

Patient Name: 김향숙
Gender: F
Sample ID: N25-335

Primary Tumor Site: Lung
Collection Date: 20251127

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	11
Relevant Therapy Summary	13

Report Highlights
8 Relevant Biomarkers
21 Therapies Available
231 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR exon 19 deletion	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Genomic Alteration	Finding
Tumor Mutational Burden	5.69 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 18.80% Locus: chr7:55242469 Transcript: NM_005228.5	afatinib 1, 2 / I, II+ amivantamab + lazertinib 1, 2 / I, II+ bevacizumab[†] + erlotinib 2 / I, II+ dacomitinib 1, 2 / I, II+ erlotinib 2 / I, II+ erlotinib + ramucirumab 1, 2 / I, II+ gefitinib 1, 2 / I, II+ osimertinib 1, 2 / I, II+ osimertinib + chemotherapy 1, 2 / I amivantamab + chemotherapy 1, 2 / II+ datopotamab deruxtecan-dlnk 1 / II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy [†] atezolizumab + bevacizumab + chemotherapy ^{II+}	None*	199

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/genetics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. *J Mol Diagn*. 2017 Jan;19(1):4-23.

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	<i>FGFR2 imbalance</i> fibroblast growth factor receptor 2 Locus: chr10:123260339	erdafitinib	futibatinib ^{1, 2 / II+} pemigatinib ^{1, 2 / II+} erdafitinib II+	12
IIC	<i>MTAP deletion</i> methylthioadenosine phosphorylase Locus: chr9:21802646	None*	None*	14
IIC	<i>ATM deletion</i> ATM serine/threonine kinase Locus: chr11:108098341	None*	None*	4
IIC	<i>CDKN2A deletion</i> cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	4
IIC	<i>CTNNB1 p.(S37F) c.110C>T</i> catenin beta 1 Allele Frequency: 17.56% Locus: chr3:41266113 Transcript: NM_001904.4	None*	None*	4
IIC	<i>CDKN2B deletion</i> cyclin dependent kinase inhibitor 2B Locus: chr9:22005728	None*	None*	1
IIC	<i>CHEK1 deletion</i> checkpoint kinase 1 Locus: chr11:125496639	None*	None*	1

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

† Includes biosimilars/genetics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

⚠ Alerts informed by public data sources: 🚫 Contraindicated, ⚠ Resistance, ⚡ Breakthrough, ⚠ Fast Track

EGFR exon 19 deletion

⚡ **izalontamab brengitecan**¹, **patritumab deruxtecan**¹
⚠ **DB-1310**¹

Public data sources included in alerts: FDA¹, NCCN, EMA², ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

CCND1 p.(P287S) c.859C>T, MAP2K4 p.(Q163) c.487C>T, Microsatellite stable, UGT1A1 p.(G71R) c.211G>A, FAT1 p.(T2369Cfs*2) c.7105_7106delACinsT, HLA-B deletion, NQO1 p.(P187S) c.559C>T, DSC1 deletion, Tumor Mutational Burden*

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
EGFR	p.(L747_A750delinsP)	c.2239_2248delTTAAG AGAAGinsC	COSM12382	chr7:55242469	18.80%	NM_005228.5	nonframeshift Block Substitution

Variant Details (continued)

DNA Sequence Variants (continued)

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
CTNNB1	p.(S37F)	c.110C>T	COSM5662	chr3:41266113	17.56%	NM_001904.4	missense
CCND1	p.(P287S)	c.859C>T	COSM931396	chr11:69466021	14.60%	NM_053056.3	missense
MAP2K4	p.(Q163*)	c.487C>T	.	chr17:11998985	14.92%	NM_003010.4	nonsense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	52.91%	NM_000463.3	missense
FAT1	p.(T2369Cfs*2)	c.7105_7106delACinsT	.	chr4:187540634	5.11%	NM_005245.4	frameshift Block Substitution
NQO1	p.(P187S)	c.559C>T	.	chr16:69745145	49.47%	NM_000903.3	missense
C2orf16	p.(H1133R)	c.3398A>G	.	chr2:27802837	49.45%	NM_032266.3	missense
TET2	p.(H1893Y)	c.5677C>T	.	chr4:106197344	11.61%	NM_001127208.3	missense
CTCF	p.(P712R)	c.2135C>G	.	chr16:67671726	43.73%	NM_006565.4	missense
ZNF682	p.(R473Sfs*11)	c.1415_1416delAG	.	chr19:20116894	47.92%	NM_033196.3	frameshift Deletion

Gene Fusions

Genes	Variant ID	Locus
FGFR2	FGFR2	chr10:123260339

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
MTAP	chr9:21802646	0.15	0.63
ATM	chr11:108098341	1	0.85
CDKN2A	chr9:21968178	0	0.58
CDKN2B	chr9:22005728	0	0.6
CHEK1	chr11:125496639	1	0.84
HLA-B	chr6:31322252	0.13	0.62
DSC1	chr18:28710424	0	0.59
XRCC2	chr7:152345702	5.18	1.64
CUL4B	chrX:119660593	5.03	1.61
STAG2	chrX:123156472	5.15	1.63

Biomarker Descriptions

EGFR exon 19 deletion

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family²¹. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family

Biomarker Descriptions (continued)

include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹³⁰. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways¹³¹. Activation of these pathways promotes cell proliferation, differentiation, and survival^{132,133}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{15,16,134,135}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21¹³⁶. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer¹³⁶. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{137,138,139,140}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹⁴¹. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{136,142}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{15,16,135,142,143}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{144,145,146}. Alterations in EGFR are rare in pediatric cancers^{15,16}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)^{15,16}. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)^{15,16}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹⁴⁷ (2004) and gefitinib¹⁴⁸ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations¹⁴⁹. Second-generation TKIs afatinib¹⁵⁰ (2013) and dacomitinib¹⁵¹ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{152,153,154,155}. In 2025, the FDA approved the irreversible EGFR inhibitor, sunvozertinib¹⁵⁶, for the treatment of locally advanced or metastatic non-small cell lung cancer in adult patients with EGFR exon 20 insertion mutations whose disease has progressed on or after platinum-based chemotherapy. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitor, CLN-081 (TPC-064)¹⁵⁷ for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance¹⁵⁸. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases¹³⁶. Third generation TKIs were developed to maintain sensitivity in the presence of T790M¹⁵⁸. Osimertinib¹⁵⁹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases¹⁵⁸. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa¹⁶⁰. T790M and C797S can occur in either cis or trans allelic orientation¹⁶⁰. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs¹⁶⁰. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{160,161}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs¹⁶⁰. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535¹⁶² (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations¹⁶³. The bispecific antibody, amivantamab¹⁶⁴ (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib¹⁶⁵ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. HLX-42¹⁶⁶, an anti-EGFR antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301¹⁶⁷ (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid¹⁶⁸ (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that

Biomarker Descriptions (continued)

progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{43,169,170}.

