

Patient Name: 김대현
Gender: M
Sample ID: N25-342

Primary Tumor Site: Lung
Collection Date: 2025.12.03

Sample Cancer Type: Lung Cancer

Table of Contents

Variant Details	2
Biomarker Descriptions	3
Alert Details	7
Relevant Therapy Summary	9

Page

Report Highlights

4 Relevant Biomarkers
18 Therapies Available
200 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR p.(L858R) c.2573T>G	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	2.84 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L858R) c.2573T>G epidermal growth factor receptor Allele Frequency: 15.68% Locus: chr7:55259515 Transcript: NM_005228.5	afatinib 1, 2 / I, II+ amivantamab + lazertinib 1, 2 / I, II+ bevacizumab[†] + erlotinib 2 / I, II+ dacomitinib 1, 2 / I, II+ erlotinib 2 / I, II+ erlotinib + ramucirumab 1, 2 / I, II+ gefitinib 1, 2 / I, II+ osimertinib 1, 2 / I, II+ osimertinib + chemotherapy 1, 2 / I amivantamab + chemotherapy 1, 2 / II+ datopotamab deruxtecan-dlnk 1 / II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy [†] atezolizumab + bevacizumab + chemotherapy ^{II+}	None*	196

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/genetics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	ATM deletion ATM serine/threonine kinase Locus: chr11:108098341	None*	None*	4
IIC	CDK12 deletion cyclin dependent kinase 12 Locus: chr17:37618286	None*	None*	1
IIC	CHEK1 deletion checkpoint kinase 1 Locus: chr11:125496639	None*	None*	1

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

† Includes biosimilars/generics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. *J Mol Diagn.* 2017 Jan;19(1):4-23.

⚠ Alerts informed by public data sources: ✖ Contraindicated, ⚠ Resistance, ⚡ Breakthrough, ⚠ Fast Track

EGFR p.(L858R) c.2573T>G ⚡ **izalontamab brengitecan** ¹, **patritumab deruxtecan** ¹
⚠ **DB-1310** ¹

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, UGT1A1 p.(G71R) c.211G>A, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency		Variant Effect
					Transcript		
EGFR	p.(L858R)	c.2573T>G	COSM6224	chr7:55259515	15.68%	NM_005228.5	missense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	50.50%	NM_000463.3	missense
NQO1	p.(P187S)	c.559C>T	.	chr16:69745145	47.40%	NM_000903.3	missense
FUBP1	p.(G306C)	c.916G>T	.	chr1:78429963	5.15%	NM_003902.5	missense
MSH3	p.(A61_P63dup)	c.189_190insGCAGCG CCC	.	chr5:79950735	34.88%	NM_002439.5	nonframeshift Insertion
HLA-B	p.([R68=;E69M])	c.204_206delAGAinsG AT	.	chr6:31324602	37.50%	NM_005514.8	synonymous, missense
KMT2D	p. (?)	c.16413-3C>T	.	chr12:49415937	61.77%	NM_003482.4	unknown
RPTOR	p.(T135A)	c.403A>G	.	chr17:78681695	2.55%	NM_020761.3	missense

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
ATM	chr11:108098341	1	0.91
CDK12	chr17:37618286	1	1.02

Variant Details (continued)

Copy Number Variations (continued)

Gene	Locus	Copy Number	CNV Ratio
CHEK1	chr11:125496639	1	0.97

Biomarker Descriptions

EGFR p.(L858R) c.2573T>G

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family¹. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4⁴⁸. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways⁴⁹. Activation of these pathways promotes cell proliferation, differentiation, and survival^{50,51}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{6,22,52,53}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21⁵⁴. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer⁵⁴. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{55,56,57,58}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations⁵⁹. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{54,60}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{6,22,53,60,61}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{62,63,64}. Alterations in EGFR are rare in pediatric cancers^{6,22}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)^{6,22}. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)^{6,22}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib⁶⁵ (2004) and gefitinib⁶⁶ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations⁶⁷. Second-generation TKIs afatinib⁶⁸ (2013) and dacomitinib⁶⁹ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{70,71,72,73}. In 2025, the FDA approved the irreversible EGFR inhibitor, sunozertinib⁷⁴, for the treatment of locally advanced or metastatic non-small cell lung cancer in adult patients with EGFR exon 20 insertion mutations whose disease has progressed on or after platinum-based chemotherapy. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitor, CLN-081 (TPC-064)⁷⁵ for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance⁷⁶. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases⁵⁴. Third generation TKIs were developed to maintain sensitivity in the presence of T790M⁷⁶. Osimertinib⁷⁷ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases⁷⁶. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa⁷⁸. T790M and C797S can occur in either cis or trans allelic orientation⁷⁸. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs⁷⁸. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{78,79}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs⁷⁸. Fourth-generation TKIs are in

