

Patient Name: 한순자
Gender: F
Sample ID: N25-340

Primary Tumor Site: Lung
Collection Date: 2025.12.02

Sample Cancer Type: Lung Cancer

Table of Contents

Variant Details	2
Biomarker Descriptions	3
Alert Details	9
Relevant Therapy Summary	12

Report Highlights

5 Relevant Biomarkers
14 Therapies Available
177 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR exon 19 deletion, EGFR p.(T790M) c.2369C>T	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	ROS1 amplification
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	1.9 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 35.55% Locus: chr7:55242469 Transcript: NM_005228.5	amivantamab + lazertinib ^{1,2 / I, II+} osimertinib ^{1,2 / I, II+} bevacizumab [†] + erlotinib ^{2 / I} erlotinib + ramucirumab ^{1 / I} osimertinib + chemotherapy ^{1,2 / I} amivantamab + chemotherapy ^{1,2 / II+} datopotamab deruxtecan-dlnk ^{1 / II+} BAT1706 + erlotinib ² gefitinib + chemotherapy ¹ atezolizumab + bevacizumab + chemotherapy ^{II+}	None*	162

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

† Includes biosimilars/genetics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	<i>EGFR p.(T790M) c.2369C>T</i> epidermal growth factor receptor Allele Frequency: 22.47% Locus: chr7:55249071 Transcript: NM_005228.5	osimertinib ^{1, 2 / II+} datopotamab deruxtecan-dlnk ¹ atezolizumab + bevacizumab + chemotherapy ^{II+}	None*	53
IIC	<i>TP53 p.(C135F) c.404G>T</i> tumor protein p53 Allele Frequency: 34.46% Locus: chr17:7578526 Transcript: NM_000546.6	None*	None*	6
IIC	<i>ROS1 amplification</i> ROS proto-oncogene 1, receptor tyrosine kinase Locus: chr6:117622071	None*	None*	3
IIC	<i>RB1 deletion</i> RB transcriptional corepressor 1 Locus: chr13:48877953	None*	None*	1

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

† Includes biosimilars/generics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. *J Mol Diagn.* 2017 Jan;19(1):4-23.

⚠ Alerts informed by public data sources: 🚫 Contraindicated, ⚠ Resistance, ↗ Breakthrough, ⚠ Fast Track

EGFR exon 19 deletion ↗ **izalontamab brengitecan**¹, **patritumab deruxtecan**¹
⚠ **DB-1310**¹

EGFR p.(T790M) c.2369C>T 🚫 **gefitinib**²
⚠ afatinib, dacomitinib, erlotinib, gefitinib

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

MAPK1 amplification, *Microsatellite stable*, *UGT1A1 p.(G71R) c.211G>A*, *HLA-B deletion*, *FYN amplification*, *Tumor Mutational Burden*

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
EGFR	p.(L747_A750delinsP)	c.2239_2248delTTAAG AGAAGinsC	COSM12382	chr7:55242469	35.55%	NM_005228.5	nonframeshift Block Substitution
EGFR	p.(T790M)	c.2369C>T	COSM6240	chr7:55249071	22.47%	NM_005228.5	missense
TP53	p.(C135F)	c.404G>T	COSM10647	chr17:7578526	34.46%	NM_000546.6	missense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	41.39%	NM_000463.3	missense
OR2L8	p.(Y217R)	c.649_650delTAinsCG	.	chr1:248112808	1.99%	NM_001001963.1	missense

Variant Details (continued)

DNA Sequence Variants (continued)

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
RAD50	p.(P30R)	c.89C>G	.	chr5:131893105	21.24%	NM_005732.4	missense
HLA-B	p.([N104I;L105A])	c.311_314delACCTinsT . CGC		chr6:31324494	57.14%	NM_005514.8	missense, missense
SLX4	p.(G924R)	c.2770G>A	.	chr16:3640869	78.19%	NM_032444.4	missense

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
ROS1	chr6:117622071	9.68	2.92
RB1	chr13:48877953	0.4	0.6
MAPK1	chr22:22123473	5.22	1.8
HLA-B	chr6:31322252	0.36	0.59
FYN	chr6:111982890	5.78	1.95
PRDM1	chr6:106534408	6.14	2.03
HDAC2	chr6:114262171	8.18	2.55
PXDNL	chr8:52233342	0.78	0.69
ARID5B	chr10:63661463	6.14	2.03
CBFB	chr16:67063242	6.26	2.06
CTCF	chr16:67644720	6.9	2.22
CDH1	chr16:68771249	7.38	2.35
AMER1	chrX:63409727	5.3	1.83

Biomarker Descriptions

EGFR exon 19 deletion, EGFR p.(T790M) c.2369C>T

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family¹. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4². EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways⁹³. Activation of these pathways promotes cell proliferation, differentiation, and survival^{94,95}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{8,96,97}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21⁹⁸. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer⁹⁸. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{99,100,101,102}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹⁰³. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{98,104}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial

Biomarker Descriptions (continued)

carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{8,9,45,97,104}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{105,106,107}. Alterations in EGFR are rare in pediatric cancers^{8,9}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)^{8,9}. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹⁰⁸ (2004) and gefitinib¹⁰⁹ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations¹¹⁰. Second-generation TKIs afatinib¹¹¹ (2013) and dacomitinib¹¹² (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{34,113,114,115}. In 2025, the FDA approved the irreversible EGFR inhibitor, sunozertinib¹¹⁶, for the treatment of locally advanced or metastatic non-small cell lung cancer in adult patients with EGFR exon 20 insertion mutations whose disease has progressed on or after platinum-based chemotherapy. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitor, CLN-081 (TPC-064)¹¹⁷ for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance¹¹⁸. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases⁹⁸. Third generation TKIs were developed to maintain sensitivity in the presence of T790M¹¹⁸. Osimertinib¹¹⁹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases¹¹⁸. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa¹²⁰. T790M and C797S can occur in either cis or trans allelic orientation¹²⁰. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs¹²⁰. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{120,121}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs¹²⁰. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535¹²² (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations¹²³. The bispecific antibody, amivantamab¹²⁴ (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib¹²⁵ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. HLX-42¹²⁶, an anti-EGFR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301¹²⁷ (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid¹²⁸ (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{129,130,131}.

