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Gene Finding Gene Finding

ALK None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR EGFR p.(L858R) c.2573T>G NTRK3 None detected
ERBB2 None detected RET None detected
KRAS None detected ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 2.84 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA EGFR p.(L858R) c.2573T>G

epidermal growth factor receptor
Allele Frequency: 15.68%
Locus: chr7:55259515
Transcript: NM_005228.5

afatinib 1, 2 / I, II+

amivantamab + lazertinib 1, 2 / I, II+

bevacizumab† + erlotinib 2 / I, II+

dacomitinib 1, 2 / I, II+

erlotinib 2 / I, II+

erlotinib + ramucirumab 1, 2 / I, II+

gefitinib 1, 2 / I, II+

osimertinib 1, 2 / I, II+

osimertinib + chemotherapy 1, 2 / I

amivantamab + chemotherapy 1, 2 / II+

datopotamab deruxtecan-dlnk 1 / II+

BAT1706 + erlotinib 2

gefitinib + chemotherapy I

atezolizumab + bevacizumab +
chemotherapy II+

None* 196

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
† Includes biosimilars/generics
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC ATM deletion

ATM serine/threonine kinase
Locus: chr11:108098341

None* None* 4

  
IIC CDK12 deletion

cyclin dependent kinase 12
Locus: chr17:37618286

None* None* 1

  
IIC CHEK1 deletion

checkpoint kinase 1
Locus: chr11:125496639

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
† Includes biosimilars/generics
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

EGFR p.(L858R) c.2573T>G  izalontamab brengitecan 1, patritumab deruxtecan 1

 DB-1310 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources
Microsatellite stable, UGT1A1 p.(G71R) c.211G>A, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

EGFR p.(L858R) c.2573T>G COSM6224 chr7:55259515 15.68% NM_005228.5 missense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 50.50% NM_000463.3 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 47.40% NM_000903.3 missense

FUBP1 p.(G306C) c.916G>T . chr1:78429963 5.15% NM_003902.5 missense

MSH3 p.(A61_P63dup) c.189_190insGCAGCG
CCC

. chr5:79950735 34.88% NM_002439.5 nonframeshift
Insertion

HLA-B p.([R68=;E69M]) c.204_206delAGAinsG
AT

. chr6:31324602 37.50% NM_005514.8 synonymous,
missense

KMT2D p.(?) c.16413-3C>T . chr12:49415937 61.77% NM_003482.4 unknown

RPTOR p.(T135A) c.403A>G . chr17:78681695 2.55% NM_020761.3 missense

DNA Sequence Variants

 

 
Gene Locus Copy Number CNV Ratio

ATM chr11:108098341 1 0.91

CDK12 chr17:37618286 1 1.02

Copy Number Variations

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene Locus Copy Number CNV Ratio

CHEK1 chr11:125496639 1 0.97

Copy Number Variations (continued)

 

Variant Details (continued)