Biomarker Descriptions (continued)

development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535⁸⁰ (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations⁸¹. The bispecific antibody, amivantamab⁸² (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib⁸³ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. HLX-42⁸⁴, an anti-EGFR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301⁸⁵ (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozepasplasmid⁸⁶ (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{87,88,89}.

ATM deletion

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases (PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)¹⁶. ATM and ATR act as master regulators of DNA damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA (ssDNA) repair¹⁷. ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB^{17,18}. Upon activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins¹⁹. ATM is a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAness phenotype, which is characterized by a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss^{13,20}. Germline mutations in ATM often result in Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal instability²¹.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer^{6,22}.

Potential relevance: The PARP inhibitor, olaparib⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib¹⁵ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes ATM. Consistent with other genes associated with the BRCAness phenotype, ATM mutations may aid in selecting patients likely to respond to PARP inhibitors^{20,23,24}. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer, four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib²⁵. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁹, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CDK12 deletion

cyclin dependent kinase 12

Background: CDK12 encodes the cyclin-dependent kinase 12 protein and is required for the maintenance of genomic stability^{10,11,12}. CDK12 phosphorylates RNA polymerase II and is a regulator of transcription elongation and expression of DNA repair genes^{10,11,12,13,14}. Alterations in CDK12 impair the transcription of homologous recombination repair (HRR) genes such as BRCA1, ATR, FANCI, and FANCD2, contributing to a BRCAness phenotype^{12,13}. CDK12 is a tumor suppressor gene and loss of function mutations are observed in various solid tumors¹⁴. However, observations of CDK12 amplification and overexpression in breast cancer indicate that it could also function as an oncogene¹⁴.

Alterations and prevalence: Somatic alterations of CDK12 include mutations and amplification. Missense and truncating mutations in CDK12 are observed in 8% of undifferentiated stomach adenocarcinoma, 7% of bladder urothelial, and 6% endometrial carcinoma^{1,6}. CDK12 is amplified in 9% of esophagogastric adenocarcinoma and invasive breast carcinoma, 8% of undifferentiated stomach adenocarcinoma, and 3% of bladder urothelial and endometrial carcinoma^{1,6}.

Potential relevance: The PARP inhibitor, olaparib⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CDK12. Additionally, talazoparib¹⁵

Biomarker Descriptions (continued)

in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CDK12. Consistent with other genes associated with homologous recombination repair, CDK12 loss may aid in selecting patients likely to respond to PARP inhibitors^{13,14}. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁹, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CHEK1 deletion

checkpoint kinase 1

Background: The CHEK1 gene encodes the checkpoint kinase 1 protein and belongs to a family of serine/threonine checkpoint kinases, that also includes CHEK2¹. Checkpoint kinases play an important role in S phase and G2/M transition and DNA damage induced cell cycle arrest². CHEK1 is a tumor suppressor and it interacts with proteins involved in transcription regulation, cell-cycle arrest, and DNA repair including homologous recombination repair (HRR)^{3,4}. Upon DNA damage, CHEK1 is phosphorylated and activated by DNA damage repair proteins ATM and ATR³. Activated CHEK1 subsequently phosphorylates and negatively regulates downstream proteins such as CDC25A thereby slowing or stalling DNA replication^{3,5}.

Alterations and prevalence: Recurrent somatic alterations of CHEK1 include mutations and copy number loss. Somatic mutations of CHEK1 are observed in 3% of endometrial carcinoma, 2% of non-small cell lung cancer and 1% of cervical squamous carcinoma cases^{6,7}. CHEK1 copy number loss occurs in 10% of seminoma, 8% of non-seminomatous germ cell tumor, 5% of ocular melanoma, and 3% of melanoma cases^{6,7}.

