_000548.5	missense
RNF43	p.(S478P)	c.1432T>C	.	chr17:56435705	63.47%	NM_017763.6	missense
STK11	p.(S216F)	c.647C>T	.	chr19:1220629	24.07%	NM_000455.5	missense
CIC	p.(R1214Q)	c.3641G>A	.	chr19:42797279	77.54%	NM_015125.5	missense

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
FANCL	chr2:58386886	1	0.93
MAP2K7	chr19:7968792	0.3	0.66
HLA-B	chr6:31322252	0.2	0.64

Biomarker Descriptions

PIK3CA p.(E542K) c.1624G>A

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme⁷⁰. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{71,72}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively⁷¹. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{73,74}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{73,74,75,76}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{77,78,79}.

Biomarker Descriptions (continued)

Alterations and prevalence: Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being untranslated)^{80,81}. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047) domains, each having distinct mechanisms of activation^{82,83,84}. Somatic mutations in PIK3CA are observed in 50% of uterine corpus endometrial carcinoma, 35% of uterine carcinosarcoma, 32% of breast invasive carcinoma, 29% of cervical squamous cell carcinoma, 28% of colorectal adenocarcinoma, 22% of bladder urothelial carcinoma, 17% of head and neck squamous cell carcinoma, 16% of stomach adenocarcinoma, 11% of lung squamous cell carcinoma, 9% of esophageal adenocarcinoma, 8% of brain lower grade glioma, 6% of cholangiocarcinoma, 5% of skin cutaneous melanoma and lung adenocarcinoma, 4% of liver hepatocellular carcinoma, 3% of pancreatic adenocarcinoma and sarcoma, and 2% of mesothelioma, prostate adenocarcinoma, testicular germ cell tumors, and ovarian serous cystadenocarcinoma^{8,9}. PIK3CA is amplified in 38% of lung squamous cell carcinoma, 20% of ovarian serous cystadenocarcinoma, 18% of esophageal adenocarcinoma, 16% of head and neck squamous cell carcinoma, 15% of cervical squamous cell carcinoma, 11% of uterine carcinosarcoma, 7% of uterine corpus endometrial carcinoma, 5% of stomach adenocarcinoma, 4% of bladder urothelial carcinoma, 3% of breast invasive carcinoma and pancreatic adenocarcinoma, and 2% of prostate adenocarcinoma, lung adenocarcinoma, and kidney renal clear cell carcinoma^{8,9}. Alterations in PIK3CA are also observed in pediatric cancers⁹. Somatic mutations in PIK3CA are observed in 6% of non-Hodgkin Lymphoma (1 in 17 cases), 4% of glioma (11 in 297 cases), 3% of soft tissue sarcoma (1 in 38 patients), 2% of embryonal tumors (6 in 332 cases), 1% of leukemia (5 in 354 cases), and less than 1% of bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (2 in 252 cases), and peripheral nervous system tumors (1 in 1158 cases)⁹.

Potential relevance: The PI3K inhibitor, alpelisib⁸⁵, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Specifically, exon 21 H1047R mutations were associated with more durable clinical responses in comparison to exon 10 E545K mutations⁸⁶. However, alpelisib did not improve response when administered with letrozole in patients with ER + early breast cancer with PIK3CA mutations⁸⁷. The FDA also approved the kinase inhibitor, capivasertib (2023)⁸⁸ in combination with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib⁸⁹, is also FDA-approved (2024) in combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers^{90,91}. In colorectal cancers, PIK3CA mutations predict significantly improved survival and reduced disease recurrence with adjuvant aspirin therapy, compared to no benefit in wild-type PIK3CA tumors^{51,60,92,93}. In 2025, the FDA granted fast track designation to the PI3K α inhibitor and degrader, ETX-636⁹⁴, for the treatment of PIK3CA-mutant, HR-positive/HER-negative advanced breast cancer.