 
EGFR p.(L858R) c.2573T>G

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth
factor receptor (HER) tyrosine kinase family1. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include
ERBB2/HER2, ERBB3/HER3, and ERBB4/HER448. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation
of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways49. Activation of these pathways
promotes cell proliferation, differentiation, and survival50,51.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately
10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations6,22,52,53. The most common
mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion)
and the L858R amino acid substitution in exon 2154. These mutations constitutively activate EGFR resulting in downstream signaling,
and represent 80% of the EGFR mutations observed in lung cancer54. A second group of less prevalent activating mutations includes
E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 2055,56,57,58. EGFR activating mutations in lung cancer
tend to be mutually exclusive to KRAS activating mutations59. In contrast, a different set of recurrent activating EGFR mutations in
the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma54,60. Amplification of EGFR
is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head
and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial
carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous
cell carcinoma, sarcoma, and breast invasive carcinoma6,22,53,60,61. Deletion of exons 2-7, encoding the extracellular domain of EGFR
(EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of
glioblastoma62,63,64. Alterations in EGFR are rare in pediatric cancers6,22. Somatic mutations are observed in 2% of bone cancer and
glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous
system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)6,22. Amplification of EGFR is observed in 2% of bone cancer
and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250
cases)6,22.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib65 (2004) and gefitinib66 (2015),
which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved
for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed
first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21
activating mutations67. Second-generation TKIs afatinib68 (2013) and dacomitinib69 (2018) bind EGFR and other ERBB/HER gene
family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and
gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q,
L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance
to the same therapies70,71,72,73. In 2025, the FDA approved the irreversible EGFR inhibitor, sunvozertinib74, for the treatment of locally
advanced or metastatic non-small cell lung cancer in adult patients with EGFR exon 20 insertion mutations whose disease has
progressed on or after platinum-based chemotherapy. In 2022, the FDA granted breakthrough therapy designation to the irreversible
EGFR inhibitor, CLN-081 (TPC-064)75 for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion
mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with
the emergence of drug resistance76. The primary resistance mutation that emerges following treatment with first-generation TKI is
T790M, accounting for 50-60% of resistant cases54. Third generation TKIs were developed to maintain sensitivity in the presence
of T790M76. Osimertinib77 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the
first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs,
treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases76.
The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a
third-generation TKI or vice versa78. T790M and C797S can occur in either cis or trans allelic orientation78. If C797S is observed
following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation
TKIs78. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may
exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone78,79. However, C797S
occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs78. Fourth-generation TKIs are in

Biomarker Descriptions

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-153580 (2024), a CNS-penetrating
small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive
NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab
(2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy
against EGFR mutations81. The bispecific antibody, amivantamab82 (2021), targeting EGFR and MET was approved for NSCLC tumors
harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib83 (2024), was approved in combination with
amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or
exon 21 L858R mutations. HLX-4284, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody
conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the
treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a
third-generation EGFR tyrosine kinase inhibitor. CPO30185 (2023) received a fast track designation from the FDA for the treatment
of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as
3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid86 (2020),
in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that
progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric
high-grade glioma87,88,89.

ATM deletion

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases
(PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)16. ATM and ATR act as master regulators of DNA
damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA
(ssDNA) repair17. ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB17,18. Upon
activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins19. ATM is
a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAness phenotype, which is characterized by
a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss13,20. Germline mutations in ATM often result in
Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal
instability21.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of
undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma
as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer6,22.

Potential relevance: The PARP inhibitor, olaparib8 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with
deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib15 in
combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR
genes that includes ATM. Consistent with other genes associated with the BRCAness phenotype, ATM mutations may aid in selecting
patients likely to respond to PARP inhibitors20,23,24. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer,
four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib25. In 2022, the FDA granted
fast track designation to the small molecule inhibitor, pidnarulex9, for BRCA1/2, PALB2, or other homologous recombination deficiency
(HRD) mutations in breast and ovarian cancers.

CDK12 deletion

cyclin dependent kinase 12

Background: CDK12 encodes the cyclin-dependent kinase 12 protein and is required for the maintenance of genomic stability10,11,12.
CDK12 phosphorylates RNA polymerase II and is a regulator of transcription elongation and expression of DNA repair genes10,11,12,13,14.
Alterations in CDK12 impair the transcription of homologous recombination repair (HRR) genes such as BRCA1, ATR, FANCI, and
FANCD2, contributing to a BRCAness phenotype12,13. CDK12 is a tumor suppressor gene and loss of function mutations are observed
in various solid tumors14. However, observations of CDK12 amplification and overexpression in breast cancer indicate that it could also
function as an oncogene14.

Alterations and prevalence: Somatic alterations of CDK12 include mutations and amplification. Missense and truncating mutations in
CDK12 are observed in 8% of undifferentiated stomach adenocarcinoma, 7% of bladder urothelial, and 6% endometrial carcinoma1,6.
CDK12 is amplified in 9% of esophagogastric adenocarcinoma and invasive breast carcinoma, 8% of undifferentiated stomach
adenocarcinoma, and 3% of bladder urothelial and endometrial carcinoma1,6.

