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Gene Finding Gene Finding

BRAF None detected NTRK3 None detected
ERBB2 ERBB2 p.(V842I) c.2524G>A PIK3CA PIK3CA p.(M1043I) c.3129G>T
KRAS KRAS p.(G12V) c.35G>T POLD1 None detected
NRAS None detected POLE None detected
NTRK1 None detected RET None detected
NTRK2 None detected

Genomic Alteration Finding

Microsatellite Status Microsatellite stable
Tumor Mutational Burden 9.48 Mut/Mb measured

HRD Status: HR Proficient (HRD-)

Relevant Colon Cancer Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IA PIK3CA p.(M1043I) c.3129G>T

phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha
Allele Frequency: 8.00%
Locus: chr3:178952074
Transcript: NM_006218.4

aspirin II+ inavolisib + palbociclib + hormone
therapy 1 / I

capivasertib + hormone therapy 1, 2 / II

+

aspirin II+

4

  
IA KRAS p.(G12V) c.35G>T

KRAS proto-oncogene, GTPase
Allele Frequency: 27.91%
Locus: chr12:25398284
Transcript: NM_033360.4

bevacizumab + chemotherapy I avutometinib + defactinib 1 / II+ 18

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC ERBB2 p.(V842I) c.2524G>A

erb-b2 receptor tyrosine kinase 2
Allele Frequency: 27.33%
Locus: chr17:37881332
Transcript: NM_004448.4

None* zongertinib 1 / II+

trastuzumab deruxtecan 1, 2
10

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

  Alerts informed by public data sources:   Contraindicated,    Resistance,    Breakthrough,    Fast Track

KRAS p.(G12V) c.35G>T  cetuximab 1, 2, cetuximab + chemotherapy 2, panitumumab 1, panitumumab + chemotherapy 2

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources
APC p.(K560*) c.1678A>T, APC p.(R1450*) c.4348C>T, ERBB3 p.(E928G) c.2783A>G, FANCG c.307+1G>C, Microsatellite
stable, ELF3 p.(D195*) c.582_583insT, UGT1A1 p.(G71R) c.211G>A, HLA-B deletion, SMAD2 p.(S464*) c.1391C>G, SMAD2 p.
(Q284*) c.850C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

PIK3CA p.(M1043I) c.3129G>T COSM773 chr3:178952074 8.00% NM_006218.4 missense

KRAS p.(G12V) c.35G>T COSM520 chr12:25398284 27.91% NM_033360.4 missense

ERBB2 p.(V842I) c.2524G>A COSM14065 chr17:37881332 27.33% NM_004448.4 missense

APC p.(K560*) c.1678A>T . chr5:112164604 20.69% NM_000038.6 nonsense

APC p.(R1450*) c.4348C>T COSM13127 chr5:112175639 32.98% NM_000038.6 nonsense

ERBB3 p.(E928G) c.2783A>G COSM94228 chr12:56492633 24.83% NM_001982.4 missense

FANCG p.(?) c.307+1G>C . chr9:35078601 51.10% NM_004629.2 unknown

ELF3 p.(D195*) c.582_583insT . chr1:201981870 25.92% NM_004433.5 nonsense

UGT1A1 p.(G71R) c.211G>A COSM4415616 chr2:234669144 44.52% NM_000463.3 missense

SMAD2 p.(S464*) c.1391C>G COSM268520 chr18:45368211 29.01% NM_001003652.4 nonsense

SMAD2 p.(Q284*) c.850C>T . chr18:45374993 9.75% NM_001003652.4 nonsense

FAT1 p.(I3355T) c.10064T>C . chr4:187530959 44.37% NM_005245.4 missense

MSH3 p.(A61_P63dup) c.189_190insGCAGCG
CCC

. chr5:79950735 53.85% NM_002439.5 nonframeshift
Insertion

PPFIA2 p.(R1112Q) c.3335G>A . chr12:81661842 27.71% NM_003625.5 missense

MLH3 p.(E520D) c.1560G>T . chr14:75514799 50.78% NM_001040108.2 missense

ARHGAP35 p.(V1037I) c.3109G>A . chr19:47425041 25.61% NM_004491.5 missense

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene Locus Copy Number CNV Ratio

HLA-B chr6:31322252 0.28 0.66

NFE2L2 chr2:178095457 0.43 0.69

Copy Number Variations

 