Potential relevance: The PARP inhibitor, olaparib⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK1. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁹, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome²⁶. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{27,28}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2²⁹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250³⁰. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)³⁰. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{31,32,33,34,35}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes²⁸. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{27,28,32,36}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{27,28,37,38}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{37,38}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab³⁹ (2014) and nivolumab⁴⁰ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab³⁹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication³⁹. Dostarlimab⁴¹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{33,42}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁴³ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{33,44,45}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁴⁵. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{46,47}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{46,47}.

Biomarker Descriptions (continued)

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,90}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{90,91}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance⁹². Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{92,93,94,95}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38⁹⁶.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{6,22}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

icalontamab brengitecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR L858R mutation

Supporting Statement:

The FDA has granted Breakthrough designation to EGFR/HER3 targeting bispecific antibody-drug conjugate (ADC), icalontamab brengitecan, for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EGFR exon 19 deletions or exon 21 L858R substitution mutations who experienced disease progression on or after treatment with an EGFR TKI and platinum-based chemotherapy.

Reference:

<https://www.onclive.com/view/fda-grants-breakthrough-therapy-designation-to-icalontamab-bengitecan-in-egfr-nsclc>

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR L858R mutation or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

<https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastatic-nsclc>

DB-1310

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR L858R mutation

Supporting Statement:

The FDA has granted Fast Track designation to the HER3-targeting antibody-drug conjugate, DB-1310, for the treatment of adult patients with advanced, unresectable or metastatic non-squamous non-small cell lung cancer with EGFR exon 19 deletion or L858R mutation and who have progressed after treatment with a third-generation EGFR tyrosine kinase inhibitor and platinum-based chemotherapy.

Reference:

<https://www.targetedonc.com/view/novel-her3-adc-receives-fda-fast-track-for-refractory-nsclc>

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,

Genes Assayed (continued)

Genes Assayed for the Detection of DNA Sequence Variants (continued)

FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECom, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECom, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✗ No evidence

