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Report Highlights
6 Relevant Biomarkers
21 Therapies Available
219 Clinical Trials

 
Gene Finding Gene Finding

ALK None detected NTRK1 None detected
BRAF None detected NTRK2 None detected
EGFR EGFR p.(L858R) c.2573T>G NTRK3 None detected
ERBB2 None detected RET None detected
KRAS KRAS amplification ROS1 None detected
MET None detected

Genomic Alteration Finding

Tumor Mutational Burden 5.67 Mut/Mb measured

Relevant Lung Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA EGFR p.(L858R) c.2573T>G

epidermal growth factor receptor
Allele Frequency: 21.56%
Locus: chr7:55259515
Transcript: NM_005228.5

afatinib 1, 2 / I, II+

amivantamab + lazertinib 1, 2 / I, II+

bevacizumab† + erlotinib 2 / I, II+

dacomitinib 1, 2 / I, II+

erlotinib 2 / I, II+

erlotinib + ramucirumab 1, 2 / I, II+

gefitinib 1, 2 / I, II+

osimertinib 1, 2 / I, II+

osimertinib + chemotherapy 1, 2 / I

amivantamab + chemotherapy 1, 2 / II+

datopotamab deruxtecan-dlnk 1 / II+

BAT1706 + erlotinib 2

gefitinib + chemotherapy I

atezolizumab + bevacizumab +
chemotherapy II+

None* 195

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
† Includes biosimilars/generics
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC BRCA2 deletion

BRCA2, DNA repair associated
Locus: chr13:32890491

None* niraparib II+

olaparib II+

rucaparib II+

2

  
IIC MTAP deletion

methylthioadenosine phosphorylase
Locus: chr9:21802646

None* None* 14

  
IIC KRAS amplification

KRAS proto-oncogene, GTPase
Locus: chr12:25362709

None* None* 6

  
IIC CDKN2A deletion

cyclin dependent kinase inhibitor 2A
Locus: chr9:21968178

None* None* 4

  
IIC CDKN2B deletion

cyclin dependent kinase inhibitor 2B
Locus: chr9:22005728

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
† Includes biosimilars/generics
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

EGFR p.(L858R) c.2573T>G  izalontamab brengitecan 1, patritumab deruxtecan 1

 DB-1310 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources
BAP1 p.(M1?) c.3G>T, Microsatellite stable, PARP1 p.(A502G) c.1505C>G, UGT1A1 p.(G71R) c.211G>A, TPMT p.(Y240C)
c.719A>G, NOTCH1 deletion, NQO1 p.(P187S) c.559C>T, RBM10 p.(Q623*) c.1867C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

EGFR p.(L858R) c.2573T>G COSM6224 chr7:55259515 21.56% NM_005228.5 missense

BAP1 p.(M1?) c.3G>T . chr3:52443892 27.25% NM_004656.4 missense

PARP1 p.(A502G) c.1505C>G . chr1:226567661 56.29% NM_001618.4 missense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 50.65% NM_000463.3 missense

TPMT p.(Y240C) c.719A>G COSM4986703 chr6:18130918 51.00% NM_000367.5 missense

NQO1 p.(P187S) c.559C>T . chr16:69745145 51.05% NM_000903.3 missense

RBM10 p.(Q623*) c.1867C>T . chrX:47041244 38.60% NM_001204468.1 nonsense

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

MAML3 p.(Q507_Q510del) c.1455_1479delACAGC
AACAGCAACAGCAGC
AGCAGinsGCAGCAAC
AGCAA

. chr4:140811111 14.88% NM_018717.5 nonframeshift
Block
Substitution

MAML3 p.(Q491Pfs*32) c.1455_1506delACAGC
AACAGCAACAGCAGC
AGCAGCAGCAGCAGC
AGCAGCAGCAGCAGC
AGinsGCAGCAACAGC
AACAGCCAGCAGCAG
CAGCAGCAGCAGCAA