FGFR2 imbalance

fibroblast growth factor receptor 2

Background: The FGFR2 gene encodes fibroblast growth receptor 2, a member of the fibroblast growth factor receptor (FGFR) family that also includes FGFR1, 3, and 4²¹. These proteins are single transmembrane receptors composed of three extracellular immunoglobulin (Ig)-type domains and an intracellular kinase domain²¹. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC γ /PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{91,92,93}.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions. The majority of these aberrations result in gain of function⁹⁴. Somatic mutations in FGFR2 are observed in 15% of uterine corpus endometrial carcinomas, 10% of skin cutaneous melanoma, 6% of cholangiocarcinoma, 4% of stomach adenocarcinoma, 3% of colorectal adenocarcinoma, and 2% of lung squamous cell carcinoma, bladder urothelial carcinoma, diffuse large B-cell lymphoma, lung adenocarcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{15,16}. In endometrial cancers, missense mutations are the most prevalent alterations in FGFR2⁹⁵. These mutations are predominantly activating, most often involve substitutions at S252 and P253, and confer sensitivity to pan-FGFR2 inhibitors^{95,96}. FGFR2 amplification occurs in up to 4% of stomach adenocarcinoma, and 2% of ovarian serous cystadenocarcinoma, uterine carcinosarcoma, and uterine corpus endometrial carcinoma^{15,16}. FGFR2 fusions have also been reported in up to 14% of cholangiocarcinoma and confer sensitivity to select FGFR inhibitors^{15,97,98}. Aberrations in FGFR2 are rare in pediatric cancers^{15,16}. Somatic mutations in FGFR2 occur in 2% of T-lymphoblastic leukemia/lymphoma and FGFR2 is amplified in 2% of bone cancer^{15,16}.

Potential relevance: Several pan-FGFR inhibitors have been approved for FGFR2 aberrations in cancer. Futibatinib⁹⁹ (2022) is approved for FGFR2 fusion-positive locally advanced or metastatic intrahepatic cholangiocarcinoma. Erdafitinib¹⁰⁰ (2019) is approved for the treatment of locally advanced or metastatic urothelial cancer with FGFR2 fusions, including FGFR2::BICC1 and FGFR2::CASP7. Pemigatinib¹⁰¹ (2020) is approved for previously treated, advanced, or unresectable cholangiocarcinoma harboring FGFR2 fusions. The FDA has granted fast track designation to the FGFR2 inhibitor, 3HP-2827¹⁰² (2024), for the treatment of patients with cholangiocarcinoma harboring FGFR2 mutations. The FDA has granted breakthrough designation to the FGFR2 inhibitor, lirafugratinib¹⁰³ (2024), for the treatment of FGFR2-driven cholangiocarcinoma and other FGFR2-altered solid tumors. The FDA also granted fast track designation to the small molecule inhibitor, Debio 1347¹⁰⁴ (2018), for solid tumors harboring FGFR1, FGFR2, or FGFR3 aberrations. The FDA has also granted breakthrough designation to bemarituzumab¹⁰⁵ (2021), in combination with modified FOLFOX6 (fluoropyrimidine, leucovorin, and oxaliplatin), for treating FGFR2b-overexpressing, HER2-negative metastatic and locally advanced gastric and gastroesophageal adenocarcinoma. Additional FGFR inhibitors are under clinical evaluation for FGFR2 aberrations^{106,107}. In a phase II study of patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma, the pan-kinase inhibitor derazantinib, demonstrated an overall response rate (ORR) of 20.7% with progression-free survival (PFS) of 5.7 months¹⁰⁶. Likewise, results of a phase II trial testing the pan-FGFR inhibitor, infigratinib (BGJ398) demonstrated an ORR of 14.8% (18.8% FGFR2 fusions only), disease control rate (DCR) of 75.4% (83.3% FGFR2 fusions only), and a median PFS of 5.8 months¹⁰⁷.

MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase²¹. Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate^{28,29}. Loss of MTAP function is commonly observed in cancer due to deletion or promoter methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation²⁹.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be co-deleted with CDKN2A in numerous solid and hematological cancers^{29,30}. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21% of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma^{15,16}. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma^{15,16}.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

Biomarker Descriptions (continued)

ATM deletion

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases (PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)⁷⁴. ATM and ATR act as master regulators of DNA damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA (ssDNA) repair⁷⁵. ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB^{75,76}. Upon activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins⁷⁷. ATM is a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAneSS phenotype, which is characterized by a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss^{78,79}. Germline mutations in ATM often result in Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal instability⁸⁰.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer^{15,16}.

Potential relevance: The PARP inhibitor, olaparib⁶⁶ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib⁸¹ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes ATM. Consistent with other genes associated with the BRCAneSS phenotype, ATM mutations may aid in selecting patients likely to respond to PARP inhibitors^{78,82,83}. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer, four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib⁸⁴. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁶⁷, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression²¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)³¹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{32,33,34}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions³⁵. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation^{21,35,36}. CDKN2A aberrations commonly co-occur with CDKN2B³¹. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation³⁷. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{38,39}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁴⁰. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{15,16}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{15,16}. Alterations in CDKN2A are also observed in pediatric cancers¹⁶. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors¹⁶. Somatic mutations in CDKN2A are observed in less than 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)¹⁶.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{18,41,42}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma⁴³. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{44,45,46}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme⁴⁷. CDKN2A (p16)

Biomarker Descriptions (continued)

expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{48,49,50,51}.

CTNNB1 p.(S37F) c.110C>T

catenin beta 1

Background: The CTNNB1 gene encodes catenin beta-1 (β -catenin), an integral component of cadherin-based adherens junctions, which are involved in maintaining adhesion and regulating the growth of epithelial cell layers¹. CTNNB1 binds to the APC protein in the cytoplasm and interacts with TCF and LEF transcription factors in the nucleus to regulate WNT signaling². Steady-state levels of CTNNB1 are regulated by ubiquitin-dependent proteolysis^{3,4,5}. CTNNB1 exon 3 mutations can lead to persistent activation of the WNT/ β -catenin pathway and alter downstream nuclear transcription⁶.