EGFR p.(L858R) c.2573T>G

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib	●	●	●	●	● (III)
afatinib	●	●	●	●	● (II)
dacomitinib	●	●	●	●	● (II)
gefitinib	●	●	●	●	● (II)
erlotinib + ramucirumab	●	●	●	●	✗
amivantamab + carboplatin + pemetrexed	●	●	●	✗	✗
amivantamab + lazertinib	●	●	●	✗	✗
datopotamab deruxtecan-dlnk	●	●	✗	✗	✗
osimertinib + chemotherapy + pemetrexed	●	✗	●	✗	✗
bevacizumab + erlotinib	✗	●	●	●	✗
erlotinib	✗	●	●	●	✗
osimertinib + carboplatin + pemetrexed	✗	●	✗	✗	✗
osimertinib + cisplatin + pemetrexed	✗	●	✗	✗	✗
BAT1706 + erlotinib	✗	✗	●	✗	✗
bevacizumab (Allergan) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Biocon) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Celltrion) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Mabxience) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Pfizer) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Samsung Bioepis) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Stada) + erlotinib	✗	✗	●	✗	✗
atezolizumab + bevacizumab + carboplatin + paclitaxel	✗	✗	✗	●	✗
gefitinib + carboplatin + pemetrexed	✗	✗	✗	●	✗
adebrelimab, bevacizumab, chemotherapy	✗	✗	✗	✗	● (IV)
afatinib, bevacizumab, chemotherapy	✗	✗	✗	✗	● (IV)
befotertinib	✗	✗	✗	✗	● (IV)
bevacizumab, almonertinib, chemotherapy	✗	✗	✗	✗	● (IV)
catequentinib, toripalimab	✗	✗	✗	✗	● (IV)
EGFR tyrosine kinase inhibitor	✗	✗	✗	✗	● (IV)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
furmonertinib, chemotherapy	✖	✖	✖	✖	● (IV)
gefitinib, chemotherapy	✖	✖	✖	✖	● (IV)
gefitinib, endostatin	✖	✖	✖	✖	● (IV)
natural product, gefitinib, erlotinib, icotinib hydrochloride, osimertinib, almonertinib, furmonertinib	✖	✖	✖	✖	● (IV)
almonertinib, apatinib	✖	✖	✖	✖	● (III)
almonertinib, chemotherapy	✖	✖	✖	✖	● (III)
almonertinib, radiation therapy	✖	✖	✖	✖	● (III)
befotertinib, icotinib hydrochloride	✖	✖	✖	✖	● (III)
bevacizumab, osimertinib	✖	✖	✖	✖	● (III)
CK-101, gefitinib	✖	✖	✖	✖	● (III)
datopotamab deruxtecan-dlnk, osimertinib	✖	✖	✖	✖	● (III)
furmonertinib	✖	✖	✖	✖	● (III)
furmonertinib, osimertinib, chemotherapy	✖	✖	✖	✖	● (III)
gefitinib, afatinib, erlotinib, metformin hydrochloride	✖	✖	✖	✖	● (III)
glumetinib, osimertinib	✖	✖	✖	✖	● (III)
icotinib hydrochloride, cetequentinib	✖	✖	✖	✖	● (III)
icotinib hydrochloride, chemotherapy	✖	✖	✖	✖	● (III)
icotinib hydrochloride, radiation therapy	✖	✖	✖	✖	● (III)
izalontamab brengitecan	✖	✖	✖	✖	● (III)
izalontamab brengitecan, osimertinib	✖	✖	✖	✖	● (III)
JMT-101, osimertinib	✖	✖	✖	✖	● (III)
osimertinib, bevacizumab	✖	✖	✖	✖	● (III)
osimertinib, chemotherapy	✖	✖	✖	✖	● (III)
osimertinib, datopotamab deruxtecan-dlnk	✖	✖	✖	✖	● (III)
sacituzumab tirumotecan	✖	✖	✖	✖	● (III)
sacituzumab tirumotecan, osimertinib	✖	✖	✖	✖	● (III)
savolitinib, osimertinib	✖	✖	✖	✖	● (III)
SH-1028	✖	✖	✖	✖	● (III)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TY-9591, osimertinib	✖	✖	✖	✖	● (III)
PM-1080, almonertinib	✖	✖	✖	✖	● (II/III)
SCTB-14, chemotherapy	✖	✖	✖	✖	● (II/III)
ABSK-043, furmonertinib	✖	✖	✖	✖	● (II)
afatinib, chemotherapy	✖	✖	✖	✖	● (II)
almonertinib	✖	✖	✖	✖	● (II)
almonertinib, adebrelimab, chemotherapy	✖	✖	✖	✖	● (II)
almonertinib, bevacizumab	✖	✖	✖	✖	● (II)
almonertinib, chemoradiation therapy	✖	✖	✖	✖	● (II)
almonertinib, dacomitinib	✖	✖	✖	✖	● (II)
amivantamab, chemotherapy	✖	✖	✖	✖	● (II)
amivantamab, lazertinib, chemotherapy	✖	✖	✖	✖	● (II)
atezolizumab, bevacizumab, tiragolumab	✖	✖	✖	✖	● (II)
befotertinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)
bevacizumab, afatinib	✖	✖	✖	✖	● (II)
bevacizumab, furmonertinib	✖	✖	✖	✖	● (II)
cadonilimab, chemotherapy, catequentinib	✖	✖	✖	✖	● (II)