TP53 p.(C135F) c.404G>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁴⁰. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential⁴¹. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{42,43}.

Biomarker Descriptions (continued)

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,44,45,46,47}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{8,9}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{48,49,50,51}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586⁵² (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{53,54}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁵⁵. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{56,57,58,59,60}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁶¹. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁶².

ROS1 amplification

ROS proto-oncogene 1, receptor tyrosine kinase

Background: The ROS1 gene encodes the ROS proto-oncogene receptor tyrosine kinase 1, which exhibits structural similarity to anaplastic lymphoma kinase (ALK)^{10,11}. Like ALK, ROS1 is the target of recurrent chromosomal rearrangements that generate fusion proteins containing the intact ROS1 tyrosine kinase domain combined with numerous fusion partner genes¹². ROS1 fusion kinases are constitutively activated and drive oncogenic transformation¹³.

Alterations and prevalence: Somatic mutations in ROS1 are observed in 24% of skin cutaneous melanoma, 13% of uterine corpus endometrial carcinoma, 8% of lung squamous cell carcinoma, 7% of colorectal adenocarcinoma, 6% of stomach adenocarcinoma, 5% of bladder urothelial carcinoma, head and neck squamous cell carcinoma, and diffuse large B-cell lymphoma, 4% of lung adenocarcinoma and uterine carcinosarcoma, 3% of adrenocortical carcinoma, esophageal adenocarcinoma, cholangiocarcinoma, cervical squamous cell carcinoma, kidney renal clear cell carcinoma, and glioblastoma multiforme, and 2% of mesothelioma, brain lower grade glioma, breast invasive carcinoma, and acute myeloid leukemia^{8,9}. ROS1 fusions are observed in cholangiocarcinoma, gastric cancer, and ovarian cancer and have been reported in approximately 1-2% of non-small cell lung cancer (NSCLC) and glioblastoma^{10,14,15,16,17,18}. ROS1 amplification is observed in 3% of sarcoma^{8,9}. Alterations in ROS1 are rare in pediatric cancers^{8,9}. Somatic mutations are observed in 2% of bone cancer and embryonal tumors, and 1% or less in B-lymphoblastic leukemia/lymphoma (3 in 252 cases), glioma (3 in 297 cases), leukemia (1 in 311 cases), peripheral nervous system tumors (3 in 1158 cases), and Wilms tumor (1 in 710 cases)^{8,9}. Amplification of ROS1 is observed in less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 731 cases)^{8,9}.

Potential relevance: The tyrosine kinase inhibitor (TKI), entrectinib¹⁹ (2019), is approved for the treatment of ROS1 fusion-positive metastatic NSCLC. Taletrectinib²⁰ (2025) is a kinase inhibitor approved for the treatment of adult patients with locally advanced or metastatic ROS1-positive NSCLC. Crizotinib²¹ (2011), originally approved for the treatment of ALK-positive NSCLC, is also approved (2016) for the treatment of ROS1-positive NSCLC²². Acquired resistance to crizotinib in ROS1-positive NSCLC is associated with kinase domain mutations S1986F/Y, G2032R, D2033N, and L2155S^{23,24,25}. Repotrectinib²⁶ (2023) is a kinase inhibitor approved for the treatment of locally advanced or metastatic ROS1-positive NSCLC. In 2024, zidesamtinib²⁷ received breakthrough designation for the treatment of patients with ROS1-positive NSCLC who have been previously treated with two or more ROS1 TKIs. Ceritinib²⁸ (2017) is a second-generation ALK inhibitor approved for ALK-positive NSCLC that has also shown efficacy in ROS1-positive NSCLC²⁹. In a phase II study, ceritinib demonstrated systemic and intra-cranial activity with an objective response rate (ORR) of 62% in patients with advanced ROS1-positive NSCLC²⁹. Lorlatinib³⁰, a CNS-penetrant third-generation ALK and ROS1 inhibitor, is FDA approved (2018) for ALK-positive metastatic NSCLC. Emerging pre-clinical evidence suggests that lorlatinib may target almost all known ALK and ROS1 resistance mutations^{31,32}. In a phase I/II study of lorlatinib in advanced ROS1-positive NSCLC, objective responses were observed in both TKI-naïve and those previously treated with crizotinib, regardless of CNS metastasis³³. Lorlatinib is recommended for subsequent therapy in ROS1 fusion-positive NSCLC patients who have progressed after treatment with crizotinib, entrectinib, or ceritinib³⁴.