Alterations and prevalence: Recurrent somatic mutations leading to CTNNB1 activation are common in cancer. The most prevalent alterations include missense mutations in exon 3 at codons S33, S37, T41, and S45 that block phosphorylation by GSK-3 β and inhibit CTNNB1 degradation^{6,7,8,9}. These activating mutations are observed in diverse solid tumors and have a prevalence of 20-30% in hepatocellular carcinoma, 20% in uterine carcinoma, and 15% in adrenocortical carcinoma^{10,11,12,13,14,15,16}. Alterations in CTNNB1 are also observed in pediatric cancers^{15,16}. Somatic mutations are observed in 36% of hepatobiliary cancer (4 in 11 cases), 6% of embryonal tumor (21 in 332 cases), 3% of soft tissue sarcoma (1 in 38 cases), 2% of Wilms tumor (11 in 710 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases) and bone cancer (1 in 327 cases)^{15,16}.

Potential relevance: Currently, no therapies have been approved for CTNNB1 aberrations. CTNNB1 alterations have been proposed to promote cancer progression and limit the response to EGFR tyrosine kinase inhibitors in EGFR mutant lung cancer¹⁷. Mutation of CTNNB1 is considered an ancillary diagnostic biomarker for desmoid fibromatosis and WNT-activated medulloblastoma^{18,19,20}.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression^{21,31}. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)³¹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{32,33,34}. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A³¹. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma^{21,52,53}.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous cell carcinoma, 25% of diffuse large B-cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma, 11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma, breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{15,16}. Somatic mutations in CDKN2B are observed in 2% of uterine carcinosarcoma^{15,16}. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14% of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers^{15,16}. Somatic mutations in CDKN2B are observed in less than 1% of bone cancer (1 in 327 cases)^{15,16}.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular marker used in staging grade 4 pediatric IDH-mutant astrocytoma⁴³.

CHEK1 deletion

checkpoint kinase 1

Background: The CHEK1 gene encodes the checkpoint kinase 1 protein and belongs to a family of serine/threonine checkpoint kinases, that also includes CHEK2²¹. Checkpoint kinases play an important role in S phase and G2/M transition and DNA damage induced cell cycle arrest⁶¹. CHEK1 is a tumor suppressor and it interacts with proteins involved in transcription regulation, cell-cycle arrest, and DNA repair including homologous recombination repair (HRR)^{62,63}. Upon DNA damage, CHEK1 is phosphorylated and activated by DNA damage repair proteins ATM and ATR⁶². Activated CHEK1 subsequently phosphorylates and negatively regulates downstream proteins such as CDC25A thereby slowing or stalling DNA replication^{62,64}.

Alterations and prevalence: Recurrent somatic alterations of CHEK1 include mutations and copy number loss. Somatic mutations of CHEK1 are observed in 3% of endometrial carcinoma, 2% of non-small cell lung cancer and 1% of cervical squamous carcinoma

Biomarker Descriptions (continued)

cases^{15,65}. CHEK1 copy number loss occurs in 10% of seminoma, 8% of non-seminomatous germ cell tumor, 5% of ocular melanoma, and 3% of melanoma cases^{15,65}.

Potential relevance: The PARP inhibitor, olaparib⁶⁶ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK1. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁶⁷, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CCND1 p.(P287S) c.859C>T

cyclin D1

Background: The CCND1 gene encodes the cyclin D1 protein, a member of the highly conserved D-cyclin family that also includes CCND2 and CCND3^{171,172,173}. D-type cyclins are known to regulate cell cycle progression by binding to and activating cyclin dependent kinases (CDKs), specifically CDK4 and CDK6, which leads to the phosphorylation and inactivation of the retinoblastoma (RB1) protein^{171,172}. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition thereby resulting in cell cycle progression, a common event observed in tumorigenesis^{171,172,174}. Aberrations in the D-type cyclins have been observed to promote tumor progression suggesting an oncogenic role for CCND1^{173,175}.

Alterations and prevalence: Recurrent somatic alterations to CCND1, including mutations, amplifications, and chromosomal translocations, are observed in many cancer types. A common mechanism of these alterations is to increase the expression and nuclear localization of the cyclin D1 protein. Recurrent somatic mutations include missense mutations at codons T286 and P287 and c-terminal truncating mutations that are enriched in about 33% of uterine cancer, and missense mutations at Y44 that are enriched in about 50% of Mantle cell lymphoma (MCL)^{13,15,16,176}. These mutations block phosphorylation-dependent nuclear export and proteolysis^{177,178,179,180}. CCND1 is recurrently amplified in many cancer types, including up to 35% of esophageal cancer, 20-30% of head and neck cancer, and 10-20% of breast, squamous lung, and bladder cancers^{15,16,143}. MCL is genetically characterized by the t(11;14) (q13;q13) translocation, a rearrangement that juxtaposes CCND1 to the immunoglobulin heavy (IgH) chain gene. This rearrangement leads to constitutive expression of cyclin D1 and plays an important role in MCL pathogenesis^{181,182}.

Potential relevance: Currently, no therapies are approved for CCND1 aberrations. The t(11;14) translocation involving CCND1 can be used to help diagnose some lymphoma subtypes including non-gastric MALT lymphoma, splenic marginal cell lymphoma, and mantle cell lymphoma¹⁸³.

MAP2K4 p.(Q163*) c.487C>T

mitogen-activated protein kinase kinase 4

Background: The MAP2K4 gene encodes the mitogen-activated protein kinase kinase 4, also known as MEK4²¹. MAP2K4 is a member of the mitogen-activated protein kinase 2 (MAP2K) subfamily which also includes MAP2K1, MAP2K2, MAP2K3, MAP2K5, and MAP2K6⁸⁵. Activation of MAPK proteins occurs through a kinase signaling cascade^{85,86,87}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{85,86,87}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{85,86,87}. Mutations observed in MAP2K4 have been observed to impair kinase activity and promote tumorigenesis in vitro, supporting a possible tumor suppressor role for MAP2K4⁸⁸.

Alterations and prevalence: Somatic mutations in MAP2K4 have been observed in 5% of uterine carcinoma and colorectal cancer, and 4% of breast invasive carcinoma^{15,16}. Biallelic deletions have been observed in 3% of stomach cancer, and 2% of breast invasive carcinoma, diffuse large B-cell lymphoma (DLBCL), colorectal, pancreatic, and ovarian cancer^{15,16}. Nonsense, frameshift, and missense mutations in MAP2K4 generally inactivate the kinase activity, and lost expression has been identified in prostate, ovarian, brain, and pancreatic cancer models^{89,90}.