camrelizumab, apatinib	✖	✖	✖	✖	● (II)
capmatinib, osimertinib, ramucirumab	✖	✖	✖	✖	● (II)
catequentinib, almonertinib	✖	✖	✖	✖	● (II)
catequentinib, chemotherapy	✖	✖	✖	✖	● (II)
chemotherapy, atezolizumab, bevacizumab	✖	✖	✖	✖	● (II)
dacomitinib, osimertinib	✖	✖	✖	✖	● (II)
EGFR tyrosine kinase inhibitor, osimertinib, chemotherapy	✖	✖	✖	✖	● (II)
EGFR tyrosine kinase inhibitor, radiation therapy	✖	✖	✖	✖	● (II)
erlotinib, chemotherapy	✖	✖	✖	✖	● (II)
erlotinib, OBI-833	✖	✖	✖	✖	● (II)
furmonertinib, bevacizumab	✖	✖	✖	✖	● (II)
furmonertinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
furmonertinib, catequentinib	✖	✖	✖	✖	● (II)
furmonertinib, chemotherapy, bevacizumab	✖	✖	✖	✖	● (II)
furmonertinib, icotinib hydrochloride	✖	✖	✖	✖	● (II)
gefitinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)
gefitinib, icotinib hydrochloride	✖	✖	✖	✖	● (II)
gefitinib, thalidomide	✖	✖	✖	✖	● (II)
icotinib hydrochloride	✖	✖	✖	✖	● (II)
icotinib hydrochloride, autologous RAK cell	✖	✖	✖	✖	● (II)
icotinib hydrochloride, osimertinib	✖	✖	✖	✖	● (II)
ivonescimab, chemotherapy	✖	✖	✖	✖	● (II)
izalontamab brengitecan, almonertinib	✖	✖	✖	✖	● (II)
JS-207, chemotherapy	✖	✖	✖	✖	● (II)
lazertinib	✖	✖	✖	✖	● (II)
lazertinib, bevacizumab	✖	✖	✖	✖	● (II)
lazertinib, chemotherapy	✖	✖	✖	✖	● (II)
osimertinib, radiation therapy	✖	✖	✖	✖	● (II)
PLB-1004, bozitinib, osimertinib	✖	✖	✖	✖	● (II)
ramucirumab, erlotinib	✖	✖	✖	✖	● (II)
sunvozertinib	✖	✖	✖	✖	● (II)
sunvozertinib, catequentinib	✖	✖	✖	✖	● (II)
sunvozertinib, golidocitinib	✖	✖	✖	✖	● (II)
tislelizumab, chemotherapy, bevacizumab	✖	✖	✖	✖	● (II)
toripalimab	✖	✖	✖	✖	● (II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	✖	✖	✖	✖	● (II)
toripalimab, chemotherapy	✖	✖	✖	✖	● (II)
TY-9591, chemotherapy	✖	✖	✖	✖	● (II)
vabametkib, lazertinib	✖	✖	✖	✖	● (II)
YL-202	✖	✖	✖	✖	● (II)
zorifertinib, pirotinib	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AP-L1898	✖	✖	✖	✖	● (I/II)
BH-30643	✖	✖	✖	✖	● (I/II)
bozitinib, osimertinib	✖	✖	✖	✖	● (I/II)
BPI-361175	✖	✖	✖	✖	● (I/II)
chemotherapy, DZD-6008	✖	✖	✖	✖	● (I/II)
dacomitinib, cetequentinib	✖	✖	✖	✖	● (I/II)
DAJH-1050766	✖	✖	✖	✖	● (I/II)
DB-1310, osimertinib	✖	✖	✖	✖	● (I/II)
dostinib	✖	✖	✖	✖	● (I/II)
FWD-1509	✖	✖	✖	✖	● (I/II)
H-002	✖	✖	✖	✖	● (I/II)
ifebemtinib, furmonertinib	✖	✖	✖	✖	● (I/II)
MRTX0902	✖	✖	✖	✖	● (I/II)
necitumumab, osimertinib	✖	✖	✖	✖	● (I/II)
quaratusugene ozeplasmid, osimertinib	✖	✖	✖	✖	● (I/II)
RC-108, furmonertinib, toripalimab	✖	✖	✖	✖	● (I/II)
soturafusp alfa, chemotherapy	✖	✖	✖	✖	● (I/II)
soturafusp alfa, HB-0030	✖	✖	✖	✖	● (I/II)
sunvozertinib, chemotherapy	✖	✖	✖	✖	● (I/II)
TRX-221	✖	✖	✖	✖	● (I/II)
WSD-0922	✖	✖	✖	✖	● (I/II)
alisertib, osimertinib	✖	✖	✖	✖	● (I)
almonertinib, midazolam	✖	✖	✖	✖	● (I)
ASKC-202	✖	✖	✖	✖	● (I)
AZD-9592	✖	✖	✖	✖	● (I)
BG-60366	✖	✖	✖	✖	● (I)
BPI-1178, osimertinib	✖	✖	✖	✖	● (I)
cetequentinib, gefitinib, metformin hydrochloride	✖	✖	✖	✖	● (I)
DZD-6008	✖	✖	✖	✖	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✗ No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
EGFR tyrosine kinase inhibitor, cetequentinib	✗	✗	✗	✗	● (I)
genolimzumab, fruquintinib	✗	✗	✗	✗	● (I)
IBI-318, lenvatinib	✗	✗	✗	✗	● (I)
KQB-198, osimertinib	✗	✗	✗	✗	● (I)
LAVA-1223	✗	✗	✗	✗	● (I)
MRX-2843, osimertinib	✗	✗	✗	✗	● (I)
osimertinib, carotuximab	✗	✗	✗	✗	● (I)
osimertinib, Minnelide	✗	✗	✗	✗	● (I)
osimertinib, tegatrabetan	✗	✗	✗	✗	● (I)
patritumab deruxtecan	✗	✗	✗	✗	● (I)
repotrectinib, osimertinib	✗	✗	✗	✗	● (I)
VIC-1911, osimertinib	✗	✗	✗	✗	● (I)
WTS-004	✗	✗	✗	✗	● (I)
YH-013	✗	✗	✗	✗	● (I)
zipalertinib, chemotherapy, glumetinib, pimitespib, quemliclustat	✗	✗	✗	✗	● (I)