FANCL deletion

Fanconi anemia complementation group L

Background: The FANCL gene encodes the FA complementation group L protein, a member of Fanconi Anemia (FA) family, which also includes FANCA, FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (BRIP1), FANCM and FANCN (PALB2)¹. FA genes are tumor suppressors that are responsible for the maintenance of replication fork stability, DNA damage repair through the removal of interstrand cross-links (ICL), and subsequent initiation of the homologous recombination repair (HRR) pathway^{10,11}. In response to DNA damage, FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM assemble to form the FA core complex which is responsible for the monoubiquitination of the FANCI-FANCD2 (ID2) complex¹⁰. Monoubiquitination of the ID2 complex promotes co-localization with BRCA1/2, which is critical in BRCA mediated DNA repair^{12,13}. Loss of function mutations in the FA family and HRR pathway can result in the BRCAness phenotype, characterized by a defect in the HRR pathway, mimicking BRCA1 or BRCA2 loss^{14,15}. Germline mutations in FA genes lead to Fanconi Anemia, a condition characterized by chromosomal instability and congenital abnormalities, including bone marrow failure and cancer predisposition^{16,17}.

Alterations and prevalence: Somatic mutations in FANCL are observed in 2% of diffuse large B-cell lymphoma (DLBCL), uterine corpus endometrial carcinoma, colorectal adenocarcinoma, and cervical squamous cell carcinoma, and 1% of skin cutaneous melanoma, uveal melanoma, lung squamous cell carcinoma, bladder urothelial carcinoma and stomach adenocarcinoma^{8,9}.

Potential relevance: The PARP inhibitor, olaparib¹⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious germline or somatic mutations in HRR genes, including FANCL. Inhibitors targeting PARP induce synthetic lethality in HRR deficient cells¹⁹. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex²⁰, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

FGFR3 p.(P250R) c.749C>G

fibroblast growth factor receptor 3

Background: The FGFR3 gene encodes fibroblast growth receptor 3, a member of the fibroblast growth-factor receptor (FGFR) family that also includes FGFR1, 2, and 4¹. These proteins are single-transmembrane receptors composed of three extracellular

Biomarker Descriptions (continued)

immunoglobulin (Ig)-type domains and an intracellular kinase domain⁹⁵. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{96,97,98}.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions; the majority of these aberrations result in gain of function⁹⁹. Missense mutations that occur in the extracellular immunoglobulin-like and transmembrane domains of FGFR3, including S249C, R248C, and Y373C, cause ligand-independent dimerization and constitutive activation of FGFR3^{100,101,102}. Recurrent somatic mutations in FGFR3 are observed in 14% of bladder urothelial carcinoma, 5% of skin cutaneous melanoma, 4% of uterine corpus endometrial carcinoma, 3% of colorectal adenocarcinoma, and 2% of stomach adenocarcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, kidney renal papillary cell carcinoma, and uterine carcinosarcoma^{8,9}. FGFR3 fusions are observed in 2% of bladder urothelial carcinoma and cervical squamous cell carcinoma^{8,9}. FGFR3 amplification is observed in 14% of uterine carcinosarcoma, 5% of ovarian serous cystadenocarcinoma, 4% of bladder urothelial carcinoma, 3% of adrenocortical carcinoma, uterine corpus endometrial carcinoma, cholangiocarcinoma, and 2% of pancreatic adenocarcinoma, sarcoma, and esophageal adenocarcinoma^{8,9}. Alterations in FGFR3 are also observed in the pediatric population⁹. Somatic mutations are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of embryonal tumor (2 in 332 cases), bone cancer (1 in 327 cases), and leukemia (1 in 354 cases)⁹. FGFR3 amplification is observed in 9% of Wilms tumor (12 in 136 cases) and 1% of B-lymphoblastic leukemia/lymphoma (9 in 731 cases) and leukemia (2 in 250 cases)⁹.

Potential relevance: The pan-FGFR inhibitor, erdafitinib¹⁰³, received FDA approval (2019) for the treatment of locally advanced or metastatic urothelial cancer that is positive for FGFR2 fusions, FGFR3 fusions including FGFR3::TACC3 and FGFR3::BAIAP2L1, and FGFR3 gene mutations including R248C, S249C, G370C, and Y373C. Unregulated activation of FGFR3 has been associated with resistance to tamoxifen in ER-positive breast cancer¹⁰⁴.

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7¹. MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10^{66,67,68}. Activation of MAPK proteins occurs through a kinase signaling cascade^{66,67,69}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{66,67,69}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{66,67,69}.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{8,9}. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma^{8,9}.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁴⁴. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{45,46}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁴⁷. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁴⁸. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁴⁸. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{49,50,51,52,53}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁴⁶. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{45,46,50,54}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endometrial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{45,46,55,56}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{55,56}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁵⁷ (2014) and nivolumab⁵⁸ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁵⁷ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be

Biomarker Descriptions (continued)

approved with a tumor agnostic indication⁵⁷. Dostarlimab⁵⁹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{51,60}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁶¹ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{51,62,63}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁶³. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{64,65}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{64,65}.