. chr4:140811084 75.00% NM_018717.5 frameshift Block
Substitution

NF1 p.(R601Q) c.1802G>A . chr17:29550542 16.48% NM_001042492.3 missense

SMAD2 p.(N322H) c.964A>C . chr18:45374879 62.43% NM_001003652.4 missense

ERCC2 p.(E264Q) c.790G>C . chr19:45867518 52.98% NM_000400.4 missense

DNA Sequence Variants (continued)

 

 
Gene Locus Copy Number CNV Ratio

BRCA2 chr13:32890491 1 0.82

MTAP chr9:21802646 0.33 0.65

KRAS chr12:25362709 7.43 2.14

CDKN2A chr9:21968178 0 0.57

CDKN2B chr9:22005728 0.29 0.64

NOTCH1 chr9:139390441 0.4 0.67

Copy Number Variations

 

Variant Details (continued)

 
EGFR p.(L858R) c.2573T>G

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal
growth factor receptor (HER) tyrosine kinase family28. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family
include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4129. EGFR ligand-induced dimerization results in kinase activation and leads to
stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways130. Activation of these
pathways promotes cell proliferation, differentiation, and survival131,132.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately
10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations4,7,133,134. The most common
mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and
the L858R amino acid substitution in exon 21135. These mutations constitutively activate EGFR resulting in downstream signaling,
and represent 80% of the EGFR mutations observed in lung cancer135. A second group of less prevalent activating mutations includes
E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20136,137,138,139. EGFR activating mutations in lung cancer
tend to be mutually exclusive to KRAS activating mutations140. In contrast, a different set of recurrent activating EGFR mutations in
the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma135,141. Amplification of EGFR
is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head
and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial
carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous
cell carcinoma, sarcoma, and breast invasive carcinoma4,7,134,141,142. Deletion of exons 2-7, encoding the extracellular domain of EGFR

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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(EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of
glioblastoma143,144,145. Alterations in EGFR are rare in pediatric cancers4,7. Somatic mutations are observed in 2% of bone cancer and
glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous
system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)4,7. Amplification of EGFR is observed in 2% of bone cancer
and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250
cases)4,7.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib146 (2004) and gefitinib147 (2015),
which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved
for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed
first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21
activating mutations148. Second-generation TKIs afatinib149 (2013) and dacomitinib150 (2018) bind EGFR and other ERBB/HER gene
family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and
gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q,
L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance
to the same therapies151,152,153,154. In 2025, the FDA approved the irreversible EGFR inhibitor, sunvozertinib155, for the treatment of
locally advanced or metastatic non-small cell lung cancer in adult patients with EGFR exon 20 insertion mutations whose disease has
progressed on or after platinum-based chemotherapy. In 2022, the FDA granted breakthrough therapy designation to the irreversible
EGFR inhibitor, CLN-081 (TPC-064)156 for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion
mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with
the emergence of drug resistance157. The primary resistance mutation that emerges following treatment with first-generation TKI is
T790M, accounting for 50-60% of resistant cases135. Third generation TKIs were developed to maintain sensitivity in the presence
of T790M157. Osimertinib158 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the
first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs,
treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases157.
The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a
third-generation TKI or vice versa159. T790M and C797S can occur in either cis or trans allelic orientation159. If C797S is observed
following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation
TKIs159. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may
exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone159,160. However,
C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs159. Fourth-generation TKIs
are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535161 (2024), a CNS-
penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-
positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab
(2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy
against EGFR mutations162. The bispecific antibody, amivantamab163 (2021), targeting EGFR and MET was approved for NSCLC tumors
harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib164 (2024), was approved in combination with
amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or
exon 21 L858R mutations. HLX-42165, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody
conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the
treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a
third-generation EGFR tyrosine kinase inhibitor. CPO301166 (2023) received a fast track designation from the FDA for the treatment
of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as
3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid167 (2020),
in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that
progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric
high-grade glioma80,168,169.

