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Report Highlights
4 Relevant Biomarkers
6 Therapies Available
23 Clinical Trials

 
Gene Finding Gene Finding

BRAF None detected NTRK3 None detected
ERBB2 None detected PIK3CA PIK3CA p.(E542K) c.1624G>A
KRAS None detected POLD1 None detected
NRAS NRAS p.(G12V) c.35G>T POLE None detected
NTRK1 None detected RET None detected
NTRK2 None detected

Genomic Alteration Finding

Microsatellite Status Microsatellite stable
Tumor Mutational Burden 12.33 Mut/Mb measured

HRD Status: HR Proficient (HRD-)

Relevant Colon Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA NRAS p.(G12V) c.35G>T

NRAS proto-oncogene, GTPase
Allele Frequency: 35.31%
Locus: chr1:115258747
Transcript: NM_002524.5

bevacizumab + chemotherapy I None* 9

  
IIC PIK3CA p.(E542K) c.1624G>A

phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha
Allele Frequency: 11.56%
Locus: chr3:178936082
Transcript: NM_006218.4

aspirin II+ inavolisib + palbociclib + hormone
therapy 1, 2 / I

alpelisib + hormone therapy 1, 2 / II+

capivasertib + hormone therapy 1, 2 / II

+

aspirin II+

5

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC Microsatellite stable None* lenvatinib + pembrolizumab +

berahyaluronidase alfa 1
8

  
IIC TP53 p.(R249S) c.747G>T

tumor protein p53
Allele Frequency: 44.78%
Locus: chr17:7577534
Transcript: NM_000546.6

None* None* 3

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

NRAS p.(G12V) c.35G>T  cetuximab 1, 2, cetuximab + chemotherapy 2, panitumumab 1, panitumumab + chemotherapy 2

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources
APC p.(Q1378*) c.4132C>T, MAP2K4 p.(G85*) c.253G>T, MLH1 p.(V384D) c.1151T>A, UGT1A1 p.(G71R) c.211G>A, HLA-B
deletion, IKBKB amplification, PDCD1LG2 amplification, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

NRAS p.(G12V) c.35G>T COSM566 chr1:115258747 35.31% NM_002524.5 missense

PIK3CA p.(E542K) c.1624G>A COSM760 chr3:178936082 11.56% NM_006218.4 missense

TP53 p.(R249S) c.747G>T COSM10817 chr17:7577534 44.78% NM_000546.6 missense

APC p.(Q1378*) c.4132C>T COSM18862 chr5:112175423 50.73% NM_000038.6 nonsense

MAP2K4 p.(G85*) c.253G>T . chr17:11984707 22.76% NM_003010.4 nonsense

MLH1 p.(V384D) c.1151T>A . chr3:37067240 58.68% NM_000249.4 missense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 33.47% NM_000463.3 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 64.41% NM_000903.3 missense

MTOR p.(V2417M) c.7249G>A . chr1:11174426 38.18% NM_004958.4 missense

JAK1 p.(D145H) c.433G>C . chr1:65339103 59.69% NM_002227.4 missense

RGSL1 p.(L400del) c.1198_1200delCTT . chr1:182443440 60.80% NM_001137669.2 nonframeshift
Deletion

BARD1 p.(L115P) c.344T>C . chr2:215657041 66.43% NM_000465.4 missense

HLA-B p.([N104I;L105A]) c.311_314delACCTinsT
CGC

. chr6:31324494 100.00% NM_005514.8 missense,
missense

POM121L1
2

p.(R110*) c.328C>T . chr7:53103692 6.01% NM_182595.4 nonsense

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

KMT2C p.(P860S) c.2578C>T . chr7:151935866 30.72% NM_170606.3 missense

CSMD3 p.(T2045R) c.6134C>G . chr8:113392583 16.90% NM_198123.2 missense

JAK2 p.(L47P) c.140T>C . chr9:5022127 28.41% NM_004972.4 missense

SLCO1B3 p.(N477S) c.1430A>G . chr12:21033887 15.32% NM_019844.4 missense

SLCO1B3-S
LCO1B7

p.(N477S) c.1430A>G . chr12:21033887 15.32% NM_001371097.1 missense

DDX3X p.(?) c.104-8_104-2delinsAT
TTTTTTAT

. chrX:41198281 46.81% NM_001356.5 unknown

DNA Sequence Variants (continued)