Potential relevance: Currently, no therapies are approved for MA2PK4 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹⁰⁸. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{109,110}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2¹¹¹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹¹². Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹¹². Tumors classified as MSI-L are

Biomarker Descriptions (continued)

often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{113,114,115,116,117}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹¹⁰. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{109,110,114,118}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{109,110,119,120}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{119,120}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹²¹ (2014) and nivolumab¹²² (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹²¹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹²¹. Dostarlimab¹²³ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{115,124}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹²⁵ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{115,126,127}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹²⁷. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{128,129}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{128,129}.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{21,54}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{54,55}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance⁵⁶. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{56,57,58,59}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38⁶⁰.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{15,16}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

FAT1 p.(T2369Cfs*2) c.7105_7106delACinsT

FAT atypical cadherin 1

Background: FAT1 encodes the FAT atypical cadherin 1 protein, a member of the cadherin superfamily characterized by the presence of cadherin-type repeats^{21,27}. FAT cadherins, which also include FAT2, FAT3, and FAT4, are transmembrane proteins containing a cytoplasmic domain and a number of extracellular laminin G-like motifs and EGF-like motifs, which contributes to their individual functions²⁷. The cytoplasmic tail of FAT1 is known to interact with a number of protein targets involved in cell adhesion, proliferation, migration, and invasion²⁷. FAT1 has been observed to influence the regulation of several oncogenic pathways, including the WNT/β-catenin, Hippo, and MAPK/ERK signaling pathways, as well as epithelial to mesenchymal transition²⁷. Alterations of FAT1 lead to downregulation or loss of function, supporting a tumor suppressor role for FAT1²⁷.

Alterations and prevalence: Somatic mutations in FAT1 are predominantly truncating although, the R1627Q mutation has been identified as a recurrent hotspot^{15,16}. Mutations in FAT1 are observed in 22% of head and neck squamous cell carcinoma, 20% of uterine corpus endometrial carcinoma, 14% of lung squamous cell carcinoma and skin cutaneous melanoma, and 12% diffuse large b-cell lymphoma and bladder urothelial carcinoma^{15,16}. Biallelic loss of FAT1 is observed in 7% of head and neck squamous

Biomarker Descriptions (continued)

cell carcinoma, 6% of lung squamous cell carcinoma, 5% of esophageal adenocarcinoma, and 4% of diffuse large b-cell lymphoma, stomach adenocarcinoma and uterine carcinosarcoma^{15,16}.

Potential relevance: Currently, no therapies are approved for FAT1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B²¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁶⁸. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M⁶⁹. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{70,71,72}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁷³.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{15,16}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{15,16}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

DSC1 deletion

desmocollin 1

Background: The DSC1 gene encodes desmocollin 1, a member of the desmocollin (DSC) subfamily of the cadherin superfamily, which also includes DSC2 and DSC3²¹. DSCs along with desmogleins (DSGs) function as membrane-spanning constituents of the desmosomes²². Desmosomes are protein complexes in the intracellular junctions that confer stability and strengthen cell-cell adhesion²³. Deregulation of DSC expression is suggested to impact β -catenin signaling and has been observed in a number of cancer types, supporting a potential role for DSC1 in tumorigenesis^{22,24,25,26}.

Alterations and prevalence: Somatic mutations in DSC1 are observed in 17% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 4% of uterine carcinosarcoma, and 3% of lung adenocarcinoma, lung squamous cell carcinoma, and colorectal adenocarcinoma^{15,16}. Biallelic deletion of DSC1 is observed in 2% of pancreatic adenocarcinoma and esophageal adenocarcinoma^{15,16}.

Potential relevance: Currently, no therapies are approved for DSC1 aberrations.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

EGFR exon 19 deletion

izalectamab brengitecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion

Supporting Statement:

The FDA has granted Breakthrough designation to EGFR/HER3 targeting bispecific antibody-drug conjugate (ADC), izalectamab brengitecan, for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EGFR exon 19 deletions or exon 21 L858R substitution mutations who experienced disease progression on or after treatment with an EGFR TKI and platinum-based chemotherapy.

Reference:

<https://www.onclive.com/view/fda-grants-breakthrough-therapy-designation-to-izalectamab-bengitecan-in-egfr-nsclc>

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

<https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastatic-nsclc>

DB-1310

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion

Supporting Statement:

The FDA has granted Fast Track designation to the HER3-targeting antibody-drug conjugate, DB-1310, for the treatment of adult patients with advanced, unresectable or metastatic non-squamous non-small cell lung cancer with EGFR exon 19 deletion or L858R mutation and who have progressed after treatment with a third-generation EGFR tyrosine kinase inhibitor and platinum-based chemotherapy.

Reference:

<https://www.targetedonc.com/view/novel-her3-adc-receives-fda-fast-track-for-refractory-nsclc>

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,

Genes Assayed (continued)

Genes Assayed for the Detection of DNA Sequence Variants (continued)

FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECom, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBF, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECom, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBF, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP53, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✗ No evidence