Variant Details (continued)

 
PIK3CA p.(M1043I) c.3129G>T

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I
phosphatidylinositol 3-kinase (PI3K) enzyme79. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one
of four p110 catalytic subunits to activated tyrosine protein kinases80,81. The p110 catalytic subunits include p110α, β, δ, γ and are
encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively80. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-
bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog
(PTEN) catalyzes the reverse reaction82,83. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and
metabolism82,83,84,85. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR
pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion,
and genetic instability86,87,88.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed
in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers8,9.
Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being
untranslated)89,90. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047)
domains, each having distinct mechanisms of activation91,92,93. PIK3CA resides in the 3q26 cytoband, a region frequently amplified
(10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian
and uterine cancers8,9.

Potential relevance: The PI3K inhibitor, alpelisib94, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients
with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or
metastatic breast cancer. Additionally, a phase Ib study of alpelisib with letrozole in patients with metastatic estrogen receptor
(ER)-positive breast cancer showed the clinical benefit rate, defined as lack of disease progression ≥ 6 months, was 44% (7/16) in
PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors95. Specifically, exon 21 H1047R mutations were associated
with more durable clinical responses in comparison to exon 10 E545K mutations95. However, alpelisib did not improve response
when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations96. The FDA also approved the
kinase inhibitor, capivasertib (2023)97 in combination with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative
breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment. The kinase
inhibitor, inavolisib98, is also FDA-approved (2024) in combination with palbociclib and fulvestrant for the treatment of adults with
endocrine-resistant, PIK3CA-mutated, HR-positive, and HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus
and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers99,100. In colorectal cancers, PIK3CA
mutations predict significantly improved survival and reduced disease recurrence with adjuvant aspirin therapy, compared to no benefit
in wild-type PIK3CA tumors65,73,101,102.

KRAS p.(G12V) c.35G>T

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS
superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the
nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival25,26,27.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers.
KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60%
of pancreatic cancer8. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q618,28,29. Mutations at
A59, K117, and A146 have also been observed but are less frequent9,30.

Biomarker Descriptions

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib31 (2021) and adagrasib32 (2022), for the treatment
of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and
adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma33. The FDA has approved the
combination of kinase inhibitors, avutometinib and defactinib34 (2025), for the treatment of adult patients with KRAS-mutated recurrent
low-grade serous ovarian cancer (LGSOC) after prior systemic therapy. The FDA has granted breakthrough therapy designation (2022)
to the KRAS G12C inhibitor, GDC-603635, for KRAS G12C-mutated NSCLC. The KRAS-G12C/NRAS-G12C dual inhibitor, elironrasib36,
and the KRAS G12C inhibitor, D3S-00137, were both granted breakthrough therapy designation (2025) for KRAS G12C-mutated locally
advanced or metastatic NSCLC in adults previously treated with chemotherapy and immunotherapy, excluding KRAS G12C inhibitors.
The KRAS-G12C inhibitor, olomorasib38, was granted breakthrough designation (2025) in combination with pembrolizumab39 for
unresectable advanced or metastatic NSCLC with a KRAS G12C mutation and PD-L1 expression ≥ 50%. The SHP2 inhibitor, BBP-39840

was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated
metastatic NSCLC. The RAF/MEK clamp, avutometinib41 was also granted fast track designation (2024) in combination with sotorasib
for KRAS G12C-mutated metastatic NSCLC in patients who have received at least one prior systemic therapy and have not been
previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-852042, was granted fast track designation in 2025 for
previously treated KRAS G12C-mutated patients with metastatic NSCLC. The RAS inhibitor, daraxonrasib43, was granted breakthrough
designation (2025) for previously treated metastatic pancreatic cancer with KRAS G12 mutations. The KRAS G12D (ON/OFF) inhibitor,
GFH-37544, was also granted fast track designation (2025) for first-line and previously treated KRAS G12D-mutated locally advanced
or metastatic pancreatic adenocarcinoma. The KRAS G12C inhibitor, D3S-00145, was granted fast track designation in 2024 for KRAS
G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib46, was granted
fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated
metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab47 and panitumumab48, are contraindicated for treatment of
colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and
146)30. Additionally, KRAS mutations are associated with poor prognosis in NSCLC49.