BRCA2 deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered
as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function
and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged
DNA33,34. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and
compromise genome integrity33,34. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast
and ovarian cancer and in men for breast and prostate cancer35,36,37. For individuals diagnosed with inherited pathogenic or likely
pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian
cancer by 70 years was 20-48%35,38.

Biomarker Descriptions (continued)
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Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian
cancer, 5-10% of breast cancer, and 1-4% of prostate cancer39,40,41,42,43,44,45,46. Somatic alterations in BRCA2 are observed in 5-15% of
uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, stomach adenocarcinoma, colorectal
adenocarcinoma, lung squamous cell carcinoma, lung adenocarcinoma, and uterine carcinosarcoma, 3-4% of cervical squamous
cell carcinoma, head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma,
cholangiocarcinoma, breast invasive carcinoma, renal papillary cell carcinoma, and 2% of renal clear cell carcinoma, hepatocellular
carcinoma, thymoma, prostate adenocarcinoma, sarcoma, and glioblastoma multiforme4,7.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity
to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)47. Inhibitors targeting
PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells48,49. Consequently, several PARP inhibitors have
been FDA approved for BRCA1/2-mutated cancers. Olaparib50 (2014) was the first PARPi to be approved by the FDA for BRCA1/2
aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment
of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary
peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with
gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib50 is approved
(2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic
mutations in HRR genes that includes BRCA2. Rucaparib51 is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and
ovarian cancer. Talazoparib52 (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast
cancer. Additionally, talazoparib52 in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate
cancer (mCRPC) with mutations in HRR genes that includes BRCA2. Niraparib53 (2017) is another PARPi approved for the treatment of
epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib
in combination with abiraterone acetate54 received FDA approval (2023) for the treatment of deleterious or suspected deleterious
BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported55.
One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality56.
In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022,
the FDA granted fast track designation to the small molecule inhibitor, pidnarulex57, for BRCA1/2, PALB2, or other homologous
recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but
through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and
genomic instability.

MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase28. Methylthioadenosine phosphorylase, a key enzyme
in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine
(MTA) to adenine and 5-methylthioribose-1-phosphate64,65. Loss of MTAP function is commonly observed in cancer due to deletion
or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis
inhibitors and to methionine deprivation65.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be co-
deleted with CDKN2A in numerous solid and hematological cancers65,66. Consequently, biallelic loss of MTAP has been observed in
42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21%
of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell
lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma,
stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma,
adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma4,7. Somatic mutations in MTAP have been found in 3% of
uterine corpus endometrial carcinoma4,7.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

KRAS amplification

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS
superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the
nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival1,2,3.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers.
KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60%

Biomarker Descriptions (continued)
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of pancreatic cancer4. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q614,5,6. Mutations at
A59, K117, and A146 have also been observed but are less frequent7,8.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib9 (2021) and adagrasib10 (2022), for the treatment
of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and
adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma11. The FDA has approved the
combination of kinase inhibitors, avutometinib and defactinib12 (2025), for the treatment of adult patients with KRAS-mutated recurrent
low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy designation (2022)
to the KRAS G12C inhibitor, GDC-603613, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual inhibitor, elironrasib14,
and the KRAS G12C inhibitor, D3S-00115, were both granted breakthrough therapy designation (2025) for KRAS G12C-mutated locally
advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding KRAS G12C inhibitors.
The KRAS-G12C inhibitor, olomorasib16, was granted breakthrough designation (2025) in combination with pembrolizumab17 for
unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression ≥ 50%. The SHP2 inhibitor, BBP-39818