Biomarker Descriptions (continued)

RB1 deletion

RB transcriptional corepressor 1

Background: The RB1 gene encodes the retinoblastoma protein (pRB), and is an early molecular hallmark of cancer. RB1 belongs to the family of pocket proteins that also includes p107 and p130, which play a crucial role in the cell proliferation, apoptosis, and differentiation^{132,133}. RB1 is well characterized as a tumor suppressor gene that restrains cell cycle progression from G1 phase to S phase¹³⁴. Specifically, RB1 binds and represses the E2F family of transcription factors that regulate the expression of genes involved in the G1/S cell cycle regulation^{132,133,135}. Germline mutations in RB1 are associated with retinoblastoma (a rare childhood tumor) as well as other cancer types such as osteosarcoma, soft tissue sarcoma, and melanoma¹³⁶.

Alterations and prevalence: Recurrent somatic alterations in RB1, including mutations and biallelic loss, lead to the inactivation of the RB1 protein. RB1 mutations are observed in urothelial carcinoma (approximately 16%), endometrial cancer (approximately 12%), and sarcomas (approximately 9%). Similarly, biallelic loss of RB1 is observed in sarcomas (approximately 13%), urothelial carcinoma (approximately 6%), and endometrial cancer (approximately 1%). Biallelic loss of the RB1 gene is also linked to the activation of chemotherapy-induced acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)^{137,138,139}.

Potential relevance: Currently, there are no therapies approved for RB1 aberrations.

MAPK1 amplification

mitogen-activated protein kinase 1

Background: The MAPK1 gene encodes the mitogen-activated protein kinase 1, also known as ERK2¹. MAPK1 is involved in the ERK1/2 signaling pathway along with MAPK3, MAP2K2, MAP2K4, BRAF, and RAF1^{63,64}. Activation of MAPK proteins occurs through a kinase signaling cascade^{64,65,66}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{64,65,66}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{64,65,66}. MAPK1 activation leads to homodimerization and phosphorylation of downstream targets including transcription factors RSK, MSK, and MYC, cytoskeletal molecules, and nucleoporins⁶⁷. MAPK1 mutations have been observed to confer gain of function and promote MAPK pathway signaling, supporting an oncogenic role for MAPK1^{68,69}.

Alterations and prevalence: Somatic mutations in MAPK1 are observed in up to 4% of cervical squamous cell carcinoma, and up to 2% of head and neck squamous cell and uterine corpus endometrial carcinomas^{8,9}. The most common missense mutations occur at codon 322^{8,9}. Amplifications in MAPK1 are observed in up to 4% of sarcoma, and 3% of bladder carcinoma, lung squamous carcinoma, and ovarian cancer^{8,9}.

Potential relevance: Currently, no therapies are approved for MAPK1 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁷⁰. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{71,72}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁷³. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁷⁴. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁷⁴. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{75,76,77,78,79}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁷². LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{71,72,76,80}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{71,72,81,82}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{81,82}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁸³ (2014) and nivolumab⁸⁴ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁸³ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be

Biomarker Descriptions (continued)

approved with a tumor agnostic indication⁸³. Dostarlimab⁸⁵ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{77,86}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁸⁷ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{77,88,89}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁸⁹. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{90,91}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{90,91}.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,140}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{140,141}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹⁴². Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{142,143,144,145}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹⁴⁶.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁷.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

FYN amplification

FYN proto-oncogene, Src family tyrosine kinase

Background: FYN encodes the FYN proto-oncogene 1, part of the SRC family kinases (SFKs) which includes SRC, LCK, LYN, BLK, HCK, FYN, FGR, and YRK^{1,35,36}. SFKs are membrane-associated, non-receptor tyrosine kinases that are involved in several cellular functions such as growth, survival, and differentiation^{35,37}. Increased expression or activation of FYN has been identified in several cancer types and is associated with tumor progression and resistance to anti-cancer treatments³⁶.

Alterations and prevalence: Somatic mutations in FYN are observed in 5% of uterine corpus endometrial carcinoma, 3% of colorectal adenocarcinoma and skin cutaneous melanoma, and 2% of stomach adenocarcinoma, lung squamous cell carcinoma and uterine carcinosarcoma^{8,9}. Amplification of FYN is observed in 4% of uterine carcinosarcoma, 3% of sarcoma, and 2% of breast invasive carcinoma^{8,9}. Deletion and loss of heterozygosity at chromosome 6q, where FYN resides, are frequent occurrences in lymphoma and

Biomarker Descriptions (continued)

prostate cancer, respectively^{38,39}. Consequently, biallelic deletion of FYN is observed in 10% of diffuse large B-Cell lymphoma and 8% of prostate adenocarcinoma^{8,9}. Biallelic deletion of FYN has also been observed in 6% of uveal melanoma, and 2% of bladder urothelial carcinoma and liver hepatocellular carcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for FYN aberrations.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

EGFR exon 19 deletion

izardontamab brengitecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion

Supporting Statement:

The FDA has granted Breakthrough designation to EGFR/HER3 targeting bispecific antibody-drug conjugate (ADC), izardontamab brengitecan, for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EGFR exon 19 deletions or exon 21 L858R substitution mutations who experienced disease progression on or after treatment with an EGFR TKI and platinum-based chemotherapy.

Reference:

<https://www.onclive.com/view/fda-grants-breakthrough-therapy-designation-to-izalontamab-bengitecan-in-egfr-nsclc>

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

<https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastatic-nsclc>

DB-1310

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion

Supporting Statement:

The FDA has granted Fast Track designation to the HER3-targeting antibody-drug conjugate, DB-1310, for the treatment of adult patients with advanced, unresectable or metastatic non-squamous non-small cell lung cancer with EGFR exon 19 deletion or L858R mutation and who have progressed after treatment with a third-generation EGFR tyrosine kinase inhibitor and platinum-based chemotherapy.