Potential relevance: The PARP inhibitor, olaparib8 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with
deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CDK12. Additionally, talazoparib15

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CDK12. Consistent with
other genes associated with homologous recombination repair, CDK12 loss may aid in selecting patients likely to respond to PARP
inhibitors13,14. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex9, for BRCA1/2, PALB2, or other
homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CHEK1 deletion

checkpoint kinase 1

Background: The CHEK1 gene encodes the checkpoint kinase 1 protein and belongs to a family of serine/threonine checkpoint kinases,
that also includes CHEK21. Checkpoint kinases play an important role in S phase and G2/M transition and DNA damage induced cell
cycle arrest2. CHEK1 is a tumor suppressor and it interacts with proteins involved in transcription regulation, cell-cycle arrest, and
DNA repair including homologous recombination repair (HRR)3,4. Upon DNA damage, CHEK1 is phosphorylated and activated by DNA
damage repair proteins ATM and ATR3. Activated CHEK1 subsequently phosphorylates and negatively regulates downstream proteins
such as CDC25A thereby slowing or stalling DNA replication3,5.

Alterations and prevalence: Recurrent somatic alterations of CHEK1 include mutations and copy number loss. Somatic mutations
of CHEK1 are observed in 3% of endometrial carcinoma, 2% of non-small cell lung cancer and 1% of cervical squamous carcinoma
cases6,7. CHEK1 copy number loss occurs in 10% of seminoma, 8% of non-seminomatous germ cell tumor, 5% of ocular melanoma,
and 3% of melanoma cases6,7.

Potential relevance: The PARP inhibitor, olaparib8 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with
deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK1. In 2022, the FDA granted fast
track designation to the small molecule inhibitor, pidnarulex9, for BRCA1/2, PALB2, or other homologous recombination deficiency
(HRD) mutations in breast and ovarian cancers.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome26. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue27,28. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS229. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25030. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)30. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS31,32,33,34,35. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes28.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer27,28,32,36.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma27,28,37,38. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers37,38.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab39 (2014) and nivolumab40 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab39 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication39. Dostarlimab41 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer33,42. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab43 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location33,44,45. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients45. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors46,47. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers46,47.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily1,90. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites90,91. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance92. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation92,93,94,95. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-3896.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma6,22.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

Biomarker Descriptions (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

 

 izalontamab brengitecan

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

Supporting Statement:
The FDA has granted Breakthrough designation to EGFR/HER3 targeting bispecific antibody-drug conjugate (ADC), izalontamab
brengitecan, for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EGFR
exon 19 deletions or exon 21 L858R substitution mutations who experienced disease progression on or after treatment with an
EGFR TKI and platinum-based chemotherapy.

Reference:

https://www.onclive.com/view/fda-grants-breakthrough-therapy-designation-to-izalontamab-brengitecan-in-egfr-nsclc
 
 

 patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation or
EGFRi sensitizing mutation

Supporting Statement:
The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate,
patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastatic-
nsclc

 
 

 DB-1310

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

Supporting Statement:
The FDA has granted Fast Track designation to the HER3-targeting antibody-drug conjugate, DB-1310, for the treatment of adult
patients with advanced, unresectable or metastatic non-squamous non-small cell lung cancer with EGFR exon 19 deletion or
L858R mutation and who have progressed after treatment with a third-generation EGFR tyrosine kinase inhibitor and platinum-
based chemotherapy.