was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated
metastatic NSCLC. The RAF/MEK clamp, avutometinib19 was also granted fast track designation (2024) in combination with sotorasib
for KRAS G12C-mutated metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been
previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-852020, was granted fast track designation in 2025 for
previously treated KRAS G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib21, was granted breakthrough
designation (2025) for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor,
GFH-37522, was also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced
or metastatic pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-00123, was granted fast track designation in 2024 for KRAS
G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib24, was granted
fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated
metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab25 and panitumumab26, are contraindicated for treatment of
colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and
146)8. Additionally, KRAS mutations are associated with poor prognosis in NSCLC27.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression28. CDKN2A,
also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)67. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb68,69,70. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both
of which exhibit differential tumor suppressor functions71. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and
CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation28,71,72. CDKN2A
aberrations commonly co-occur with CDKN2B67. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways,
leading to uncontrolled cell proliferation73. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and
pancreatic cancer74,75.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number
loss, truncating, or missense mutations76. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell
carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of
esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach
adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma4,7. Biallelic
deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32%
of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic
adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and
cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical
carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma,
3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney
chromophobe4,7. Alterations in CDKN2A are also observed in pediatric cancers7. Biallelic deletion of CDKN2A is observed in 68% of
T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of
embryonal tumors7. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic
leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)7.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary
diagnostic markers of malignant peripheral nerve sheath tumors77,78,79. Additionally, deletion of CDKN2B is a molecular marker used in
staging Grade 4 pediatric IDH-mutant astrocytoma80. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A
LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib81,82,83. Alternatively,
CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme84. CDKN2A (p16)
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expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive
head and neck cancer85,86,87,88.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression28,67. CDKN2B,
also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A),
CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)67. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,
thereby preventing the phosphorylation of Rb68,69,70. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur
with CDKN2A67. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma28,89,90.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of
glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin
cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous
cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma,
11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma,
breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian
serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe4,7. Somatic mutations in CDKN2B are
observed in 2% of uterine carcinosarcoma4,7. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of
childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14%
of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers4,7. Somatic mutations in CDKN2B are
observed in less than 1% of bone cancer (1 in 327 cases)4,7.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular
marker used in staging grade 4 pediatric IDH-mutant astrocytoma80.

BAP1 p.(M1?) c.3G>T

BRCA1 associated protein 1

Background: The BAP1 gene encodes the BRCA1 associated protein 1 that belongs to the ubiquitin C-terminal hydrolase subfamily of
deubiquitinating enzymes28. BAP1 is a tumor suppressor deubiquitinase that is involved in chromatin modification, transcription, and
cell cycle regulation98. BAP1 deubiquitylation targets include HCF-1, which modulates chromatin structure98. Germline mutations in
BAP1 are associated with BAP1-tumor predisposition syndrome (BAP1-TPDS), a heritable condition which confers an elevated risk of
developing uveal melanoma, malignant mesothelioma, and renal cell carcinoma99,100,101,102,103,104.

Alterations and prevalence: Recurrent somatic mutations in BAP1 are observed in 21% of mesothelioma, 19% of cholangiocarcinoma,
16% of uveal melanoma, and 7% of kidney renal clear cell carcinoma4,7. BAP1 biallelic deletions are observed in 11% of
mesothelioma4,7.

Potential relevance: Currently, no therapies are approved for BAP1 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome105. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue106,107. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2108. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S250109. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)109. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS110,111,112,113,114. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes107.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer106,107,111,115.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma106,107,116,117. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers116,117.
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Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab17 (2014) and nivolumab118 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab17 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication17. Dostarlimab119 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer112,120. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab121 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location112,122,123. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS)
and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients123. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors124,125. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers124,125.