Reference:

<https://www.targetedonc.com/view/novel-her3-adc-receives-fda-fast-track-for-refractory-nsclc>

Current NCCN Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

NCCN information is current as of 2025-09-02. To view the most recent and complete version of the guideline, go online to [NCCN.org](https://www.nccn.org).

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

EGFR p.(T790M) c.2369C>T

afatinib

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR T790M mutation

Summary:

- EGFR T790M mutation is associated with acquired resistance to first- and second-generation TKIs including erlotinib, gefitinib, dacomitinib, or afatinib.

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR T790M mutation

Summary:

- EGFR T790M mutation is associated with acquired resistance to first- and second-generation TKIs including erlotinib, gefitinib, dacomitinib, or afatinib.

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]

erlotinib

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR T790M mutation

Summary:

- EGFR T790M mutation is associated with acquired resistance to first- and second-generation TKIs including erlotinib, gefitinib, dacomitinib, or afatinib.

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]

gefitinib

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR T790M mutation

Summary:

- EGFR T790M mutation is associated with acquired resistance to first- and second-generation TKIs including erlotinib, gefitinib, dacomitinib, or afatinib.

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]

Current EMA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

EMA information is current as of 2025-09-17. For the most up-to-date information, search www.ema.europa.eu.

EGFR p.(T790M) c.2369C>T

gefitinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2023-07-17

Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/iressa-epar-product-information_en.pdf

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed (continued)

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSM3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✗ No evidence

EGFR exon 19 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib	●	●	●	●	● (III)
amivantamab + carboplatin + pemetrexed	●	●	●	✗	✗
amivantamab + lazertinib	●	●	●	✗	✗
erlotinib + ramucirumab	●	●	✗	●	✗
datopotamab deruxtecan-dlnk	●	●	✗	✗	✗
osimertinib + chemotherapy + pemetrexed	●	✗	●	✗	✗
bevacizumab + erlotinib	✗	●	●	●	✗
osimertinib + carboplatin + pemetrexed	✗	●	✗	✗	✗
osimertinib + cisplatin + pemetrexed	✗	●	✗	✗	✗
BAT1706 + erlotinib	✗	✗	●	✗	✗
bevacizumab (Allergan) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Biocon) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Celltrion) + erlotinib	✗	✗	●	✗	✗