EGFR exon 19 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib	●	●	●	●	● (III)
afatinib	●	●	●	●	● (II)
dacomitinib	●	●	●	●	● (II)
gefitinib	●	●	●	●	● (II)
erlotinib + ramucirumab	●	●	●	●	✗
amivantamab + carboplatin + pemetrexed	●	●	●	✗	✗
amivantamab + lazertinib	●	●	●	✗	✗
datopotamab deruxtecan-dlnk	●	●	✗	✗	✗
osimertinib + chemotherapy + pemetrexed	●	✗	●	✗	✗
bevacizumab + erlotinib	✗	●	●	●	✗
erlotinib	✗	●	●	●	✗
osimertinib + carboplatin + pemetrexed	✗	●	✗	✗	✗
osimertinib + cisplatin + pemetrexed	✗	●	✗	✗	✗
BAT1706 + erlotinib	✗	✗	●	✗	✗
bevacizumab (Allergan) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Biocon) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Celltrion) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Mabxience) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Pfizer) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Samsung Bioepis) + erlotinib	✗	✗	●	✗	✗
bevacizumab (Stada) + erlotinib	✗	✗	●	✗	✗
atezolizumab + bevacizumab + carboplatin + paclitaxel	✗	✗	✗	●	✗
gefitinib + carboplatin + pemetrexed	✗	✗	✗	●	✗
adebrelimab, bevacizumab, chemotherapy	✗	✗	✗	✗	● (IV)
afatinib, bevacizumab, chemotherapy	✗	✗	✗	✗	● (IV)
befotertinib	✗	✗	✗	✗	● (IV)
bevacizumab, almonertinib, chemotherapy	✗	✗	✗	✗	● (IV)
catequentinib, toripalimab	✗	✗	✗	✗	● (IV)
EGFR tyrosine kinase inhibitor	✗	✗	✗	✗	● (IV)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ● In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
furmonertinib, chemotherapy	✖	✖	✖	✖	● (IV)
gefitinib, chemotherapy	✖	✖	✖	✖	● (IV)
gefitinib, endostatin	✖	✖	✖	✖	● (IV)
natural product, gefitinib, erlotinib, icotinib hydrochloride, osimertinib, almonertinib, furmonertinib	✖	✖	✖	✖	● (IV)
almonertinib, apatinib	✖	✖	✖	✖	● (III)
almonertinib, chemotherapy	✖	✖	✖	✖	● (III)
almonertinib, radiation therapy	✖	✖	✖	✖	● (III)
befotertinib, icotinib hydrochloride	✖	✖	✖	✖	● (III)
bevacizumab, osimertinib	✖	✖	✖	✖	● (III)
CK-101, gefitinib	✖	✖	✖	✖	● (III)
datopotamab deruxtecan-dlnk, osimertinib	✖	✖	✖	✖	● (III)
furmonertinib	✖	✖	✖	✖	● (III)
furmonertinib, osimertinib, chemotherapy	✖	✖	✖	✖	● (III)
gefitinib, afatinib, erlotinib, metformin hydrochloride	✖	✖	✖	✖	● (III)
glumetinib, osimertinib	✖	✖	✖	✖	● (III)
icotinib hydrochloride, cetequentinib	✖	✖	✖	✖	● (III)
icotinib hydrochloride, chemotherapy	✖	✖	✖	✖	● (III)
icotinib hydrochloride, radiation therapy	✖	✖	✖	✖	● (III)
izalontamab brengitecan	✖	✖	✖	✖	● (III)
izalontamab brengitecan, osimertinib	✖	✖	✖	✖	● (III)
JMT-101, osimertinib	✖	✖	✖	✖	● (III)
osimertinib, bevacizumab	✖	✖	✖	✖	● (III)
osimertinib, chemotherapy	✖	✖	✖	✖	● (III)
osimertinib, datopotamab deruxtecan-dlnk	✖	✖	✖	✖	● (III)
sacituzumab tirumotecan	✖	✖	✖	✖	● (III)
sacituzumab tirumotecan, osimertinib	✖	✖	✖	✖	● (III)
savolitinib, osimertinib	✖	✖	✖	✖	● (III)
SH-1028	✖	✖	✖	✖	● (III)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TY-9591, osimertinib	✖	✖	✖	✖	● (III)
PM-1080, almonertinib	✖	✖	✖	✖	● (II/III)
SCTB-14, chemotherapy	✖	✖	✖	✖	● (II/III)
ABSK-043, furmonertinib	✖	✖	✖	✖	● (II)
afatinib, chemotherapy	✖	✖	✖	✖	● (II)
almonertinib	✖	✖	✖	✖	● (II)
almonertinib, adebrelimab, chemotherapy	✖	✖	✖	✖	● (II)
almonertinib, bevacizumab	✖	✖	✖	✖	● (II)
almonertinib, chemoradiation therapy	✖	✖	✖	✖	● (II)
almonertinib, dacomitinib	✖	✖	✖	✖	● (II)
amivantamab, chemotherapy	✖	✖	✖	✖	● (II)
amivantamab, lazertinib, chemotherapy	✖	✖	✖	✖	● (II)
atezolizumab, bevacizumab, tiragolumab	✖	✖	✖	✖	● (II)
befotertinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)
bevacizumab, afatinib	✖	✖	✖	✖	● (II)
bevacizumab, furmonertinib	✖	✖	✖	✖	● (II)
cadonilimab, chemotherapy, catequentinib	✖	✖	✖	✖	● (II)
camrelizumab, apatinib	✖	✖	✖	✖	● (II)
capmatinib, osimertinib, ramucirumab	✖	✖	✖	✖	● (II)
catequentinib, almonertinib	✖	✖	✖	✖	● (II)
catequentinib, chemotherapy	✖	✖	✖	✖	● (II)
chemotherapy, atezolizumab, bevacizumab	✖	✖	✖	✖	● (II)
dacomitinib, osimertinib	✖	✖	✖	✖	● (II)
EGFR tyrosine kinase inhibitor, osimertinib, chemotherapy	✖	✖	✖	✖	● (II)
EGFR tyrosine kinase inhibitor, radiation therapy	✖	✖	✖	✖	● (II)
erlotinib, chemotherapy	✖	✖	✖	✖	● (II)
erlotinib, OBI-833	✖	✖	✖	✖	● (II)
furmonertinib, bevacizumab	✖	✖	✖	✖	● (II)
furmonertinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
furmonertinib, catequentinib	✖	✖	✖	✖	● (II)
furmonertinib, chemotherapy, bevacizumab	✖	✖	✖	✖	● (II)
furmonertinib, icotinib hydrochloride	✖	✖	✖	✖	● (II)
gefitinib, bevacizumab, chemotherapy	✖	✖	✖	✖	● (II)
gefitinib, icotinib hydrochloride	✖	✖	✖	✖	● (II)
gefitinib, thalidomide	✖	✖	✖	✖	● (II)
icotinib hydrochloride	✖	✖	✖	✖	● (II)
icotinib hydrochloride, autologous RAK cell	✖	✖	✖	✖	● (II)
icotinib hydrochloride, osimertinib	✖	✖	✖	✖	● (II)
ivonescimab, chemotherapy	✖	✖	✖	✖	● (II)
izalontamab brengitecan, almonertinib	✖	✖	✖	✖	● (II)
JS-207, chemotherapy	✖	✖	✖	✖	● (II)
lazertinib	✖	✖	✖	✖	● (II)
lazertinib, bevacizumab	✖	✖	✖	✖	● (II)
lazertinib, chemotherapy	✖	✖	✖	✖	● (II)
osimertinib, radiation therapy	✖	✖	✖	✖	● (II)
PLB-1004, bozitinib, osimertinib	✖	✖	✖	✖	● (II)
ramucirumab, erlotinib	✖	✖	✖	✖	● (II)
sunvozertinib	✖	✖	✖	✖	● (II)
sunvozertinib, catequentinib	✖	✖	✖	✖	● (II)
sunvozertinib, golidocitinib	✖	✖	✖	✖	● (II)
tislelizumab, chemotherapy, bevacizumab	✖	✖	✖	✖	● (II)
toripalimab	✖	✖	✖	✖	● (II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	✖	✖	✖	✖	● (II)
toripalimab, chemotherapy	✖	✖	✖	✖	● (II)
TY-9591, chemotherapy	✖	✖	✖	✖	● (II)
vabametkib, lazertinib	✖	✖	✖	✖	● (II)
YL-202	✖	✖	✖	✖	● (II)
zorifertinib, pirotinib	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AP-L1898	✖	✖	✖	✖	● (I/II)
BH-30643	✖	✖	✖	✖	● (I/II)
bozitinib, osimertinib	✖	✖	✖	✖	● (I/II)
BPI-361175	✖	✖	✖	✖	● (I/II)
chemotherapy, DZD-6008	✖	✖	✖	✖	● (I/II)
dacomitinib, cetequentinib	✖	✖	✖	✖	● (I/II)
DAJH-1050766	✖	✖	✖	✖	● (I/II)
DB-1310, osimertinib	✖	✖	✖	✖	● (I/II)
dostinib	✖	✖	✖	✖	● (I/II)
FWD-1509	✖	✖	✖	✖	● (I/II)
H-002	✖	✖	✖	✖	● (I/II)
ifebemtinib, furmonertinib	✖	✖	✖	✖	● (I/II)
MRTX0902	✖	✖	✖	✖	● (I/II)
necitumumab, osimertinib	✖	✖	✖	✖	● (I/II)
quaratusugene ozeplasmid, osimertinib	✖	✖	✖	✖	● (I/II)
RC-108, furmonertinib, toripalimab	✖	✖	✖	✖	● (I/II)
soturafusp alfa, chemotherapy	✖	✖	✖	✖	● (I/II)
soturafusp alfa, HB-0030	✖	✖	✖	✖	● (I/II)
sunvozertinib, chemotherapy	✖	✖	✖	✖	● (I/II)
TRX-221	✖	✖	✖	✖	● (I/II)
WSD-0922	✖	✖	✖	✖	● (I/II)
alisertib, osimertinib	✖	✖	✖	✖	● (I)
almonertinib, midazolam	✖	✖	✖	✖	● (I)
ASKC-202	✖	✖	✖	✖	● (I)
AZD-9592	✖	✖	✖	✖	● (I)
BG-60366	✖	✖	✖	✖	● (I)
BPI-1178, osimertinib	✖	✖	✖	✖	● (I)
cetequentinib, gefitinib, metformin hydrochloride	✖	✖	✖	✖	● (I)
DZD-6008	✖	✖	✖	✖	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 × No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
EGFR tyrosine kinase inhibitor, cetequentinib	×	×	×	×	● (I)
genolimzumab, fruquintinib	×	×	×	×	● (I)
IBI-318, lenvatinib	×	×	×	×	● (I)
KQB-198, osimertinib	×	×	×	×	● (I)
LAVA-1223	×	×	×	×	● (I)
MRX-2843, osimertinib	×	×	×	×	● (I)
osimertinib, carotuximab	×	×	×	×	● (I)
osimertinib, Minnelide	×	×	×	×	● (I)
osimertinib, tegatrabatan	×	×	×	×	● (I)
patritumab deruxtecan	×	×	×	×	● (I)
PB-101 (Precision Biotech Taiwan Corp), EGFR tyrosine kinase inhibitor	×	×	×	×	● (I)
repotrectinib, osimertinib	×	×	×	×	● (I)
VIC-1911, osimertinib	×	×	×	×	● (I)
WTS-004	×	×	×	×	● (I)
YH-013	×	×	×	×	● (I)
zipalertinib, chemotherapy, glumetinib, pimitespib, quemliclustat	×	×	×	×	● (I)