 

 
Gene Locus Copy Number CNV Ratio

HLA-B chr6:31322252 0.71 0.65

IKBKB chr8:42129602 5.16 1.87

PDCD1LG2 chr9:5522530 5.53 1.97

Copy Number Variations

 

Variant Details (continued)

 
NRAS p.(G12V) c.35G>T

NRAS proto-oncogene, GTPase

Background: The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS
superfamily which also includes KRAS and HRAS1. RAS proteins mediate the transmission of growth signals from the cell surface
to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and
survival114,115,116. Recurrent mutations in RAS lead to several genetic disorders known as RASopathies, including Noonan syndrome,
which results in heart and congenital defects, growth inhibition, and facial dysmorphic features117. Point mutations in NRAS are also
observed in several cancers including melanoma, characterized thick tumors, increased tumor recurrence, treatment resistance, and
increased mitosis118.

Alterations and prevalence: NRAS mutations are observed in 29% of skin cutaneous melanoma, 8% of acute myeloid leukemia and
thyroid carcinoma, 6% of colorectal adenocarcinoma, 4% of uterine corpus endometrial carcinoma, 3% of testicular germ cell tumors
and cholangiocarcinoma, and 2% of thymoma, bladder urothelial carcinoma, uterine carcinosarcoma, and kidney chromophobe8,9,119.
The majority of NRAS mutations consist of point mutations at G12, G13, and Q618,9,120. Mutations at A59, K117, and A146 have also
been observed but are less frequent9,121. Alterations in NRAS are also observed in pediatric cancers9. Somatic mutation in NRAS are
observed in 16% of leukemia (57 in 354 cases), 10% of B-lymphoblastic leukemia/lymphoma (24 in 252 cases), 8% of soft tissue
sarcoma (3 in 38 cases), and less than 1% of glioma (2 in 297 cases), bone cancer (2 in 327 cases), and embryonal tumors (1 in 332
cases)9.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab122 and
panitumumab123, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and
13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)121. In 2022, the FDA granted fast track designation to the pan-RAF
inhibitor, KIN-2787124, for the treatment of NRAS-mutant metastatic or unresectable melanoma. In 2023, the FDA granted fast track
designation to the pan-RAF inhibitor, naporafenib, in combination with trametinib125 for NRAS-mutated unresectable or metastatic
melanoma. In 2024, the FDA granted fast track designation to the MAPK pathway inhibitor, IMM-1-104126, for the treatment of
NRAS-mutant metastatic or unresectable melanoma. NRAS mutations are associated with poor prognosis in patients with low-risk
myelodysplastic syndrome58 as well as melanoma127. In a phase III clinical trial in patients with advanced NRAS-mutant melanoma,
binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively128.

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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PIK3CA p.(E542K) c.1624G>A

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I
phosphatidylinositol 3-kinase (PI3K) enzyme81. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one
of four p110 catalytic subunits to activated tyrosine protein kinases82,83. The p110 catalytic subunits include p110α, β, δ, γ and are
encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively82. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-
bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog
(PTEN) catalyzes the reverse reaction84,85. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and
metabolism84,85,86,87. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR
pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion,
and genetic instability88,89,90.