ATM deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
olaparib	✗	✗	✗	✗	● (II)
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)
senaparib, IMP-9064	✗	✗	✗	✗	● (I/II)

CDK12 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)

CHEK1 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	21.01%
ATM	CNV, CN:1.0
ATM	LOH, 11q22.3(108098341-108236285)x1
CDK12	CNV, CN:1.0
CDK12	LOH, 17q12(37618286-37646976)x1
CHEK1	CNV, CN:1.0
CHEK1	LOH, 11q24.2(125496639-125525271)x1

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Patil et al. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. *Cell. Mol. Life Sci.* 2013 Nov;70(21):4009-21. PMID: 23508805
3. Bartek et al. Chk1 and Chk2 kinases in checkpoint control and cancer. *Cancer Cell.* 2003 May;3(5):421-9. PMID: 12781359
4. Huang et al. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. *Mol. Cancer Ther.* 2008 Jun;7(6):1440-9. PMID: 18566216
5. Zhang et al. Roles of Chk1 in cell biology and cancer therapy. *Int. J. Cancer.* 2014 Mar 1;134(5):1013-23. PMID: 23613359
6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
7. Sen et al. CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. *Cancer Res.* 2017 Jul 15;77(14):3870-3884. PMID: 28490518
8. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/208558s031lbl.pdf
9. <https://www.senhwabio.com//en/news/20220125>
10. Malgorzata et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. *Nat Commun.* 2019 Apr 15;10(1):1757. PMID: 30988284
11. Joshi et al. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. *J. Biol. Chem.* 2014 Mar 28;289(13):9247-53. PMID: 24554720
12. Blazek et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. *Genes Dev.* 2011 Oct 15;25(20):2158-72. PMID: 22012619
13. Lord et al. BRCAness revisited. *Nat. Rev. Cancer.* 2016 Feb;16(2):110-20. PMID: 26775620
14. Paculová et al. The emerging roles of CDK12 in tumorigenesis. . doi: 10.1186/s13008-017-0033-x. eCollection 2017. PMID: 29090014
15. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/217439s003lbl.pdf
16. Maréchal et al. DNA damage sensing by the ATM and ATR kinases. *Cold Spring Harb Perspect Biol.* 2013 Sep 1;5(9). PMID: 24003211
17. Matsuoka et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. *Science.* 2007 May 25;316(5828):1160-6. PMID: 17525332
18. Ditch et al. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. *Trends Biochem. Sci.* 2012 Jan;37(1):15-22. PMID: 22079189
19. Kozlov et al. Autophosphorylation and ATM activation: additional sites add to the complexity. *J. Biol. Chem.* 2011 Mar 18;286(11):9107-19. PMID: 21149446
20. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. *Endocr. Relat. Cancer.* 2016 Jun;23(6):R267-85. PMID: 27226207
21. Cynthia et al. Ataxia telangiectasia: a review. *Orphanet J Rare Dis.* 2016 Nov 25;11(1):159. PMID: 27884168
22. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
23. Gilardini et al. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. *CR.* PMID: 24252502
24. Pennington et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. *Clin. Cancer Res.* 2014 Feb 1;20(3):764-75. PMID: 24240112
25. Mateo et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. *N. Engl. J. Med.* 2015 Oct 29;373(18):1697-708. PMID: 26510020
26. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
27. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
28. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
29. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
30. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339