FGFR2 imbalance

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
futibatinib	○	○	○	○	● (II)
pemigatinib	○	○	○	○	● (II)
erdafitinib	×	●	×	×	×
ABSK061, ABSK-043	×	×	×	×	● (II)
immune checkpoint inhibitor, pemigatinib	×	×	×	×	● (II)
sintilimab, pemigatinib	×	×	×	×	● (II)
ICP-192	×	×	×	×	● (I/II)
afatinib, pemigatinib	×	×	×	×	● (I)
KNT-0916	×	×	×	×	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✖ No evidence

FGFR2 imbalance (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TYRA-200	✖	✖	✖	✖	● (I)

MTAP deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AMG 193	✖	✖	✖	✖	● (I/II)
CTS-3497	✖	✖	✖	✖	● (I/II)
IDE397	✖	✖	✖	✖	● (I/II)
MRTX-1719	✖	✖	✖	✖	● (I/II)
TNG-456, abemaciclib	✖	✖	✖	✖	● (I/II)
TNG-462, pembrolizumab	✖	✖	✖	✖	● (I/II)
ABSK-131	✖	✖	✖	✖	● (I)
GH-56	✖	✖	✖	✖	● (I)
GTA-182	✖	✖	✖	✖	● (I)
HSK-41959	✖	✖	✖	✖	● (I)
ISM-3412	✖	✖	✖	✖	● (I)
PH020-803	✖	✖	✖	✖	● (I)
S-095035	✖	✖	✖	✖	● (I)
SYH-2039	✖	✖	✖	✖	● (I)

ATM deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
olaparib	✖	✖	✖	✖	● (II)
pamiparib, tislelizumab	✖	✖	✖	✖	● (II)
senaparib, IMP-9064	✖	✖	✖	✖	● (I/II)

CDKN2A deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	✖	✖	✖	✖	● (II)
palbociclib, abemaciclib	✖	✖	✖	✖	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ● In other cancer type
 ● In this cancer type and other cancer types
 × No evidence

CDKN2A deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AMG 193	×	×	×	×	● (I/II)
ABSK-131	×	×	×	×	● (I)

CTNNB1 p.(S37F) c.110C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
sunwozertinib, catquentinib	×	×	×	×	● (II)
FOG-001, nivolumab	×	×	×	×	● (I/II)
tegatrabetan	×	×	×	×	● (I/II)

CDKN2B deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib, abemaciclib	×	×	×	×	● (II)

CHEK1 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	×	×	×	×	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	17.69%
ATM	CNV, CN:1.0
ATM	LOH, 11q22.3(108098341-108236285)x1
CHEK1	CNV, CN:1.0
CHEK1	LOH, 11q24.2(125496639-125525271)x1