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
bevacizumab (Mabxience) + erlotinib	✖	✖	●	✖	✖
bevacizumab (Pfizer) + erlotinib	✖	✖	●	✖	✖
bevacizumab (Samsung Bioepis) + erlotinib	✖	✖	●	✖	✖
bevacizumab (Stada) + erlotinib	✖	✖	●	✖	✖
atezolizumab + bevacizumab + carboplatin + paclitaxel	✖	✖	✖	●	✖
gefitinib + carboplatin + pemetrexed	✖	✖	✖	●	✖
befotertinib	✖	✖	✖	✖	● (IV)
bevacizumab, almonertinib, chemotherapy	✖	✖	✖	✖	● (IV)
EGFR tyrosine kinase inhibitor	✖	✖	✖	✖	● (IV)
furmonertinib, chemotherapy	✖	✖	✖	✖	● (IV)
almonertinib, apatinib	✖	✖	✖	✖	● (III)
almonertinib, cetequentinib	✖	✖	✖	✖	● (III)
almonertinib, chemotherapy	✖	✖	✖	✖	● (III)
almonertinib, radiation therapy	✖	✖	✖	✖	● (III)
befotertinib, icotinib hydrochloride	✖	✖	✖	✖	● (III)
bevacizumab, osimertinib	✖	✖	✖	✖	● (III)
datopotamab deruxtecan-dlnk, osimertinib	✖	✖	✖	✖	● (III)
furmonertinib	✖	✖	✖	✖	● (III)
icotinib hydrochloride, cetequentinib	✖	✖	✖	✖	● (III)
icotinib hydrochloride, radiation therapy	✖	✖	✖	✖	● (III)
izalontamab brengitecan	✖	✖	✖	✖	● (III)
izalontamab brengitecan, osimertinib	✖	✖	✖	✖	● (III)
JMT-101, osimertinib	✖	✖	✖	✖	● (III)
osimertinib, bevacizumab	✖	✖	✖	✖	● (III)
osimertinib, chemotherapy	✖	✖	✖	✖	● (III)
osimertinib, datopotamab deruxtecan-dlnk	✖	✖	✖	✖	● (III)
sacituzumab tirumotecan	✖	✖	✖	✖	● (III)
sacituzumab tirumotecan, osimertinib	✖	✖	✖	✖	● (III)
savolitinib, osimertinib	✖	✖	✖	✖	● (III)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
SH-1028	✖	✖	✖	✖	● (III)
TY-9591, osimertinib	✖	✖	✖	✖	● (III)
PM-1080, almonertinib	✖	✖	✖	✖	● (II/III)
SCTB-14, chemotherapy	✖	✖	✖	✖	● (II/III)
ABSK-043, furmonertinib	✖	✖	✖	✖	● (II)
almonertinib	✖	✖	✖	✖	● (II)
almonertinib, adebrelimab, chemotherapy	✖	✖	✖	✖	● (II)
almonertinib, bevacizumab	✖	✖	✖	✖	● (II)
almonertinib, chemoradiation therapy	✖	✖	✖	✖	● (II)
amivantamab, chemotherapy	✖	✖	✖	✖	● (II)
amivantamab, lazertinib, chemotherapy	✖	✖	✖	✖	● (II)
atezolizumab, bevacizumab, tiragolumab	✖	✖	✖	✖	● (II)
befotertinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)
bevacizumab, furmonertinib	✖	✖	✖	✖	● (II)
camrelizumab, apatinib	✖	✖	✖	✖	● (II)
capmatinib, osimertinib, ramucirumab	✖	✖	✖	✖	● (II)
catequentinib, almonertinib	✖	✖	✖	✖	● (II)
catequentinib, chemotherapy	✖	✖	✖	✖	● (II)
chemotherapy, atezolizumab, bevacizumab	✖	✖	✖	✖	● (II)
EGFR tyrosine kinase inhibitor, osimertinib, chemotherapy	✖	✖	✖	✖	● (II)
EGFR tyrosine kinase inhibitor, radiation therapy	✖	✖	✖	✖	● (II)
furmonertinib, bevacizumab	✖	✖	✖	✖	● (II)
furmonertinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)
furmonertinib, catequentinib	✖	✖	✖	✖	● (II)
furmonertinib, chemotherapy, bevacizumab	✖	✖	✖	✖	● (II)
furmonertinib, icotinib hydrochloride	✖	✖	✖	✖	● (II)
icotinib hydrochloride	✖	✖	✖	✖	● (II)
icotinib hydrochloride, autologous RAK cell	✖	✖	✖	✖	● (II)
ivonescimab, chemotherapy	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ◐ In this cancer type and other cancer types
 ✗ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
izalontamab, brengitecan, almonertinib	✗	✗	✗	✗	● (II)
JS-207, chemotherapy	✗	✗	✗	✗	● (II)
lazertinib	✗	✗	✗	✗	● (II)
lazertinib, bevacizumab	✗	✗	✗	✗	● (II)
lazertinib, chemotherapy	✗	✗	✗	✗	● (II)
osimertinib, bevacizumab, chemotherapy	✗	✗	✗	✗	● (II)
osimertinib, radiation therapy	✗	✗	✗	✗	● (II)
PLB-1004, bozitinib, osimertinib	✗	✗	✗	✗	● (II)
sunvozertinib	✗	✗	✗	✗	● (II)
sunvozertinib, cetequentinib	✗	✗	✗	✗	● (II)
sunvozertinib, golidocitinib	✗	✗	✗	✗	● (II)
tislelizumab, chemotherapy, bevacizumab	✗	✗	✗	✗	● (II)
toripalimab	✗	✗	✗	✗	● (II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	✗	✗	✗	✗	● (II)
toripalimab, chemotherapy	✗	✗	✗	✗	● (II)
TY-9591, chemotherapy	✗	✗	✗	✗	● (II)
vabametkib, lazertinib	✗	✗	✗	✗	● (II)
YL-202	✗	✗	✗	✗	● (II)
zorifertinib, pirotinib	✗	✗	✗	✗	● (II)
AP-L1898	✗	✗	✗	✗	● (I/II)
BH-30643	✗	✗	✗	✗	● (I/II)
bozitinib, osimertinib	✗	✗	✗	✗	● (I/II)
BPI-361175	✗	✗	✗	✗	● (I/II)
chemotherapy, DZD-6008	✗	✗	✗	✗	● (I/II)
DAJH-1050766	✗	✗	✗	✗	● (I/II)
DB-1310, osimertinib	✗	✗	✗	✗	● (I/II)
dostinib	✗	✗	✗	✗	● (I/II)
FWD-1509	✗	✗	✗	✗	● (I/II)
H-002	✗	✗	✗	✗	● (I/II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ifebemtinib, furmonertinib	✖	✖	✖	✖	● (I/II)
MRTX0902	✖	✖	✖	✖	● (I/II)
necitumumab, osimertinib	✖	✖	✖	✖	● (I/II)
quaratusugene ozeplasmid, osimertinib	✖	✖	✖	✖	● (I/II)
RC-108, furmonertinib, toripalimab	✖	✖	✖	✖	● (I/II)
sotubrafusp alfa, HB-0030	✖	✖	✖	✖	● (I/II)
sunvozertinib, chemotherapy	✖	✖	✖	✖	● (I/II)
TRX-221	✖	✖	✖	✖	● (I/II)
almonertinib, midazolam	✖	✖	✖	✖	● (I)
ASKC-202	✖	✖	✖	✖	● (I)
AZD-9592	✖	✖	✖	✖	● (I)
BG-60366	✖	✖	✖	✖	● (I)
BPI-1178, osimertinib	✖	✖	✖	✖	● (I)
DZD-6008	✖	✖	✖	✖	● (I)
genolimzumab, fruquintinib	✖	✖	✖	✖	● (I)
HS-10241, almonertinib	✖	✖	✖	✖	● (I)
IBI-318, lenvatinib	✖	✖	✖	✖	● (I)
KQB-198, osimertinib	✖	✖	✖	✖	● (I)
LAVA-1223	✖	✖	✖	✖	● (I)
MRX-2843, osimertinib	✖	✖	✖	✖	● (I)
osimertinib, carotuximab	✖	✖	✖	✖	● (I)
osimertinib, Minnelide	✖	✖	✖	✖	● (I)
osimertinib, tegatrabetan	✖	✖	✖	✖	● (I)
patritumab deruxtecan	✖	✖	✖	✖	● (I)
PB-101 (Precision Biotech Taiwan Corp), EGFR tyrosine kinase inhibitor	✖	✖	✖	✖	● (I)
repotrectinib, osimertinib	✖	✖	✖	✖	● (I)
VIC-1911, osimertinib	✖	✖	✖	✖	● (I)
YH-013	✖	✖	✖	✖	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 × No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
zipalertinib, chemotherapy, glumetinib, pimitespib, quemliclustat	×	×	×	×	● (I)