PARP1 p.(A502G) c.1505C>G

poly(ADP-ribose) polymerase 1

Background: The PARP1 gene encodes the poly(ADP-ribose) polymerase 1 protein28. PARP1 belongs to the large PARP protein family
that also includes PARP2, PARP3, and PARP458. PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADP-
ribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis,
nucleic acid metabolism, and regulation of chromatin structure58,59. PARP enzymes are involved in several DNA repair pathways58,59.
In base excision repair (BER), PARP1 recognizes DNA single-strand breaks and is capable of auto-PARylation (self-PARylation) which
promotes the recruitment of additional BER enzymes59,60. PARP1 is also responsible for sensing DNA double-strand breaks (DSBs)
and assists in end resection during homologous recombination repair (HRR) through the recruitment MRE11 to DSBs60. PARylation of
histones H1, H2A, and H2B by PARP1 promotes an open chromatin conformation, which allows DNA repair machinery access to sites
of DNA damage61.

Alterations and prevalence: Somatic mutations in PARP1 are observed in 6% of uterine corpus endometrial carcinoma, 4% of skin
cutaneous melanoma, and 3% of adrenocortical carcinoma, stomach adenocarcinoma, bladder urothelial carcinoma, and colorectal
adenocarcinoma4,7.

Potential relevance: Currently, no therapies are approved for PARP1 aberrations. However, PARP inhibition is known to induce
synthetic lethality in certain cancer types that are HRR deficient (HRD) due to mutations in the HRR pathway. This is achieved from
PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently resulting in cell death62,63.
Although not indicated for specific alterations in PARP1, several PARPis including olaparib, rucaparib, talazoparib, and niraparib
have been approved in various cancer types with HRD. Olaparib50 (2014) was the first PARPi to be approved by the FDA for BRCA1/2
aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment
of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary
peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with
gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib50 is approved
(2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious germline or somatic
mutations in HRR genes that includes BRCA1. Rucaparib51 (2016) was the first PARPi approved for the treatment of patients with
either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020) for deleterious
gBRCAm or sBRCAm mCRPC. Talazoparib52 (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or
metastatic breast cancer. Niraparib53 (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or
primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily28,91. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites91,92. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance93. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation93,94,95,96. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
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UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-3897.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma4,7.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

TPMT p.(Y240C) c.719A>G

thiopurine S-methyltransferase

Background: The TPMT gene encodes thiopurine S-methyltransferase, a cytosolic enzyme that methylates aromatic and heterocyclic
sulfhydryl compounds such as thiopurines28,126,127. TPMT is the major enzyme responsible for the metabolic inactivation of thiopurine
chemotherapeutic drugs used in the treatment of acute lymphoblastic leukemia (ALL), including, 6-mercaptopurine, 6-thioguanine, and
azathioprine126,127,128. Inherited TPMT polymorphisms, including TPMT*2, TPMT*3A, TPMT*3B, TPMT*3C, and TPMT*8, can result in
TPMT deficiency, which is characterized by impaired enzymatic activity and confers an increased risk of severe toxicity to thiopurine
drugs due to an increase in systemic drug exposure126,128.

Alterations and prevalence: Somatic mutations in TPMT are observed in 2% of uterine corpus endometrial carcinoma and colorectal
adenocarcinoma4,7. Biallelic loss of TPMT is observed in 1% of stomach adenocarcinoma, esophageal adenocarcinoma, and
adrenocortical carcinoma4,7. Amplification of TPMT is observed in 7% of ovarian serous cystadenocarcinoma, 6% of bladder urothelial
carcinoma, 4% of diffuse large B-cell lymphoma, uveal melanoma, uterine carcinosarcoma, and skin cutaneous melanoma, 3%
of cholangiocarcinoma, and 2% of breast invasive carcinoma, uterine corpus endometrial carcinoma, and liver hepatocellular
carcinoma4,7.

Potential relevance: Currently, no therapies are approved for TPMT aberrations.

NOTCH1 deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH
family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor
(EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting
NOTCH signaling170. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several
genes involved in regulation of cell proliferation, differentiation, growth, and metabolism171,172. In cancer, depending on the tumor type,
aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for
NOTCH family members173,174,175,176.