Alterations and prevalence: Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9
and 20 due to exon 1 being untranslated)91,92. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon
21 kinase (codon H1047) domains, each having distinct mechanisms of activation93,94,95. Somatic mutations in PIK3CA are observed
in 50% of uterine corpus endometrial carcinoma, 35% of uterine carcinosarcoma, 32% of breast invasive carcinoma, 29% of cervical
squamous cell carcinoma, 28% of colorectal adenocarcinoma, 22% of bladder urothelial carcinoma, 17% of head and neck squamous
cell carcinoma, 16% of stomach adenocarcinoma, 11% of lung squamous cell carcinoma, 9% of esophageal adenocarcinoma, 8%
of brain lower grade glioma, 6% of cholangiocarcinoma, 5% of skin cutaneous melanoma and lung adenocarcinoma, 4% of liver
hepatocellular carcinoma, 3% of pancreatic adenocarcinoma and sarcoma, and 2% of mesothelioma, prostate adenocarcinoma,
testicular germ cell tumors, and ovarian serous cystadenocarcinoma8,9. PIK3CA is amplified in 38% of lung squamous cell carcinoma,
20% of ovarian serous cystadenocarcinoma, 18% of esophageal adenocarcinoma, 16% of head and neck squamous cell carcinoma,
15% of cervical squamous cell carcinoma, 11% of uterine carcinosarcoma, 7% of uterine corpus endometrial carcinoma, 5% of stomach
adenocarcinoma, 4% of bladder urothelial carcinoma, 3% of breast invasive carcinoma and pancreatic adenocarcinoma, and 2% of
prostate adenocarcinoma, lung adenocarcinoma, and kidney renal clear cell carcinoma8,9. Alterations in PIK3CA are also observed in
pediatric cancers9. Somatic mutations in PIK3CA are observed in 6% of non-Hodgkin Lymphoma (1 in 17 cases), 4% of glioma (11 in
297 cases), 3% of soft tissue sarcoma (1 in 38 patients), 2% of embryonal tumors (6 in 332 cases), 1% of leukemia (5 in 354 cases),
and less than 1% of bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (2 in 252 cases), and peripheral nervous
system tumors (1 in 1158 cases)9.

Potential relevance: The PI3K inhibitor, alpelisib96, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients
with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or
metastatic breast cancer. Specifically, exon 21 H1047R mutations were associated with more durable clinical responses in comparison
to exon 10 E545K mutations97. However, alpelisib did not improve response when administered with letrozole in patients with ER
+ early breast cancer with PIK3CA mutations98. The FDA also approved the kinase inhibitor, capivasertib (2023)99 in combination
with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/
PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib100, is also FDA-approved (2024) in
combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and
HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response
in PIK3CA mutated refractory cancers101,102. In colorectal cancers, PIK3CA mutations predict significantly improved survival and
reduced disease recurrence with adjuvant aspirin therapy, compared to no benefit in wild-type PIK3CA tumors70,76,103,104. In 2025, the
FDA granted fast track designation to the PI3Kα inhibitor and degrader, ETX-636105, for the treatment of PIK3CA-mutant, HR-positive/
HER-negative advanced breast cancer.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome67. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue20,22. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS221. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25068. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)68. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS23,69,70,71,72. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes22.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer20,22,23,24.

Biomarker Descriptions (continued)
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Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma20,22,73,74. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers73,74.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab30 (2014) and nivolumab31 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab30 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication30. Dostarlimab75 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer70,76. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab32 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location70,77,78. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients78. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors79,80. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers79,80.

TP53 p.(R249S) c.747G>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair1. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis41. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential42. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers43,44.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)8,9,45,46,47,48. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,9. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes49,50,51,52. Alterations in TP53 are also
observed in pediatric cancers8,9. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)8,9. Biallelic loss
of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)8,9.

Potential relevance: The small molecule p53 reactivator, PC1458653 (2020), received a fast track designation by the FDA for advanced
tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity,
compounds that induce synthetic lethality are also under clinical evaluation54,55. TP53 mutations are a diagnostic marker of SHH-
activated, TP53-mutant medulloblastoma56. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including
AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)57,58,59,60,61. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy
including hematopoietic cell transplant62. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit
patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as
well as predicted death and leukemic transformation independent of the IPSS-R staging system63.

APC p.(Q1378*) c.4132C>T

APC, WNT signaling pathway regulator

Background: The APC gene encodes the adenomatous polyposis coli tumor suppressor protein that plays a crucial role in regulating
the β-catenin/WNT signaling pathway which is involved in cell migration, adhesion, proliferation, and differentiation106. APC is an
antagonist of WNT signaling as it targets β-catenin for proteasomal degradation107,108. Germline mutations in APC are predominantly
inactivating and result in an autosomal dominant predisposition for familial adenomatous polyposis (FAP) which is characterized by

Biomarker Descriptions (continued)
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numerous polyps in the intestine106,109. Acquiring a somatic mutation in APC is considered to be an early and possibly initiating event in
colorectal cancer110.