EGFR p.(T790M) c.2369C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib	●	●	●	●	● (II)
datopotamab deruxtecan-dlnk	●	×	×	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	●	×
bevacizumab, osimertinib	×	×	×	×	● (IV)
catequentinib, osimertinib	×	×	×	×	● (IV)
almonertinib, chemotherapy	×	×	×	×	● (III)
datopotamab deruxtecan-dlnk, osimertinib	×	×	×	×	● (III)
osimertinib, datopotamab deruxtecan-dlnk	×	×	×	×	● (III)
savolitinib, osimertinib	×	×	×	×	● (III)
SH-1028	×	×	×	×	● (III)
SCTB-14, chemotherapy	×	×	×	×	● (II/III)
almonertinib	×	×	×	×	● (II)
almonertinib, adebrelimab, chemotherapy	×	×	×	×	● (II)
almonertinib, radiation therapy	×	×	×	×	● (II)
avitinib	×	×	×	×	● (II)
furmonertinib	×	×	×	×	● (II)
furmonertinib, bevacizumab, chemotherapy	×	×	×	×	● (II)
furmonertinib, radiation therapy	×	×	×	×	● (II)
JS-207, chemotherapy	×	×	×	×	● (II)
lazertinib	×	×	×	×	● (II)
osimertinib, bevacizumab, chemotherapy	×	×	×	×	● (II)
osimertinib, chemotherapy	×	×	×	×	● (II)
osimertinib, radiation therapy	×	×	×	×	● (II)
sulfatinib, toripalimab, chemotherapy	×	×	×	×	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✗ No evidence

EGFR p.(T790M) c.2369C>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
sunvozertinib	✗	✗	✗	✗	● (II)
sunvozertinib, catequentinib	✗	✗	✗	✗	● (II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	✗	✗	✗	✗	● (II)
AP-L1898	✗	✗	✗	✗	● (I/II)
BH-30643	✗	✗	✗	✗	● (I/II)
DB-1310, osimertinib	✗	✗	✗	✗	● (I/II)
dositinib	✗	✗	✗	✗	● (I/II)
EMB01	✗	✗	✗	✗	● (I/II)
FWD-1509	✗	✗	✗	✗	● (I/II)
ifebemtinib, furmonertinib	✗	✗	✗	✗	● (I/II)
JIN-A-02	✗	✗	✗	✗	● (I/II)
MCLA-129	✗	✗	✗	✗	● (I/II)
RC-108, furmonertinib, toripalimab	✗	✗	✗	✗	● (I/II)
sunvozertinib, chemotherapy	✗	✗	✗	✗	● (I/II)
YK-029A	✗	✗	✗	✗	● (I/II)
almonertinib, midazolam	✗	✗	✗	✗	● (I)
BG-60366	✗	✗	✗	✗	● (I)
BPI-1178, osimertinib	✗	✗	✗	✗	● (I)
HS-10241, almonertinib	✗	✗	✗	✗	● (I)
osimertinib, Minnelide	✗	✗	✗	✗	● (I)
palcitoclax, osimertinib	✗	✗	✗	✗	● (I)
repotrectinib, osimertinib	✗	✗	✗	✗	● (I)
VIC-1911, osimertinib	✗	✗	✗	✗	● (I)
YZJ-0318	✗	✗	✗	✗	● (I)

TP53 p.(C135F) c.404G>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
almonertinib, catequentinib	✗	✗	✗	✗	● (III)
osimertinib, chemotherapy	✗	✗	✗	✗	● (III)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ◐ In this cancer type and other cancer types
 ✗ No evidence

TP53 p.(C135F) c.404G>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib, bevacizumab, chemotherapy	✗	✗	✗	✗	● (II)
sunvozertinib, cetequentinib	✗	✗	✗	✗	● (II)

ROS1 amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
cabozantinib	✗	✗	✗	✗	● (II)
repotrectinib	✗	✗	✗	✗	● (I/II)
crizotinib	✗	✗	✗	✗	● (I)

RB1 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ARTS-021	✗	✗	✗	✗	● (I/II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	21.98%
BRCA2	<i>LOH, 13q13.1(32890491-32972932)x3</i>
ATM	<i>LOH, 11q22.3(108098341-108236285)x3</i>
CHEK1	<i>LOH, 11q24.2(125496639-125525271)x3</i>
CHEK2	<i>LOH, 22q12.1(29083868-29130729)x3</i>
RAD51B	<i>LOH, 14q24.1(68290164-69061406)x4</i>