Alterations and prevalence: Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma,
melanoma, gastric, esophageal, lung, and uterine cancers4,7,142. Activating mutations in either the heterodimerization or PEST domains
of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia177,178.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

RBM10 p.(Q623*) c.1867C>T

RNA binding motif protein 10

Background: RBM10 encodes RNA binding motif protein 10, a member of the RNA binding proteins (RBP) family28,29. RBM10 regulates
RNA splicing and post-transcriptional modification of mRNA29,30. RBM10 is suggested to function as a tumor suppressor by promoting
apoptosis and inhibiting cellular proliferation through regulation of the MDM2 and p53 feedback loops, as well as influencing BAX
expression29. RBM10 has been observed to promote transformation and proliferation in lung cancer, supporting an oncogenic role for
RBM1031,32.

Alterations and prevalence: Somatic mutations in RBM10 are observed in 7% of lung adenocarcinoma, 6% of uterine corpus
endometrial carcinoma, 4% of bladder urothelial carcinoma, 3% of colorectal adenocarcinoma and skin cutaneous melanoma, and
2% of diffuse large B-cell lymphoma, pancreatic adenocarcinoma, adrenocortical carcinoma, cervical squamous cell carcinoma,
esophageal adenocarcinoma, stomach adenocarcinoma, and kidney chromophobe4,7. Biallelic loss of RBM10 is observed in 3% of
esophageal adenocarcinoma and 2% of head and neck squamous cell carcinoma4,7. Amplification of RBM10 is observed in 5% of
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ovarian serous cystadenocarcinoma, 4% of uterine carcinosarcoma, and 2% of sarcoma, uterine corpus endometrial carcinoma,
adrenocortical carcinoma, and diffuse large B-cell lymphoma4,7.

Potential relevance: Currently, no therapies are approved for RBM10 aberrations.
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

 

 izalontamab brengitecan

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

Supporting Statement:
The FDA has granted Breakthrough designation to EGFR/HER3 targeting bispecific antibody-drug conjugate (ADC), izalontamab
brengitecan, for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EGFR
exon 19 deletions or exon 21 L858R substitution mutations who experienced disease progression on or after treatment with an
EGFR TKI and platinum-based chemotherapy.

Reference:

https://www.onclive.com/view/fda-grants-breakthrough-therapy-designation-to-izalontamab-brengitecan-in-egfr-nsclc
 
 

 patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation or
EGFRi sensitizing mutation

Supporting Statement:
The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate,
patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastatic-
nsclc

 
 

 DB-1310

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

Supporting Statement:
The FDA has granted Fast Track designation to the HER3-targeting antibody-drug conjugate, DB-1310, for the treatment of adult
patients with advanced, unresectable or metastatic non-squamous non-small cell lung cancer with EGFR exon 19 deletion or
L858R mutation and who have progressed after treatment with a third-generation EGFR tyrosine kinase inhibitor and platinum-
based chemotherapy.

Reference:

https://www.targetedonc.com/view/novel-her3-adc-receives-fda-fast-track-for-refractory-nsclc
 

EGFR p.(L858R) c.2573T>G

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
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FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants (continued)

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2
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Report Date: 22 Dec 2025 13 of 26

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

osimertinib      (III)

afatinib      (II)

dacomitinib      (II)

gefitinib      (II)

erlotinib + ramucirumab     

amivantamab + carboplatin + pemetrexed     

amivantamab + lazertinib     

datopotamab deruxtecan-dlnk     

osimertinib + chemotherapy + pemetrexed     

bevacizumab + erlotinib     

erlotinib     

osimertinib + carboplatin + pemetrexed     

osimertinib + cisplatin + pemetrexed     

BAT1706 + erlotinib     

bevacizumab (Allergan) + erlotinib     

bevacizumab (Biocon) + erlotinib     

bevacizumab (Celltrion) + erlotinib     

bevacizumab (Mabxience) + erlotinib     

bevacizumab (Pfizer) + erlotinib     

bevacizumab (Samsung Bioepis) + erlotinib     

bevacizumab (Stada) + erlotinib     

atezolizumab + bevacizumab + carboplatin +
paclitaxel     

gefitinib + carboplatin + pemetrexed     

adebrelimab, bevacizumab, chemotherapy      (IV)

afatinib, bevacizumab, chemotherapy      (IV)

befotertinib      (IV)

bevacizumab, almonertinib, chemotherapy      (IV)

catequentinib, toripalimab      (IV)