Reference:

https://www.targetedonc.com/view/novel-her3-adc-receives-fda-fast-track-for-refractory-nsclc
 

EGFR p.(L858R) c.2573T>G

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,

Genes Assayed for the Detection of DNA Sequence Variants

 

Genes Assayed

 
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants (continued)

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

osimertinib      (III)

afatinib      (II)

dacomitinib      (II)

gefitinib      (II)

erlotinib + ramucirumab     

amivantamab + carboplatin + pemetrexed     

amivantamab + lazertinib     

datopotamab deruxtecan-dlnk     

osimertinib + chemotherapy + pemetrexed     

bevacizumab + erlotinib     

erlotinib     

osimertinib + carboplatin + pemetrexed     

osimertinib + cisplatin + pemetrexed     

BAT1706 + erlotinib     

bevacizumab (Allergan) + erlotinib     

bevacizumab (Biocon) + erlotinib     

bevacizumab (Celltrion) + erlotinib     

bevacizumab (Mabxience) + erlotinib     

bevacizumab (Pfizer) + erlotinib     

bevacizumab (Samsung Bioepis) + erlotinib     

bevacizumab (Stada) + erlotinib     

atezolizumab + bevacizumab + carboplatin +
paclitaxel     

gefitinib + carboplatin + pemetrexed     

adebrelimab, bevacizumab, chemotherapy      (IV)

afatinib, bevacizumab, chemotherapy      (IV)

befotertinib      (IV)

bevacizumab, almonertinib, chemotherapy      (IV)

catequentinib, toripalimab      (IV)

EGFR tyrosine kinase inhibitor      (IV)

EGFR p.(L858R) c.2573T>G

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

furmonertinib, chemotherapy      (IV)

gefitinib, chemotherapy      (IV)

gefitinib, endostatin      (IV)

natural product, gefitinib, erlotinib, icotinib
hydrochloride, osimertinib, almonertinib,
furmonertinib

     (IV)

almonertinib, apatinib      (III)

almonertinib, chemotherapy      (III)

almonertinib, radiation therapy      (III)

befotertinib, icotinib hydrochloride      (III)

bevacizumab, osimertinib      (III)

CK-101, gefitinib      (III)

datopotamab deruxtecan-dlnk, osimertinib      (III)

furmonertinib      (III)

furmonertinib, osimertinib, chemotherapy      (III)

gefitinib, afatinib, erlotinib, metformin hydrochloride      (III)

glumetinib, osimertinib      (III)

icotinib hydrochloride, catequentinib      (III)

icotinib hydrochloride, chemotherapy      (III)

icotinib hydrochloride, radiation therapy      (III)

izalontamab brengitecan      (III)

izalontamab brengitecan, osimertinib      (III)

JMT-101, osimertinib      (III)

osimertinib, bevacizumab      (III)

osimertinib, chemotherapy      (III)

osimertinib, datopotamab deruxtecan-dlnk      (III)

sacituzumab tirumotecan      (III)

sacituzumab tirumotecan, osimertinib      (III)

savolitinib, osimertinib      (III)

SH-1028      (III)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

TY-9591, osimertinib      (III)

PM-1080, almonertinib      (II/III)

SCTB-14, chemotherapy      (II/III)

ABSK-043, furmonertinib      (II)

afatinib, chemotherapy      (II)

almonertinib      (II)

almonertinib, adebrelimab, chemotherapy      (II)

almonertinib, bevacizumab      (II)

almonertinib, chemoradiation therapy      (II)

almonertinib, dacomitinib      (II)

amivantamab, chemotherapy      (II)

amivantamab, lazertinib, chemotherapy      (II)

atezolizumab, bevacizumab, tiragolumab      (II)

befotertinib, bevacizumab, chemotherapy      (II)

bevacizumab, afatinib      (II)

bevacizumab, furmonertinib      (II)

cadonilimab, chemotherapy, catequentinib      (II)

camrelizumab, apatinib      (II)

capmatinib, osimertinib, ramucirumab      (II)

catequentinib, almonertinib      (II)

catequentinib, chemotherapy      (II)

chemotherapy, atezolizumab, bevacizumab      (II)

dacomitinib, osimertinib      (II)

EGFR tyrosine kinase inhibitor, osimertinib,
chemotherapy      (II)