References (continued)

31. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
32. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
33. NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]
34. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
35. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
36. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
37. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
38. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
39. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
40. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
41. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
42. NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]
43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
44. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
45. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
46. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
47. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
48. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. *Science.* 1985 Sep 6;229(4717):974-6. PMID: 2992089
49. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. *Mol Cancer.* 2018 Feb 19;17(1):53. PMID: 29455669
50. Zhixiang. ErbB Receptors and Cancer. *Methods Mol. Biol.* 2017;1652:3-35. PMID: 28791631
51. Gutierrez et al. HER2: biology, detection, and clinical implications. *Arch. Pathol. Lab. Med.* 2011 Jan;135(1):55-62. PMID: 21204711
52. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. *FEBS Lett.* 2010 Jun 18;584(12):2699-706. PMID: 20388509
53. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature.* 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
54. da et al. EGFR mutations and lung cancer. *Annu Rev Pathol.* 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
55. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. *Mol. Cancer Ther.* 2013 Feb;12(2):220-9. PMID: 23371856
56. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. *Clin Cancer Res.* 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
57. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. *Sci Transl Med.* 2013 Dec 18;5(216):216ra177. PMID: 24353160
58. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. *J Thorac Oncol.* 2015 May;10(5):793-9. PMID: 25668120
59. Karachalios et al. KRAS mutations in lung cancer. *Clin Lung Cancer.* 2013 May;14(3):205-14. PMID: 23122493
60. Brennan et al. The somatic genomic landscape of glioblastoma. *Cell.* 2013 Oct 10;155(2):462-77. PMID: 24120142

References (continued)

61. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature*. 2015 Jan 29;517(7536):576-82. PMID: 25631445
62. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. *FEBS J*. 2010 Jan;277(2):301-8. PMID: 19922469
63. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. *Oncogene*. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
64. Gan et al. The EGFRvIII variant in glioblastoma multiforme. *J Clin Neurosci*. 2009 Jun;16(6):748-54. PMID: 19324552
65. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
66. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
67. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. *Clin Cancer Res*. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
68. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
69. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
70. NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]
71. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. *Cancer*. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
72. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. *Signal Transduct Target Ther*. 2019;4:5. PMID: 30854234
73. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. *Int J Mol Med*. 2014 Aug;34(2):464-74. PMID: 24891042
74. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219839s000lbl.pdf
75. <https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys>
76. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. *Oncotarget*. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
77. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
78. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. *Clin. Cancer Res*. 2015 Sep 1;21(17):3924-33. PMID: 25964297
79. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. *J Thorac Oncol*. 2017 Nov;12(11):1723-1727. PMID: 28662863
80. <https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and>
81. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. *Cancer Treat Rev*. 2024 Jan;122:102664. PMID: 38064878
82. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s008lbl.pdf
83. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbl.pdf
84. <https://iis.aastocks.com/20231227/11015917-0.PDF>
85. <https://www1.hkexnews.hk/listedco/listconews/sehk/2024/1008/2024100800433.pdf>
86. <https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/>
87. NCCN Guidelines® - NCCN-Pediatric Central Nervous System Cancers [Version 3.2025]
88. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. *Genes (Basel)*. 2022 Mar 31;13(4). PMID: 35456430
89. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. *Brain Pathol*. 2020 Jul;30(4):844-856. PMID: 32307792
90. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. *Front Cell Neurosci*. 2014;8:349. PMID: 25389387
91. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene*. 2006 Mar 13;25(11):1659-72. PMID: 16550166

References (continued)

92. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer*. 2020 Apr;122(9):1277-1287. PMID: 32047295
93. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog*. 2014 Apr;53(4):314-24. PMID: 23143693
94. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget*. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
95. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One*. 2015;10(5):e0127524. PMID: 26010150
96. Karas et al. *JCO Oncol Pract*. 2021 Dec 3:OP2100624. PMID: 34860573