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
5. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
6. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
10. Bergethon et al. ROS1 rearrangements define a unique molecular class of lung cancers. *J Clin Oncol.* 2012 Mar 10;30(8):863-70. doi: 10.1200/JCO.2011.35.6345. Epub 2012 Jan 3. PMID: 22215748
11. Davare et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. *Proc Natl Acad Sci U S A.* 2015 Sep 29;112(39):E5381-90. doi: 10.1073/pnas.1515281112. Epub 2015 Sep 8. PMID: 26372962
12. Kohno et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. *Transl Lung Cancer Res.* 2015 Apr;4(2):156-64. PMID: 25870798
13. Lin et al. Recent Advances in Targeting ROS1 in Lung Cancer. *J Thorac Oncol.* 2017 Nov;12(11):1611-1625. PMID: 28818606
14. Shaw et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. *N Engl J Med.* 2014 Nov 20;371(21):1963-71. doi: 10.1056/NEJMoa1406766. Epub 2014 Sep 27. PMID: 25264305
15. Gu et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. *PLoS ONE.* 2011 Jan 6;6(1):e15640. PMID: 21253578
16. Charest et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). *Genes Chromosomes Cancer.* 2003 May;37(1):58-71. PMID: 12661006
17. Birch et al. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. *PLoS ONE.* 2011;6(12):e28250. PMID: 22163003
18. Lee et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. *Cancer.* 2013 May 1;119(9):1627-35. PMID: 23400546
19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212725s011lbl.pdf
20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219713s000lbl.pdf
21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202570s036lbl.pdf
22. Kazandjian et al. Benefit-Risk Summary of Crizotinib for the Treatment of Patients With ROS1 Alteration-Positive, Metastatic Non-Small Cell Lung Cancer. *Oncologist.* 2016 Aug;21(8):974-80. doi: 10.1634/theoncologist.2016-0101. Epub 2016 Jun 21. PMID: 27328934
23. Song et al. Molecular Changes Associated with Acquired Resistance to Crizotinib in ROS1-Rearranged Non-Small Cell Lung Cancer. *Clin Cancer Res.* 2015 May 15;21(10):2379-87. doi: 10.1158/1078-0432.CCR-14-1350. Epub 2015 Feb 16. PMID: 25688157
24. Drilon et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. *Clin Cancer Res.* 2016 May 15;22(10):2351-8. doi: 10.1158/1078-0432.CCR-15-2013. Epub 2015 Dec 16. PMID: 26673800
25. Facchinetto et al. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers. *Clin Cancer Res.* 2016 Dec 15;22(24):5983-5991. Epub 2016 Jul 11. PMID: 27401242
26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218213s001lbl.pdf
27. <https://investors.nuvalent.com/2024-02-27-Nuvalent-Receives-U-S-FDA-Breakthrough-Therapy-Designation-for-NVL-520>
28. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/211225s004lbl.pdf
29. Lim et al. Open-Label, Multicenter, Phase II Study of Ceritinib in Patients With Non-Small-Cell Lung Cancer Harboring ROS1 Rearrangement. *J Clin Oncol.* 2017 Aug 10;35(23):2613-2618. doi: 10.1200/JCO.2016.71.3701. Epub 2017 May 18. PMID: 28520527

References (continued)

30. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf
31. Zou et al. PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models. *Cancer Cell*. 2015 Jul 13;28(1):70-81. PMID: 26144315
32. Zou et al. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. *Proc. Natl. Acad. Sci. U.S.A.* 2015 Mar 17;112(11):3493-8. PMID: 25733882
33. Shaw et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. *Lancet Oncol.* 2019 Dec;20(12):1691-1701. PMID: 31669155
34. NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]
35. Ortiz et al. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. *Cell Commun Signal.* 2021 Jun 30;19(1):67. PMID: 34193161
36. Elias et al. Fyn is an important molecule in cancer pathogenesis and drug resistance. *Pharmacol Res.* 2015 Oct;100:250-4. PMID: 26305432
37. Amata et al. Phosphorylation of unique domains of Src family kinases. *Front Genet.* 2014;5:181. PMID: 25071818
38. Kozłowska et al. Inhibition of DNA methyltransferase activity upregulates Fyn tyrosine kinase expression in Hut-78 T-lymphoma cells. *Biomed Pharmacother.* 2008 Dec;62(10):672-6. PMID: 18337055
39. Sørensen et al. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer. *Int J Cancer.* 2008 Feb 1;122(3):509-19. PMID: 17943724
40. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265
41. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell.* 2014 Mar 17;25(3):304-17. PMID: 24651012
42. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol.* 2010 Jan;2(1):a001008. PMID: 20182602
43. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med.* 2017 Apr 3;7(4). PMID: 28270529
44. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature.* 2012 Sep 27;489(7417):519-25. PMID: 22960745
45. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
46. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet.* 2016 Jun;48(6):607-16. PMID: 27158780
47. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature.* 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
48. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat.* 2002 Jun;19(6):607-14. PMID: 12007217
49. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer.* 2011 Apr;2(4):466-74. PMID: 21779514
50. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene.* 2007 Apr 2;26(15):2157-65. PMID: 17401424
51. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat.* 2014 Jun;35(6):766-78. PMID: 24729566
52. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
53. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol.* 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
54. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci.* 2017 Nov;74(22):4171-4187. PMID: 28643165
55. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
56. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood.* 2022 Sep 22;140(12):1345-1377. PMID: 35797463
57. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 2.2025]

References (continued)

58. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
59. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
60. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
61. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
62. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med.* 2020 Aug 3. PMID: 32747829
63. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. *Microbiol Mol Biol Rev.* 2011 Mar;75(1):50-83. PMID: 21372320
64. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. *Clin. Cancer Res.* 2013 May 1;19(9):2301-9. PMID: 23406774
65. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int J Mol Sci.* 2020 Feb 7;21(3). PMID: 32046099
66. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. *Br J Pharmacol.* 2014 Jan;171(1):24-37. PMID: 24117156
67. Roskoski. ERK1/2 MAP kinases: structure, function, and regulation. *Pharmacol. Res.* 2012 Aug;66(2):105-43. PMID: 22569528
68. Roskoski. MEK1/2 dual-specificity protein kinases: structure and regulation. *Biochem. Biophys. Res. Commun.* 2012 Jan 6;417(1):5-10. PMID: 22177953
69. Marampon et al. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. *Int J Mol Sci.* 2019 May 23;20(10). PMID: 31126017
70. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
71. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
72. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
73. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
74. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
75. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
76. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
77. NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]
78. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
79. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
80. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
81. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
82. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
83. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
84. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
85. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
86. NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]
87. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
88. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
89. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982