ERBB2 p.(V842I) c.2524G>A

erb-b2 receptor tyrosine kinase 2

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor
(HER) family18. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family1. All
ERBB/HER proteins encode transmembrane receptor tyrosine kinases118. However, ERBB2/HER2 is an orphan receptor with no known
ligand118. ERBB2 preferentially binds other ligand-bound ERBB/HER family members to form heterodimers resulting in the activation
of ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways
which promote cell proliferation, differentiation, and survival119. Recurrent focal amplification of the ERBB2 gene leads to increased
expression in several cancer types119. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-
dimerization and activation without ligand binding120,121,122.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-25% of breast, esophageal, and gastric cancers, 5-10% of bladder,
cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers3,4,5,6,8,9,10,123. ERBB2 gene amplification in
pediatric population is observed in 2% of peripheral nervous system cancers (2 in 91 patients) and less than 1% of leukemia (1 in 250
cases)9. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types9,124,125. In
breast, bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations
L755S and V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating
mutations include in-frame exon 20 insertions, particularly Y772_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of
trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER2126,127. Trastuzumab128 was
FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and
gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for
HER2-positive breast cancer including pertuzumab129 (2012), a humanized monoclonal antibody that inhibits HER2 dimerization,
and ado-trastuzumab emtansine130 (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination
of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer131. In
addition to monoclonal antibodies, the small molecule inhibitor lapatinib132, with specificity for both EGFR and ERBB2, was FDA
approved (2007) for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including
trastuzumab. In 2017, the FDA approved the use of neratinib133, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4,
for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved
neratinib133 in combination with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2-
directed therapies. Also in 2020, the TKI irbinitinib134 was FDA approved for HER2 overexpressing or amplified breast cancer
in combination with trastuzumab and capecitabine. In 2021, the PD-1 blocking antibody, pembrolizumab, in combination with
trastuzumab, fluoropyrimidine- and platinum-based chemotherapy, was approved for HER2 amplified gastric or gastroesophageal
(GEJ) adenocarcinoma in the first line39. In 2024, a bispecific HER2 antibody, zanidatamab135, was approved for the treatment of adults
with previously treated, unresectable or metastatic ERBB2 overexpressing biliary tract cancer. In 2018 fast track designation was

Biomarker Descriptions (continued)
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granted to the monoclonal antibody margetuximab136 in patients with ERBB2 positive breast cancer previously treated with an anti-
HER2 therapy. Additionally, in 2019, zanidatamab137, received fast track designation in combination with standard chemotherapy for
patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA). The humanized anti-HER2 antibody drug conjugate
disitamab vedotin138 (2020) received breakthrough designation for adult patients with HER2-positive urothelial cancer after previous
platinum-chemotherapy treatment. In 2021, the antibody-drug conjugate ARX788139 received fast track designation as a monotherapy
for advanced or metastatic HER2-positive breast cancer that have progressed on one or more anti-HER2 regimens. In 2024, a small
molecule inhibitor, BAY-2927088140, received breakthrough designation for the treatment of NSCLC patients with ERBB2 activating
mutations. Certain activating mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab,
or dacomitinib in early and ongoing clinical studies141,142,143,144,145. ERBB2 kinase domain mutations R896G and V659E both showed
response to afatinib in two NSCLC case studies146,147. Additionally, acquired HER2 mutations in estrogen receptor-positive (ER+)
breast cancer have been shown to confer resistance to hormone therapy148. However, this was shown to be overcome by neratinib
in combination with therapies targeting ER148. Additionally, in 2025, FDA approved zongertinib149, a kinase inhibitor indicated for the
treatment of adult patients with unresectable or metastatic non-squamous non-small cell lung cancer (NSCLC) whose tumors have
HER2 tyrosine kinase domain activating mutations. In 2025, a 9 amino acid transmembrane peptide of the HER2/neu protein, GLSI-100
(GP-2)150, received fast track designation for the prevention of breast cancer recurrence following surgery.

APC p.(K560*) c.1678A>T, APC p.(R1450*) c.4348C>T

APC, WNT signaling pathway regulator

Background: The APC gene encodes the adenomatous polyposis coli tumor suppressor protein that plays a crucial role in regulating
the β-catenin/WNT signaling pathway which is involved in cell migration, adhesion, proliferation, and differentiation103. APC is an
antagonist of WNT signaling as it targets β-catenin for proteasomal degradation104,105. Germline mutations in APC are predominantly
inactivating and result in an autosomal dominant predisposition for familial adenomatous polyposis (FAP) which is characterized by
numerous polyps in the intestine103,106. Acquiring a somatic mutation in APC is considered to be an early and possibly initiating event in
colorectal cancer107.