EGFR tyrosine kinase inhibitor      (IV)

EGFR p.(L858R) c.2573T>G

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

furmonertinib, chemotherapy      (IV)

gefitinib, chemotherapy      (IV)

gefitinib, endostatin      (IV)

natural product, gefitinib, erlotinib, icotinib
hydrochloride, osimertinib, almonertinib,
furmonertinib

     (IV)

almonertinib, apatinib      (III)

almonertinib, chemotherapy      (III)

almonertinib, radiation therapy      (III)

befotertinib, icotinib hydrochloride      (III)

bevacizumab, osimertinib      (III)

CK-101, gefitinib      (III)

datopotamab deruxtecan-dlnk, osimertinib      (III)

furmonertinib      (III)

furmonertinib, osimertinib, chemotherapy      (III)

gefitinib, afatinib, erlotinib, metformin hydrochloride      (III)

glumetinib, osimertinib      (III)

icotinib hydrochloride, catequentinib      (III)

icotinib hydrochloride, chemotherapy      (III)

icotinib hydrochloride, radiation therapy      (III)

izalontamab brengitecan      (III)

izalontamab brengitecan, osimertinib      (III)

JMT-101, osimertinib      (III)

osimertinib, bevacizumab      (III)

osimertinib, chemotherapy      (III)

osimertinib, datopotamab deruxtecan-dlnk      (III)

sacituzumab tirumotecan      (III)

sacituzumab tirumotecan, osimertinib      (III)

savolitinib, osimertinib      (III)

SH-1028      (III)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

TY-9591, osimertinib      (III)

PM-1080, almonertinib      (II/III)

SCTB-14, chemotherapy      (II/III)

ABSK-043, furmonertinib      (II)

afatinib, chemotherapy      (II)

almonertinib      (II)

almonertinib, adebrelimab, chemotherapy      (II)

almonertinib, bevacizumab      (II)

almonertinib, chemoradiation therapy      (II)

almonertinib, dacomitinib      (II)

amivantamab, chemotherapy      (II)

amivantamab, lazertinib, chemotherapy      (II)

atezolizumab, bevacizumab, tiragolumab      (II)

befotertinib, bevacizumab, chemotherapy      (II)

bevacizumab, afatinib      (II)

bevacizumab, furmonertinib      (II)

cadonilimab, chemotherapy, catequentinib      (II)

camrelizumab, apatinib      (II)

capmatinib, osimertinib, ramucirumab      (II)

catequentinib, almonertinib      (II)

catequentinib, chemotherapy      (II)

chemotherapy, atezolizumab, bevacizumab      (II)

EGFR tyrosine kinase inhibitor, osimertinib,
chemotherapy      (II)

EGFR tyrosine kinase inhibitor, radiation therapy      (II)

erlotinib, chemotherapy      (II)

erlotinib, OBI-833      (II)

furmonertinib, bevacizumab      (II)

furmonertinib, bevacizumab, chemotherapy      (II)

furmonertinib, catequentinib      (II)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

furmonertinib, chemotherapy, bevacizumab      (II)

furmonertinib, icotinib hydrochloride      (II)

gefitinib, bevacizumab, chemotherapy      (II)

gefitinib, icotinib hydrochloride      (II)

gefitinib, thalidomide      (II)

icotinib hydrochloride      (II)

icotinib hydrochloride, autologous RAK cell      (II)

icotinib hydrochloride, osimertinib      (II)

ivonescimab, chemotherapy      (II)

izalontamab brengitecan, almonertinib      (II)