EGFR tyrosine kinase inhibitor, radiation therapy      (II)

erlotinib, chemotherapy      (II)

erlotinib, OBI-833      (II)

furmonertinib, bevacizumab      (II)

furmonertinib, bevacizumab, chemotherapy      (II)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

furmonertinib, catequentinib      (II)

furmonertinib, chemotherapy, bevacizumab      (II)

furmonertinib, icotinib hydrochloride      (II)

gefitinib, bevacizumab, chemotherapy      (II)

gefitinib, icotinib hydrochloride      (II)

gefitinib, thalidomide      (II)

icotinib hydrochloride      (II)

icotinib hydrochloride, autologous RAK cell      (II)

icotinib hydrochloride, osimertinib      (II)

ivonescimab, chemotherapy      (II)

izalontamab brengitecan, almonertinib      (II)

JS-207, chemotherapy      (II)

lazertinib      (II)

lazertinib, bevacizumab      (II)

lazertinib, chemotherapy      (II)

osimertinib, radiation therapy      (II)

PLB-1004, bozitinib, osimertinib      (II)

ramucirumab, erlotinib      (II)

sunvozertinib      (II)

sunvozertinib, catequentinib      (II)

sunvozertinib, golidocitinib      (II)

tislelizumab, chemotherapy, bevacizumab      (II)

toripalimab      (II)

toripalimab, bevacizumab, Clostridium butyricum,
chemotherapy      (II)

toripalimab, chemotherapy      (II)

TY-9591, chemotherapy      (II)

vabametkib, lazertinib      (II)

YL-202      (II)

zorifertinib, pirotinib      (II)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

AP-L1898      (I/II)

BH-30643      (I/II)

bozitinib, osimertinib      (I/II)

BPI-361175      (I/II)

chemotherapy, DZD-6008      (I/II)

dacomitinib, catequentinib      (I/II)

DAJH-1050766      (I/II)

DB-1310, osimertinib      (I/II)

dositinib      (I/II)

FWD-1509      (I/II)

H-002      (I/II)

ifebemtinib, furmonertinib      (I/II)

MRTX0902      (I/II)

necitumumab, osimertinib      (I/II)

quaratusugene ozeplasmid, osimertinib      (I/II)

RC-108, furmonertinib, toripalimab      (I/II)

sotiburafusp alfa, chemotherapy      (I/II)

sotiburafusp alfa, HB-0030      (I/II)

sunvozertinib, chemotherapy      (I/II)

TRX-221      (I/II)

WSD-0922      (I/II)

alisertib, osimertinib      (I)

almonertinib, midazolam      (I)

ASKC-202      (I)

AZD-9592      (I)

BG-60366      (I)

BPI-1178, osimertinib      (I)

catequentinib, gefitinib, metformin hydrochloride      (I)

DZD-6008      (I)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

EGFR tyrosine kinase inhibitor, catequentinib      (I)

genolimzumab, fruquintinib      (I)

IBI-318, lenvatinib      (I)

KQB-198, osimertinib      (I)

LAVA-1223      (I)

MRX-2843, osimertinib      (I)

osimertinib, carotuximab      (I)

osimertinib, Minnelide      (I)

osimertinib, tegatrabetan      (I)

patritumab deruxtecan      (I)

repotrectinib, osimertinib      (I)

VIC-1911, osimertinib      (I)

WTS-004      (I)

YH-013      (I)

zipalertinib, chemotherapy, glumetinib, pimitespib,
quemliclustat      (I)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

pamiparib, tislelizumab      (II)

senaparib, IMP-9064      (I/II)

ATM deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pamiparib, tislelizumab      (II)

CDK12 deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pamiparib, tislelizumab      (II)

CHEK1 deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene/Genomic Alteration Finding

LOH percentage 21.01%
ATM CNV, CN:1.0
ATM LOH, 11q22.3(108098341-108236285)x1
CDK12 CNV, CN:1.0
CDK12 LOH, 17q12(37618286-37646976)x1
CHEK1 CNV, CN:1.0
CHEK1 LOH, 11q24.2(125496639-125525271)x1

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current
as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was
sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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