TP53 p.(Q100*) c.298C>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis²¹. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential²². Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{23,24}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,25,26,27,28}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{8,9}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{29,30,31,32}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586³³ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{34,35}. TP53 mutations are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma³⁶. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{37,38,39,40,41}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁴². Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁴³.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁷.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AXL, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type
 ○ In other cancer type
 ◐ In this cancer type and other cancer types
 ✖ No evidence

PIK3CA p.(E542K) c.1624G>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fulvestrant	○	○	○	○	✖
capivasertib + fulvestrant	○	○	○	✖	✖
inavolisib + palbociclib + fulvestrant	○	○	○	✖	✖
aspirin	✖	○	✖	✖	✖
ETX-636	✖	✖	✖	✖	● (I/II)
HTL-0039732, atezolizumab	✖	✖	✖	✖	● (I/II)
JS-105	✖	✖	✖	✖	● (I)
RLY-2608	✖	✖	✖	✖	● (I)
SNV-4818, hormone therapy	✖	✖	✖	✖	● (I)

FANCL deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	35.14%
BRCA1	LOH, 17q21.31(41197602-41276231)x2
BRCA2	LOH, 13q13.1(32890491-32972932)x2
BRIP1	LOH, 17q23.2(59760627-59938976)x2
CDK12	LOH, 17q12(37618286-37687611)x2
FANCL	CNV, CN:1.0
FANCL	LOH, 2p16.1(58386886-58468467)x1
RAD51C	LOH, 17q22(56769933-56811619)x2
RAD51D	LOH, 17q12(33427950-33446720)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Niraj et al. The Fanconi Anemia Pathway in Cancer. *Annu Rev Cancer Biol.* 2019 Mar;3:457-478. PMID: 30882047
11. Rodríguez et al. Fanconi anemia pathway. *Curr Biol.* 2017 Sep 25;27(18):R986-R988. PMID: 28950089
12. Garcia-Higuera et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. *Mol. Cell.* 2001 Feb;7(2):249-62. PMID: 11239454
13. Hussain et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. *Hum. Mol. Genet.* 2004 Jun 15;13(12):1241-8. PMID: 15115758
14. Lord et al. BRCAness revisited. *Nat. Rev. Cancer.* 2016 Feb;16(2):110-20. PMID: 26775620
15. Byrum et al. Defining and Modulating 'BRCAness'. *Trends Cell Biol.* 2019 Sep;29(9):740-751. PMID: 31362850
16. Michl et al. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. *EMBO J.* 2016 May 2;35(9):909-23. PMID: 27037238
17. Abbasi et al. A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population. *Mol Med Rep.* 2017 Jun;15(6):3983-3988. PMID: 28440412
18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/208558s031lbl.pdf
19. Pilié et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. *Clin Cancer Res.* 2019 Jul 1;25(13):3759-3771. PMID: 30760478
20. <https://www.senhwabio.com//en/news/20220125>
21. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
22. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
23. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
24. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
25. Peter S et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
26. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
27. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
28. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
29. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
30. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514

References (continued)

31. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene*. 2007 Apr 2;26(15):2157-65. PMID: 17401424
32. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
33. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
34. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
35. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165
36. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
37. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood*. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
38. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2026]
39. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
40. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 1.2026]
41. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
42. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
43. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
44. Lander et al. Initial sequencing and analysis of the human genome. *Nature*. 2001 Feb 15;409(6822):860-921. PMID: 11237011
45. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
46. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
47. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
48. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
49. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
50. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis*. 2008 Apr;29(4):673-80. PMID: 17942460
51. NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
52. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
53. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore)*. 2015 Dec;94(50):e2260. PMID: 26683947
54. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
55. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
56. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
57. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
58. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
59. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
60. NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
61. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
62. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608

References (continued)

63. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
64. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
65. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
66. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. *Clin. Cancer Res.* 2013 May 1;19(9):2301-9. PMID: 23406774
67. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. *Br J Pharmacol.* 2014 Jan;171(1):24-37. PMID: 24117156
68. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. *Microbiol Mol Biol Rev.* 2011 Mar;75(1):50-83. PMID: 21372320
69. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int J Mol Sci.* 2020 Feb 7;21(3). PMID: 32046099
70. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. *Genomics.* 1994 Dec;24(3):472-7. PMID: 7713498
71. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. *Signal Transduct Target Ther.* 2017;2:17063. PMID: 29279775
72. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. *Apoptosis.* 2004 Nov;9(6):667-76. PMID: 15505410
73. Cantley. The phosphoinositide 3-kinase pathway. *Science.* 2002 May 31;296(5573):1655-7. PMID: 12040186
74. Fruman et al. The PI3K Pathway in Human Disease. *Cell.* 2017 Aug 10;170(4):605-635. PMID: 28802037
75. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. *Nat. Rev. Genet.* 2006 Aug;7(8):606-19. PMID: 16847462
76. Vanhaesbroeck et al. PI3K signalling: the path to discovery and understanding. *Nat. Rev. Mol. Cell Biol.* 2012 Feb 23;13(3):195-203. PMID: 22358332
77. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. *Oncogene.* 2008 Sep 18;27(41):5497-510. PMID: 18794884
78. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. *Nat Rev Drug Discov.* 2009 Aug;8(8):627-44. PMID: 19644473
79. Hanahan et al. Hallmarks of cancer: the next generation. *Cell.* 2011 Mar 4;144(5):646-74. PMID: 21376230
80. Brito et al. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. *Clin Med Insights Oncol.* 2022;16:11795549211068804. PMID: 35023985
81. Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. *Nucleic Acids Res.* 2013 Jan;41(Database issue):D920-4. PMID: 23161685
82. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. *Science.* 2007 Jul 13;317(5835):239-42. PMID: 17626883
83. Burke et al. Synergy in activating class I PI3Ks. *Trends Biochem. Sci.* 2015 Feb;40(2):88-100. PMID: 25573003
84. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). *Proc. Natl. Acad. Sci. U.S.A.* 2012 Sep 18;109(38):15259-64. PMID: 22949682
85. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212526s009lbl.pdf
86. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3K α -Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. *Clin. Cancer Res.* 2017 Jan 1;23(1):26-34. PMID: 27126994
87. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). *Clin. Cancer Res.* 2019 Feb 5. PMID: 30723140
88. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/218197s002lbl.pdf
89. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219249s002lbl.pdf
90. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. *Mol Clin Oncol.* 2017 Jul;7(1):27-31. PMID: 28685070
91. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. *Mol. Cancer Ther.* 2011 Mar;10(3):558-65. PMID: 21216929
92. Liao et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. *N Engl J Med.* 2012 Oct 25;367(17):1596-606. PMID: 23094721

References (continued)

93. Domingo et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. *J Clin Oncol.* 2013 Dec 1;31(34):4297-305. PMID: 24062397
94. <https://www.cancernetwork.com/view/fda-grants-fast-track-designation-to-novel-pik3-inhibitor-in-breast-cancer>
95. Mohammadi et al. Structural basis for fibroblast growth factor receptor activation. *Cytokine Growth Factor Rev.* 2005 Apr;16(2):107-37. PMID: 15863029
96. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. *Nat. Rev. Cancer.* 2017 May;17(5):318-332. PMID: 28303906
97. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. *Biochim. Biophys. Acta.* 2012 Apr;1823(4):850-60. PMID: 22273505
98. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. *Nat Commun.* 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
99. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. *Clin. Cancer Res.* 2016 Jan 1;22(1):259-67. PMID: 26373574
100. di Martino et al. A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges. *Adv Urol.* 2012;2012:429213. doi: 10.1155/2012/429213. Epub 2012 Jul 31. PMID: 22899908
101. Kim et al. Fibroblast growth factor receptor 3 (FGFR3) aberrations in muscle-invasive urothelial carcinoma. *BMC Urol.* 2018 Jul 31;18(1):68. doi: 10.1186/s12894-018-0380-1. PMID: 30064409
102. Del Piccolo et al. Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization. *Biophys. J.* 2015 Jan 20;108(2):272-8. PMID: 25606676
103. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/212018s011lbl.pdf
104. Tomlinson et al. Mechanisms of FGFR3 actions in endocrine resistant breast cancer. *Int. J. Cancer.* 2012 Jun 15;130(12):2857-66. PMID: 21792889