Alterations and prevalence: Somatic mutations in APC are observed in up to 65% of colorectal cancer, and in up to 15% of stomach
adenocarcinoma and uterine corpus endometrial carcinoma8,9,111. In colorectal cancer, ~60% of somatic APC mutations have been
reported to occur in a mutation cluster region (MCR) resulting in C-terminal protein truncation and APC inactivation112,113.

Potential relevance: Currently, no therapies are approved for APC aberrations.

MAP2K4 p.(G85*) c.253G>T

mitogen-activated protein kinase kinase 4

Background: The MAP2K4 gene encodes the mitogen-activated protein kinase kinase 4, also known as MEK41. MAP2K4 is a member
of the mitogen-activated protein kinase 2 (MAP2K) subfamily which also includes MAP2K1, MAP2K2, MAP2K3, MAP2K5, and
MAP2K635. Activation of MAPK proteins occurs through a kinase signaling cascade35,36,37. Specifically, MAP3Ks are responsible for
phosphorylation of MAP2K family members35,36,37. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK
proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation35,36,37.
Mutations observed in MAP2K4 were have been observed to impair kinase activity and promote tumorigenesis in vitro, supporting a
possible tumor suppressor role for MAP2K438.

Alterations and prevalence: Somatic mutations in MAP2K4 have been observed in 5% of uterine carcinoma and colorectal cancer,
and 4% of breast invasive carcinoma8,9. Biallelic deletions have been observed in 3% of stomach cancer, and 2% of breast invasive
carcinoma, diffuse large B-cell lymphoma (DLBCL), colorectal, pancreatic, and ovarian cancer8,9. Nonsense, frameshift, and missense
mutations in MAP2K4 generally inactivate the kinase activity, and lost expression has been identified in prostate, ovarian, brain, and
pancreatic cancer models39,40.

Potential relevance: Currently, no therapies are approved for MA2PK4 aberrations.

MLH1 p.(V384D) c.1151T>A

mutL homolog 1

Background: The MLH1 gene encodes the mutL homolog 1 protein1. MLH1 is a tumor suppressor gene that heterodimerizes with
PMS2 to form the MutLα complex, PMS1 to form the MutLβ complex, and MLH3 to form the MutLγ complex14. The MutLα complex
functions as an endonuclease that is specifically involved in the mismatch repair (MMR) process and mutations in MLH1 result in the
inactivation of MutLα and degradation of PMS214,15. Loss of MLH1 protein expression and MLH1 promoter hypermethylation correlates
with mutations in these genes and are used to pre-screen colorectal cancer or endometrial hyperplasia16,17. MLH1, along with MSH6,
MSH2, and PMS2 form the core components of the MMR pathway14. The MMR pathway is critical to the repair of mismatch errors
which typically occur during DNA replication14. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression in
these genes18. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite
in a tumor as compared to normal tissue19,20,21. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary
non-polyposis colorectal cancer, which is caused by germline mutations in MMR genes19,22. LS is associated with an increased risk
of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer20,22,23,24. Specifically, MLH1
mutations are associated with an increased risk of ovarian and pancreatic cancer25,26,27,28.

Alterations and prevalence: Somatic mutations in MLH1 are observed in 6% of uterine corpus endometrial carcinoma, 4% of colorectal
adenocarcinoma, and 2-3% of bladder urothelial carcinoma, stomach adenocarcinoma, and melanoma8,9. Alterations in MLH1 are
observed in pediatric cancers8,9. Somatic mutations are observed in 1% of bone cancer and less than 1% of B-lymphoblastic leukemia/
lymphoma (2 in 252 cases), embryonal tumor (2 in 332 cases), and leukemia (2 in 311 cases)8,9.

Potential relevance: The PARP inhibitor, talazoparib29 in combination with enzalutamide is approved (2023) for metastatic castration-
resistant prostate cancer (mCRPC) with mutations in HRR genes that includes MLH1. Additionally, pembrolizumab (2014) is an anti-
PD-1 immune checkpoint inhibitor that is approved for patients with MSI-H or dMMR solid tumors that have progressed on prior
therapies30. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone or in combination with the cytotoxic T-
lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR colorectal cancer that have progressed
on prior treatment31,32. MLH1 mutations are consistent with high grade in pediatric diffuse gliomas33,34.