JS-207, chemotherapy      (II)

lazertinib      (II)

lazertinib, bevacizumab      (II)

lazertinib, chemotherapy      (II)

osimertinib, radiation therapy      (II)

PLB-1004, bozitinib, osimertinib      (II)

ramucirumab, erlotinib      (II)

sunvozertinib      (II)

sunvozertinib, catequentinib      (II)

sunvozertinib, golidocitinib      (II)

tislelizumab, chemotherapy, bevacizumab      (II)

toripalimab      (II)

toripalimab, bevacizumab, Clostridium butyricum,
chemotherapy      (II)

toripalimab, chemotherapy      (II)

TY-9591, chemotherapy      (II)

vabametkib, lazertinib      (II)

YL-202      (II)

zorifertinib, pirotinib      (II)

AP-L1898      (I/II)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

BH-30643      (I/II)

bozitinib, osimertinib      (I/II)

BPI-361175      (I/II)

chemotherapy, DZD-6008      (I/II)

dacomitinib, catequentinib      (I/II)

DAJH-1050766      (I/II)

DB-1310, osimertinib      (I/II)

dositinib      (I/II)

FWD-1509      (I/II)

H-002      (I/II)

ifebemtinib, furmonertinib      (I/II)

MRTX0902      (I/II)

necitumumab, osimertinib      (I/II)

quaratusugene ozeplasmid, osimertinib      (I/II)

RC-108, furmonertinib, toripalimab      (I/II)

sotiburafusp alfa, chemotherapy      (I/II)

sotiburafusp alfa, HB-0030      (I/II)

sunvozertinib, chemotherapy      (I/II)

TRX-221      (I/II)

WSD-0922      (I/II)

alisertib, osimertinib      (I)

almonertinib, midazolam      (I)

ASKC-202      (I)

AZD-9592      (I)

BG-60366      (I)

BPI-1178, osimertinib      (I)

catequentinib, gefitinib, metformin hydrochloride      (I)

DZD-6008      (I)

EGFR tyrosine kinase inhibitor, catequentinib      (I)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

genolimzumab, fruquintinib      (I)

IBI-318, lenvatinib      (I)

KQB-198, osimertinib      (I)

LAVA-1223      (I)

MRX-2843, osimertinib      (I)

osimertinib, carotuximab      (I)

osimertinib, Minnelide      (I)

osimertinib, tegatrabetan      (I)

patritumab deruxtecan      (I)

repotrectinib, osimertinib      (I)

VIC-1911, osimertinib      (I)

WTS-004      (I)

YH-013      (I)

zipalertinib, chemotherapy, glumetinib, pimitespib,
quemliclustat      (I)

EGFR p.(L858R) c.2573T>G (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

niraparib     

rucaparib     

pamiparib, tislelizumab      (II)

BRCA2 deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

AMG 193      (I/II)

CTS-3497      (I/II)

IDE397      (I/II)

MRTX-1719      (I/II)

TNG-456, abemaciclib      (I/II)

MTAP deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

TNG-462, pembrolizumab      (I/II)

ABSK-131      (I)

GH-56      (I)

GTA-182      (I)

HSK-41959      (I)

ISM-3412      (I)

PH020-803      (I)

S-095035      (I)

SYH-2039      (I)

MTAP deletion (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

regorafenib      (II)

JAB-23E73      (I/II)

ASP-5834      (I)

BBO-11818, pembrolizumab, cetuximab,
chemotherapy      (I)

BGB-53038      (I)

KO-2806      (I)

KRAS amplification

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib      (II)

palbociclib, abemaciclib      (II)

AMG 193      (I/II)

ABSK-131      (I)

CDKN2A deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

palbociclib, abemaciclib      (II)

CDKN2B deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.
 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene/Genomic Alteration Finding

LOH percentage 19.95%
BRCA2 CNV, CN:1.0
BRCA2 LOH, 13q13.1(32890491-32972932)x1

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current
as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was
sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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