Alterations and prevalence: Somatic mutations in APC are observed in up to 65% of colorectal cancer, and in up to 15% of stomach
adenocarcinoma and uterine corpus endometrial carcinoma6,8,9. In colorectal cancer, ~60% of somatic APC mutations have been
reported to occur in a mutation cluster region (MCR) resulting in C-terminal protein truncation and APC inactivation108,109.

Potential relevance: Currently, no therapies are approved for APC aberrations.

ERBB3 p.(E928G) c.2783A>G

erb-b2 receptor tyrosine kinase 3

Background: The ERBB3 gene encodes the erb-b2 receptor tyrosine kinase 3, a member of the human epidermal growth factor receptor
(HER) family. Along with ERBB3/HER3, EGFR/ERBB1/HER1, ERBB2/HER2, and ERBB4/HER4 make up the HER protein family1. ERBB3/
HER3 binds to extracellular factors, such as neuregulins, but has an impaired kinase domain2. Upon ligand binding, ERBB3 forms
hetero-dimers with other ERBB/HER family members, including ERBB2/HER2 resulting in activation of tyrosine kinase activity primarily
through its dimerization partner.

Alterations and prevalence: ERBB3 gene amplification leading to an increase in expression occurs at low frequency (1-5%) in several
cancer types including bladder, esophagus, lung adenocarcinoma, ovarian, pancreas, sarcoma, stomach, and uterine cancers3,4,5,6,7,8,9.
ERBB3 is also the target of relatively frequent (5-10%) and recurrent somatic mutations in diverse cancer types including bladder,
cervical, colorectal, and stomach cancers3,6,8,9,10. Recurrent ERBB3 mutations such as V104L/M, occur primarily in the extracellular
domain.

Potential relevance: Currently, no therapies are approved for ERBB3 aberrations. Overexpression and activation of ERBB3/HER3 is one
mechanism of acquired resistance to therapies targeting EGFR and ERBB2/HER211,12. Preclinical and translational research studies
have characterized the oncogenic potential of recurrent ERBB3 mutations and their sensitivity to anti-ERBB antibodies and small
molecule inhibitors13,14,15,16. A phase I study exhibited progression-free survival (PFS) of 2.5 months and overall survival (OS) of 9
months in 25 patients with ERBB3 mutations treated by anti-ERBB antibodies or molecular-targeted agents17.

FANCG c.307+1G>C

Fanconi anemia complementation group G

Background: The FANCG gene encodes the FA complementation group G protein, a member of Fanconi Anemia (FA) family, which
also includes FANCA, FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCF, FANCI, FANCJ (BRIP1), FANCL, FANCM and
FANCN (PALB2)18. FA genes are tumor suppressors that are responsible for the maintenance of replication fork stability, DNA damage
repair through the removal of interstrand cross-links (ICL), and subsequent initiation of the homologous recombination repair (HRR)
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pathway110,111. In response to DNA damage, FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM assemble to form
the FA core complex which is responsible for the monoubiquitination of the FANCI-FANCD2 (ID2) complex110. Monoubiquitination
of the ID2 complex promotes co-localization with BRCA1/2, which is critical in BRCA mediated DNA repair112,113. Loss of function
mutations in the FA family and HRR pathway can result in the BRCAness phenotype, characterized by a defect in the HRR pathway,
mimicking BRCA1 or BRCA2 loss114,115. Germline mutations in FA genes lead to Fanconi Anemia, a condition characterized by
chromosomal instability and congenital abnormalities, including bone marrow failure and cancer predisposition116,117.

Alterations and prevalence: Somatic mutations in FANCG are observed in 3% of uterine corpus endometrial carcinoma and skin
cutaneous melanoma, and 2% of diffuse large B-cell lymphoma (DLBCL), uterine carcinosarcoma, and colorectal adenocarcinoma8,9.