Biomarker Descriptions (continued)
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UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily1,129. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites129,130. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance131. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation131,132,133,134. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-38135.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma8,9.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class
I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T
cells2. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes
include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids,
to the immune system to distinguish self from non-self4,5,6. Downregulation of MHC class I promotes tumor evasion of the immune
system, suggesting a tumor suppressor role for HLA-B7.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma8,9. Biallelic loss of HLA-
B is observed in 5% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

IKBKB amplification

inhibitor of nuclear factor kappa B kinase subunit beta

Background: The IKBKB gene encodes the nuclear factor kappa B kinase subunit beta, also known as IKK-B. IKBKB is a serine/
threonine kinase, which acts as an enzyme protein subunit of the IKK complex10. IKBKB and IKBKA dimerize to form the regulatory
subunit of the IKK complex. Along with modulator IKKγ/NEMO, the IKK complex acts as a master regulator of the family of NF-
κB transcription factors.10. NF-κB signaling is critical in the inflammatory response and is also known to be implicated in other
important physiological processes including cell proliferation11. In resting cells, NF-κB dimers are sequestered in the cytoplasm by IκB
proteins11. Upon signal initiation, IκB proteins are phosphorylated by the IKK complex, leading to IκB protein degradation and liberation
of NF-κB dimers11. Subsequently, released NF-κB dimers undergo nuclear translocation which leads to the expression of various
proinflammatory and cell survival genes12,13.

Alterations and prevalence: Somatic mutations in IKBKB are observed in 6% of uterine carcinoma, 5% of melanoma and diffuse large
B-cell lymphoma (DLBCL)8,9. Amplifications are observed in 14% of uterine carcinosarcoma, 7% of breast invasive carcinoma and
esophageal cancer8,9. IKBKB activating mutations are most commonly found at lysine 175 and are observed in 8% of splenic marginal
B-cell lymphomas10.

Potential relevance: Currently, no therapies are approved for IKBKB aberrations.

Biomarker Descriptions (continued)
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PDCD1LG2 amplification

programmed cell death 1 ligand 2

Background: The PDCD1LG2 gene encodes the programmed cell death 1 ligand 2, also known as PD-L21. PDCD1LG2 is a type
I transmembrane protein expressed by antigen-presenting cells and tumor cells64,65. PDCD1LG2 is an immunoregulatory ligand
of PDCD1, a type I transmembrane inhibitory receptor and immune checkpoint belonging to the CD28/CTLA-4 family within the
immunoglobulin superfamily64,65. PDCD1LG2 and CD274 (also known as PD-L1) act as co-inhibitors and regulate immune tolerance of
central and peripheral T-cells, reducing proliferation and cytokine production64,66.

Alterations and prevalence: Somatic mutations in PDCD1LG2 are observed in 2% of skin cutaneous melanoma and uterine corpus
endometrial carcinoma8,9. Amplifications are observed in 4% of sarcoma, head and neck squamous cell carcinoma, and diffuse large B-
cell lymphoma (DLBCL), and 2% of ovarian serous cystadenocarcinoma, esophageal adenocarcinoma, stomach adenocarcinoma, lung
squamous cell carcinoma, bladder urothelial carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma8,9. Alterations
in PDCD1LG2 are rare in pediatric cancers9. Somatic mutations in PDCD1LG2 are observed in 3% of pediatric soft tissue sarcoma9.
Amplification of PDCD1LG2 is observed in 1% of Wilms tumor (2 in 136 cases) and less than 1% of B-lymphoblastic leukemia/
lymphoma (2 in 731 cases)9.

Potential relevance: Currently, no therapies are approved for PDCD1LG2 aberrations.

Biomarker Descriptions (continued)
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-11-25. For the most up-to-date information, search www.fda.gov.