References (continued)

90. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan;16(1):30654522
91. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
92. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. *Science.* 1985 Sep 6;229(4717):974-6. PMID: 2992089
93. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. *Mol Cancer.* 2018 Feb 19;17(1):53. PMID: 29455669
94. Zhixiang. ErbB Receptors and Cancer. *Methods Mol. Biol.* 2017;1652:3-35. PMID: 28791631
95. Gutierrez et al. HER2: biology, detection, and clinical implications. *Arch. Pathol. Lab. Med.* 2011 Jan;135(1):55-62. PMID: 21204711
96. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. *FEBS Lett.* 2010 Jun 18;584(12):2699-706. PMID: 20388509
97. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature.* 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
98. da et al. EGFR mutations and lung cancer. *Annu Rev Pathol.* 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
99. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. *Mol. Cancer Ther.* 2013 Feb;12(2):220-9. PMID: 23371856
100. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. *Clin Cancer Res.* 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
101. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. *Sci Transl Med.* 2013 Dec 18;5(216):216ra177. PMID: 24353160
102. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. *J Thorac Oncol.* 2015 May;10(5):793-9. PMID: 25668120
103. Karachalio et al. KRAS mutations in lung cancer. *Clin Lung Cancer.* 2013 May;14(3):205-14. PMID: 23122493
104. Brennan et al. The somatic genomic landscape of glioblastoma. *Cell.* 2013 Oct 10;155(2):462-77. PMID: 24120142
105. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. *FEBS J.* 2010 Jan;277(2):301-8. PMID: 19922469
106. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. *Oncogene.* 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
107. Gan et al. The EGFRvIII variant in glioblastoma multiforme. *J Clin Neurosci.* 2009 Jun;16(6):748-54. PMID: 19324552
108. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
109. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
110. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. *Clin Cancer Res.* 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
111. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
112. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
113. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. *Cancer.* 2015 Sep 15;121(18):3212-3220. PMID: 26096453
114. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. *Signal Transduct Target Ther.* 2019;4:5. PMID: 30854234
115. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. *Int J Mol Med.* 2014 Aug;34(2):464-74. PMID: 24891042
116. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219839s000lbl.pdf
117. <https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys>
118. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. *Oncotarget.* 2018 Dec 21;9(100):37393-37406. PMID: 30647840
119. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf

References (continued)

120. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. *Clin. Cancer Res.* 2015 Sep 1;21(17):3924-33. PMID: 25964297
121. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. *J Thorac Oncol.* 2017 Nov;12(11):1723-1727. PMID: 28662863
122. <https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and>
123. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. *Cancer Treat Rev.* 2024 Jan;122:102664. PMID: 38064878
124. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s008lbl.pdf
125. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbl.pdf
126. <https://iis.aastocks.com/20231227/11015917-0.PDF>
127. <https://www1.hkexnews.hk/listedco/listconews/sehk/2024/1008/2024100800433.pdf>
128. <https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/>
129. NCCN Guidelines® - NCCN-Pediatric Central Nervous System Cancers [Version 3.2025]
130. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. *Genes (Basel)*. 2022 Mar 31;13(4). PMID: 35456430
131. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. *Brain Pathol.* 2020 Jul;30(4):844-856. PMID: 32307792
132. Korenjak et al. E2F-Rb complexes regulating transcription of genes important for differentiation and development. *Curr Opin Genet Dev.* 2005 Oct;15(5):520-7. doi: 10.1016/j.gde.2005.07.001. PMID: 16081278
133. Sachdeva et al. Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. *J. Clin. Invest.* 2012 Feb;122(2):425-34. PMID: 22293180
134. Dyson. RB1: a prototype tumor suppressor and an enigma. *Genes Dev.* 2016 Jul 1;30(13):1492-502. PMID: 27401552
135. Cobrinik. Pocket proteins and cell cycle control. *Oncogene.* 2005 Apr 18;24(17):2796-809. PMID: 15838516
136. Dommering et al. RB1 mutations and second primary malignancies after hereditary retinoblastoma. *Fam. Cancer.* 2012 Jun;11(2):225-33. PMID: 22205104
137. Anasua et al. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma. . *Oman J Ophthalmol.* May-Aug 2016;9(2):116-8. PMID: 27433042
138. Tanaka et al. Frequent allelic loss of the RB, D13S319 and D13S25 locus in myeloid malignancies with deletion/translocation at 13q14 of chromosome 13, but not in lymphoid malignancies. *Leukemia.* 1999 Sep;13(9):1367-73. PMID: 10482987
139. Gombos et al. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor?. *Ophthalmology.* 2007 Jul;114(7):1378-83. PMID: 17613328
140. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxification. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
141. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
142. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
143. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693
144. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget.* 2017 Jan 10;8(2):3640-3648. PMID: 27690298
145. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One.* 2015;10(5):e0127524. PMID: 26010150
146. Karas et al. JCO Oncol Pract. 2021 Dec 3:OP2100624. PMID: 34860573