Potential relevance: Currently, no therapies are approved for FANCG aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome58. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue59,60. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS261. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S25062. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)62. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS63,64,65,66,67. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes60.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer59,60,64,68.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma59,60,69,70. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers69,70.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab39 (2014) and nivolumab71 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab39 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication39. Dostarlimab72 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer65,73. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab74 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location65,75,76. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and
relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients76. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors77,78. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers77,78.

ELF3 p.(D195*) c.582_583insT

E74 like ETS transcription factor 3

Background: The ELF3 gene encodes the E74 like ETS transcription factor 3 protein18. ELF3 is a transcription factor that has been
observed to function as a negative regulator of the epithelial-mesenchymal transition (EMT) process, specifically in ovarian cancer
cells56. ELF3 has also been proposed to act as an antagonist of oncogenic-signaling induced ZEB1 expression in colorectal cancer,
supporting a tumor suppressor role for ELF356,57.

Alterations and prevalence: Somatic mutations in ELF3 are observed in 13% of bladder urothelial carcinoma, 6% of
cholangiocarcinoma, 3% of stomach adenocarcinoma and skin cutaneous melanoma, and 2% of colorectal adenocarcinoma, uterine
corpus endometrial carcinoma, and cervical squamous cell carcinoma8,9.

Potential relevance: Currently, no therapies are approved for ELF3 aberrations.
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Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-
glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily18,151. UGTs are microsomal membrane-bound
enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into
excretable, hydrophilic metabolites151,152. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis.
Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance153. Specifically,
elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active
drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular
tumorigenesis and progression due to toxin accumulation153,154,155,156. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28,
UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors,
due to reduced glucuronidation of the irinotecan metabolite, SN-38157.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and
uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell
carcinoma, and esophageal adenocarcinoma8,9.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B18. MHC (major histocompatibility complex)
class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by
cytotoxic T cells19. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M20. The classical MHC
class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11
amino acids, to the immune system to distinguish self from non-self21,22,23. Downregulation of MHC class I promotes tumor evasion of
the immune system, suggesting a tumor suppressor role for HLA-B24.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma8,9. Biallelic loss of HLA-
B is observed in 5% of DLBCL8,9.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

SMAD2 p.(S464*) c.1391C>G, SMAD2 p.(Q284*) c.850C>T

SMAD family member 2

Background: The SMAD2 gene encodes the SMAD family member 2, a transcription factor that belongs to a family of 8 SMAD genes
that can be divided into three main classes18,50,51. SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 are part of the regulator SMAD (R-
SMAD) class while SMAD4 belongs to the common mediator SMAD (co-SMAD) class. The inhibitory SMAD (I-SMAD) class includes
both SMAD6 and SMAD750,51. As part of the R-SMAD class, SMAD2 functions by mediating signal transmission in the transforming
growth factor beta (TGF-β) signaling pathway, a pathway critical in cell growth, differentiation, and tumor development51. Following
activation of type I TGF-β receptors, SMAD2 and SMAD3 are activated via phosphorylation and form a complex with SMAD4, leading
to nuclear translocation and activation or repression of target genes52,53. Deregulation of SMAD2, including mutation and loss of
expression, has been observed in cancer leading to disruption of SMAD2/3/4 complex formation and tumorigenesis, supporting a
tumor suppressor role for SMAD253,54.

Alterations and prevalence: Somatic mutations in SMAD2 are observed in 5% of uterine corpus endometrial carcinoma and colorectal
adenocarcinoma, 3% of skin cutaneous melanoma, and 2% of stomach adenocarcinoma and lung adenocarcinoma8,9. The nonsense,
truncating mutation, p.S464*, is the most commonly observed alteration and is recurrent8,9,53. Two recurrent hotspot mutations
R321 and P305 occur in the mad homology 2 (MH2) domain leading to the disruption of the heterotrimeric SMAD2/SMAD3-SMAD4
complex8,9,55. SMAD2 deletion is observed in 4% of esophageal adenocarcinoma and 3% of pancreatic adenocarcinoma8,9.

Potential relevance: Currently, no therapies are approved for SMAD2 aberrations.