 

 cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: NRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer
 Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
 Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-

based therapy with fluorouracil.
 Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test
 in combination with FOLFIRI for first-line treatment,
 in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
 as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to

irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras
mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)
 in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF

V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
 

NRAS p.(G12V) c.35G>T

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: NRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test)
Metastatic Colorectal Cancer (mCRC)*:

 In combination with FOLFOX for first-line treatment.
 As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-

containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*
 In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-

approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination
with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS
mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
 

NRAS p.(G12V) c.35G>T (continued)

 

 ETX-636

Cancer type: Breast Cancer Variant class: PIK3CA mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Supporting Statement:
The FDA has granted Fast Track designation to the pan mutant-specific allosteric PI3Kα inhibitor and degrader, ETX-636, for
the treatment of adult patients with PIK3CA-mutant, hormone receptor positive (HR+)/human epidermal growth factor negative
(HER2-) advanced breast cancer.

Reference:

https://www.cancernetwork.com/view/fda-grants-fast-track-designation-to-novel-pik3-inhibitor-in-breast-cancer
 

PIK3CA p.(E542K) c.1624G>A
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Current NCCN Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

NCCN information is current as of 2025-11-03. To view the most recent and complete version of the guideline, go online to
NCCN.org.
For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific
variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate
for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their
content.

 

 cetuximab

Cancer type: Colon Cancer Variant class: NRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

 

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
 
 

 panitumumab

Cancer type: Colon Cancer Variant class: NRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

 

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 5.2025]
 
 

 cetuximab

Cancer type: Rectal Cancer Variant class: NRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
 

NRAS p.(G12V) c.35G>T

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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 panitumumab

Cancer type: Rectal Cancer Variant class: NRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 4.2025]
 

NRAS p.(G12V) c.35G>T (continued)

Current EMA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

EMA information is current as of 2025-11-25. For the most up-to-date information, search www.ema.europa.eu.

 

 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: NRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf
 
 

 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: NRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf
 

NRAS p.(G12V) c.35G>T

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.12(007).
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Current ESMO Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

ESMO information is current as of 2025-11-03. For the most up-to-date information, search www.esmo.org.

 

 cetuximab

Cancer type: Colorectal Cancer Variant class: NRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 
 

 panitumumab

Cancer type: Colorectal Cancer Variant class: NRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 

NRAS p.(G12V) c.35G>T

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

Genes Assayed
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ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

bevacizumab + CAPOX     

bevacizumab + FOLFIRI     

bevacizumab + FOLFOX     

bevacizumab + FOLFOXIRI     

bevacizumab, chemotherapy      (III)

fruquintinib      (II)

fruquintinib, chemotherapy      (II)

serplulimab, chemotherapy      (II)

tunlametinib      (II)

anti-KRAS G12V mTCR, chemotherapy, aldesleukin      (I/II)

ERAS-0015      (I/II)

daraxonrasib      (I)

Nest-1      (I)

NRAS p.(G12V) c.35G>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

alpelisib + fulvestrant     

capivasertib + fulvestrant     

inavolisib + palbociclib + fulvestrant     

aspirin     

amquilix      (I/II)

ETX-636      (I/II)

HTL-0039732, atezolizumab      (I/II)

JS-105      (I)

SNV-4818, hormone therapy      (I)

PIK3CA p.(E542K) c.1624G>A

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

lenvatinib + pembrolizumab + berahyaluronidase alfa     

Microsatellite stable

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

fruquintinib      (II)

odetiglucan, pembrolizumab      (II)

pumitamig, chemotherapy      (II)

serplulimab, chemotherapy      (II)

CS-2009, chemotherapy      (I/II)

mRNA-4359      (I/II)

IMGS-001      (I)

NTX-1088, pembrolizumab      (I)

Microsatellite stable (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

SYN-608      (I)

SYN-818, olaparib      (I)

TP53-EphA-2-CAR-DC, anti-PD-1      (I)

TP53 p.(R249S) c.747G>T

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

LOH percentage 19.64%
BARD1 SNV, L115P, AF:0.66
RAD51B LOH, 14q24.1(68290164-69061406)x2

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.2.4 data version 2025.12(007)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-11-25. NCCN information was sourced from www.nccn.org and is current
as of 2025-11-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-11-25. ESMO information was
sourced from www.esmo.org and is current as of 2025-11-03. Clinical Trials information is current as of 2025-11-03. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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