Biomarker Descriptions (continued)
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

 

 cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer
 Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
 Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-

based therapy with fluorouracil.
 Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test
 in combination with FOLFIRI for first-line treatment,
 in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
 as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to

irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras
mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)
 in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF

V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
 

KRAS p.(G12V) c.35G>T

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test)
Metastatic Colorectal Cancer (mCRC)*:

 In combination with FOLFOX for first-line treatment.
 As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-

containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*
 In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-

approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination
with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS
mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
 
 

 daraxonrasib

Cancer type: Pancreatic Cancer Variant class: KRAS G12 mutation

Supporting Statement:
The FDA has granted Breakthrough designation to the RAS inhibitor, daraxonrasib, for previously treated metastatic pancreatic
adenocarcinoma (PDAC) in patients with KRAS G12 mutations.

Reference:

https://ir.revmed.com/news-releases/news-release-details/revolution-medicines-announces-fda-breakthrough-therapy
 

KRAS p.(G12V) c.35G>T (continued)

 

 sevabertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 activating mutation

Supporting Statement:
The FDA has granted Breakthrough Therapy designation to an oral, reversible tyrosine kinase inhibitor and EGFR antagonist,
sevabertinib (BAY 2927088), for the treatment of adult patients with unresectable or metastatic non-small cell lung cancer
(NSCLC) whose tumors have activating HER2 (ERBB2) mutations, and who have received a prior systemic therapy.

Reference:

https://www.bayer.com/en/us/news-stories/sevabertinib
 

ERBB2 p.(V842I) c.2524G>A
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Current NCCN Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

NCCN information is current as of 2025-09-02. To view the most recent and complete version of the guideline, go online to
NCCN.org.
For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific
variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate
for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their
content.

 

 cetuximab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]
 
 

 panitumumab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either
cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]
 
 

 cetuximab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]
 

KRAS p.(G12V) c.35G>T

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 panitumumab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:
NCCN Guidelines® include the following supporting statement(s):

 "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with
either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]
 

KRAS p.(G12V) c.35G>T (continued)

Current EMA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

EMA information is current as of 2025-09-17. For the most up-to-date information, search www.ema.europa.eu.

 

 cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf
 
 

 panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf
 

KRAS p.(G12V) c.35G>T

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Current ESMO Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

ESMO information is current as of 2025-09-02. For the most up-to-date information, search www.esmo.org.

 

 cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 
 

 panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:
ESMO Clinical Practice Guidelines include the following supporting statement:

 "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational
status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is
confirmed".

 "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other
metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/
j.annonc.2022.10.003 (published)]

 

KRAS p.(G12V) c.35G>T

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

Genes Assayed

 

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,
TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

capivasertib + fulvestrant     

inavolisib + palbociclib + fulvestrant     

aspirin     

ETX-636      (I/II)

HTL-0039732, atezolizumab      (I/II)

JS-105      (I)

SNV-4818, hormone therapy      (I)

PIK3CA p.(M1043I) c.3129G>T

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

avutometinib + defactinib     

bevacizumab + CAPOX     

bevacizumab + FOLFIRI     

bevacizumab + FOLFOX     

bevacizumab + FOLFOXIRI     

bevacizumab, chemotherapy      (III)

fruquintinib, chemotherapy      (II)

regorafenib      (II)

tunlametinib, vemurafenib      (II)

almonertinib, palbociclib      (I/II)

anti-KRAS G12V mTCR, chemotherapy, aldesleukin      (I/II)

ERAS-0015      (I/II)

YL-15293      (I/II)

ASP-5834      (I)

BPI-442096      (I)

daraxonrasib      (I)

imatinib, trametinib      (I)

IX-001      (I)

JAB-3312      (I)

KRAS p.(G12V) c.35G>T

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

KRAS TCR, aldesleukin, SLATE 001, chemotherapy      (I)

KRAS-EphA-2-CAR-DC, anti-PD-1, ipilimumab      (I)

Nest-1      (I)

NW-301V      (I)

KRAS p.(G12V) c.35G>T (continued)

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

zongertinib      (II)

trastuzumab deruxtecan      (II)

pertuzumab + trastuzumab      (II/III)

sevabertinib      (II)

tucatinib, ado-trastuzumab emtansine      (II)

DF-1001, nivolumab      (I/II)

trastuzumab deruxtecan, neratinib      (I/II)

ado-trastuzumab emtansine (Shanghai Fosun
Pharma)      (I)

ENT-H-1, trastuzumab      (I)

ERBB2 p.(V842I) c.2524G>A

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 
Gene/Genomic Alteration Finding

Not Detected Not Applicable

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current
as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was
sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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