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. Valenta et al. The many faces and functions of β -catenin. *EMBO J.* 2012 Jun 13;31(12):2714-36. PMID: 22617422
2. Korinek et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/ colon carcinoma. *Science.* 1997 Mar 21;275(5307):1784-7. PMID: 9065401
3. Aberle et al. beta-catenin is a target for the ubiquitin-proteasome pathway. *EMBO J.* 1997 Jul 1;16(13):3797-804. PMID: 9233789
4. Winston et al. The SCF β -TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in β -catenin and stimulates β -catenin ubiquitination in vitro. *Genes Dev.* 1999 Feb 1;13(3):270-83. PMID: 9990852
5. Kitagawa et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β -catenin. *EMBO J.* 1999 May 4;18(9):2401-10. PMID: 10228155
6. Gao et al. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. *Oncotarget.* 2018 Jan 12;9(4):5492-5508. PMID: 29435196
7. Liu et al. Control of β -catenin phosphorylation/degradation by a dual-kinase mechanism. *Cell.* 2002 Mar 22;108(6):837-47. PMID: 11955436
8. Miyoshi et al. Activation of the β -catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. *Cancer Res.* 1998 Jun 15;58(12):2524-7. PMID: 9635572
9. Morin et al. Activation of β -catenin-Tcf signaling in colon cancer by mutations in β -catenin or APC. *Science.* 1997 Mar 21;275(5307):1787-90. PMID: 9065402
10. Schulze et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. *Nat. Genet.* 2015 May;47(5):505-511. PMID: 25822088
11. Ahn et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. *Hepatology.* 2014 Dec;60(6):1972-82. PMID: 24798001
12. Harding et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. *Clin. Cancer Res.* 2018 Oct 29. PMID: 30373752
13. Cancer et al. Integrated genomic characterization of endometrial carcinoma. *Nature.* 2013 May 2;497(7447):67-73. PMID: 23636398
14. Soumerai et al. Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. *Clin. Cancer Res.* 2018 Dec 1;24(23):5939-5947. PMID: 30068706
15. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
16. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
17. Blakely et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. *Nat. Genet.* 2017 Dec;49(12):1693-1704. PMID: 29106415
18. NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 1.2025]
19. Moreno et al. High frequency of WNT-activated medulloblastomas with CTNNB1 wild type suggests a higher proportion of hereditary cases in a Latin-Iberian population. *Front Oncol.* 2023;13:1237170. PMID: 37746264
20. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 2021 Aug 2;23(8):1231-1251. PMID: 34185076
21. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
22. Chidgey et al. Desmosomes: a role in cancer?. *Br J Cancer.* 2007 Jun 18;96(12):1783-7. PMID: 17519903
23. Dubash et al. Desmosomes. *Curr Biol.* 2011 Jul 26;21(14):R529-31. PMID: 21783027
24. Hardman et al. Desmosomal cadherin misexpression alters β -catenin stability and epidermal differentiation. *Mol Cell Biol.* 2005 Feb;25(3):969-78. PMID: 15657425
25. Wang et al. Lower DSC1 expression is related to the poor differentiation and prognosis of head and neck squamous cell carcinoma (HNSCC). *J Cancer Res Clin Oncol.* 2016 Dec;142(12):2461-2468. PMID: 27601166
26. Oshiro et al. Epigenetic silencing of DSC3 is a common event in human breast cancer. *Breast Cancer Res.* 2005;7(5):R669-80. PMID: 16168112
27. Peng et al. Role of FAT1 in health and disease. *Oncol Lett.* 2021 May;21(5):398. PMID: 33777221
28. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). *Leukemia.* 2002 Sep;16(9):1799-807. PMID: 12200696
29. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. *Cancer Biol Ther.* 2011 Apr 1;11(7):627-32. PMID: 21301207

References (continued)

30. Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. *10.1146/annurev-cancerbio-030419-033444*
31. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. *Nat Commun.* 2021 Apr;6(1):2047. PMID: 33824349
32. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. *Am. J. Respir. Cell Mol. Biol.* 2018 Aug;59(2):200-214. PMID: 29420051
33. Roussel. The INK4 family of cell cycle inhibitors in cancer. *Oncogene.* 1999 Sep 20;18(38):5311-7. PMID: 10498883
34. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). *Biochem. Biophys. Res. Commun.* 1999 Aug 27;262(2):534-8. PMID: 10462509
35. Hill et al. The genetics of melanoma: recent advances. *Annu Rev Genomics Hum Genet.* 2013;14:257-79. PMID: 23875803
36. Kim et al. The regulation of INK4/ARF in cancer and aging. *Cell.* 2006 Oct 20;127(2):265-75. PMID: 17055429
37. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. *Mayo Clin. Proc.* 2008 Jul;83(7):825-46. PMID: 18613999
38. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. *J. Invest. Dermatol.* 2007 May;127(5):1234-43. PMID: 17218939
39. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. *Ann. Surg.* 2002 Dec;236(6):730-7. PMID: 12454511
40. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. *Clin Cancer Res.* 2021 Jul 15;27(14):4025-4035. PMID: 34074656
41. NCCN Guidelines® - NCCN-Mesothelioma: Peritoneal [Version 2.2025]
42. NCCN Guidelines® - NCCN-Mesothelioma: Pleural [Version 2.2025]
43. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. *Brain Pathol.* 2020 Jul;30(4):844-856. PMID: 32307792
44. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. *J Transl Med.* 2019 Jul 29;17(1):245. PMID: 31358010
45. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. *Anticancer Res.* 2013 Aug;33(8):2997-3004. PMID: 23898052
46. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmacological Inhibitors of the CDK4/6 Cell-Cycle Pathway. *Cancer Res.* 2015 Sep 15;75(18):3823-31. PMID: 26183925
47. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. *Neuro-oncology.* 2012 Jul;14(7):870-81. PMID: 22711607
48. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. *Oncotarget.* 2018 Sep 7;9(70):33247-33248. PMID: 30279955
49. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. *J. Clin. Oncol.* 2014 Dec 10;32(35):3930-8. PMID: 25267748
50. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. *J. Natl. Cancer Inst.* 2018 Dec 1;110(12):1393-1399. PMID: 29878161
51. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. *Cancer Clin Oncol.* 2013;2(1):51-61. PMID: 23935769
52. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. *Cancer Discov.* 2015 Jul;5(7):723-9. PMID: 25873077
53. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. *Oncogene.* 2018 Jan 4;37(1):128-138. PMID: 28892048
54. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxification. *Front Cell Neurosci.* 2014;8:349. PMID: 25389387
55. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. *Oncogene.* 2006 Mar 13;25(11):1659-72. PMID: 16550166
56. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. *Br J Cancer.* 2020 Apr;122(9):1277-1287. PMID: 32047295
57. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. *Mol Carcinog.* 2014 Apr;53(4):314-24. PMID: 23143693

References (continued)

58. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. *Oncotarget*. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
59. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. *PLoS One*. 2015;10(5):e0127524. PMID: 26010150
60. Karas et al. JCO Oncol Pract. 2021 Dec 3:OP2100624. PMID: 34860573
61. Patil et al. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. *Cell. Mol. Life Sci.* 2013 Nov;70(21):4009-21. PMID: 23508805
62. Bartek et al. Chk1 and Chk2 kinases in checkpoint control and cancer. *Cancer Cell*. 2003 May;3(5):421-9. PMID: 12781359
63. Huang et al. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. *Mol. Cancer Ther.* 2008 Jun;7(6):1440-9. PMID: 18566216
64. Zhang et al. Roles of Chk1 in cell biology and cancer therapy. *Int. J. Cancer*. 2014 Mar 1;134(5):1013-23. PMID: 23613359
65. Sen et al. CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. *Cancer Res.* 2017 Jul 15;77(14):3870-3884. PMID: 28490518
66. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/208558s031lbl.pdf
67. <https://www.senhwabio.com//en/news/20220125>
68. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
69. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
70. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
71. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
72. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
73. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel)*. 2020 Jul 2;12(7). PMID: 32630675
74. Maréchal et al. DNA damage sensing by the ATM and ATR kinases. *Cold Spring Harb Perspect Biol.* 2013 Sep 1;5(9). PMID: 24003211
75. Matsuoka et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. *Science*. 2007 May 25;316(5828):1160-6. PMID: 17525332
76. Ditch et al. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. *Trends Biochem. Sci.* 2012 Jan;37(1):15-22. PMID: 22079189
77. Kozlov et al. Autophosphorylation and ATM activation: additional sites add to the complexity. *J. Biol. Chem.* 2011 Mar 18;286(11):9107-19. PMID: 21149446
78. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. *Endocr. Relat. Cancer*. 2016 Jun;23(6):R267-85. PMID: 27226207
79. Lord et al. BRCAness revisited. *Nat. Rev. Cancer*. 2016 Feb;16(2):110-20. PMID: 26775620
80. Cynthia et al. Ataxia telangiectasia: a review. *Orphanet J Rare Dis.* 2016 Nov 25;11(1):159. PMID: 27884168
81. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/217439s003lbl.pdf
82. Gilardini et al. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. *CR*. PMID: 24252502
83. Pennington et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. *Clin. Cancer Res.* 2014 Feb 1;20(3):764-75. PMID: 24240112
84. Mateo et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. *N. Engl. J. Med.* 2015 Oct 29;373(18):1697-708. PMID: 26510020
85. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. *Clin. Cancer Res.* 2013 May 1;19(9):2301-9. PMID: 23406774
86. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int J Mol Sci.* 2020 Feb 7;21(3). PMID: 32046099
87. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. *Br J Pharmacol.* 2014 Jan;171(1):24-37. PMID: 24117156

References (continued)

88. Ahn et al. Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor γ 2 expression. *Mol. Cell. Biol.* 2011 Nov;31(21):4270-85. PMID: 21896780
89. Robinson et al. Mitogen-activated protein kinase kinase 4/c-Jun NH₂-terminal kinase kinase 1 protein expression is subject to translational regulation in prostate cancer cell lines. *Mol. Cancer Res.* 2008 Mar;6(3):501-8. PMID: 18337456
90. Xue et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. *Cell Res.* 2018 Jul;28(7):719-729. PMID: 29795445
91. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. *Nat. Rev. Cancer.* 2017 May;17(5):318-332. PMID: 28303906
92. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. *Biochim. Biophys. Acta.* 2012 Apr;1823(4):850-60. PMID: 22273505
93. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. *Nat Commun.* 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
94. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. *Clin. Cancer Res.* 2016 Jan 1;22(1):259-67. PMID: 26373574
95. Touat et al. Targeting FGFR Signaling in Cancer. *Clin. Cancer Res.* 2015 Jun 15;21(12):2684-94. PMID: 26078430
96. Byron et al. The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors. *Neoplasia.* 2013 Aug;15(8):975-88. PMID: 23908597
97. Borad et al. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. *Curr. Opin. Gastroenterol.* 2015 May;31(3):264-8. PMID: 25763789
98. Ghedini et al. Future applications of FGF/FGFR inhibitors in cancer. *Expert Rev Anticancer Ther.* 2018 Sep;18(9):861-872. PMID: 29936878
99. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/214801s002lbl.pdf
100. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212018s010lbl.pdf
101. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213736s002lbl.pdf
102. <https://synapse.patsnap.com/blog/pharma-frontiers-daily-digest-of-global-pharmaceutical-news-%E2%80%93-jul-5>
103. <https://ir.relaytx.com/news-releases/news-release-details/relay-therapeutics-and-elevar-therapeutics-announce-exclusive>
104. <https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fgfr-gene-alteration/>
105. <https://www.amgen.com/newsroom/press-releases/2021/04/amgens-investigational-targeted-treatment-bemarituzumab-granted-breakthrough-therapy-designation>
106. Mazzaferro et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. *Br. J. Cancer.* 2019 Jan;120(2):165-171. PMID: 30420614
107. Javle et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. *J. Clin. Oncol.* 2018 Jan 20;36(3):276-282. PMID: 29182496
108. Lander et al. Initial sequencing and analysis of the human genome. *Nature.* 2001 Feb 15;409(6822):860-921. PMID: 11237011
109. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol.* 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
110. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J.* 2018;17:159-168. PMID: 29743854
111. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol.* 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
112. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res.* 1998 Nov 15;58(22):5248-57. PMID: 9823339
113. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res.* 2002 Jan 1;62(1):53-7. PMID: 11782358
114. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis.* 2008 Apr;29(4):673-80. PMID: 17942460
115. NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]
116. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
117. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947

References (continued)

118. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
119. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
120. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
121. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
122. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
123. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
124. NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]
125. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
126. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
127. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
128. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
129. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
130. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. *Science.* 1985 Sep 6;229(4717):974-6. PMID: 2992089
131. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. *Mol Cancer.* 2018 Feb 19;17(1):53. PMID: 29455669
132. Zhixiang. ErbB Receptors and Cancer. *Methods Mol. Biol.* 2017;1652:3-35. PMID: 28791631
133. Gutierrez et al. HER2: biology, detection, and clinical implications. *Arch. Pathol. Lab. Med.* 2011 Jan;135(1):55-62. PMID: 21204711
134. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. *FEBS Lett.* 2010 Jun 18;584(12):2699-706. PMID: 20388509
135. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature.* 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
136. da et al. EGFR mutations and lung cancer. *Annu Rev Pathol.* 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
137. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. *Mol. Cancer Ther.* 2013 Feb;12(2):220-9. PMID: 23371856
138. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. *Clin Cancer Res.* 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
139. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. *Sci Transl Med.* 2013 Dec 18;5(216):216ra177. PMID: 24353160
140. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. *J Thorac Oncol.* 2015 May;10(5):793-9. PMID: 25668120
141. Karachaliou et al. KRAS mutations in lung cancer. *Clin Lung Cancer.* 2013 May;14(3):205-14. PMID: 23122493
142. Brennan et al. The somatic genomic landscape of glioblastoma. *Cell.* 2013 Oct 10;155(2):462-77. PMID: 24120142
143. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature.* 2015 Jan 29;517(7536):576-82. PMID: 25631445
144. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. *FEBS J.* 2010 Jan;277(2):301-8. PMID: 19922469
145. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. *Oncogene.* 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
146. Gan et al. The EGFRvIII variant in glioblastoma multiforme. *J Clin Neurosci.* 2009 Jun;16(6):748-54. PMID: 19324552
147. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
148. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf

References (continued)

149. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. *Clin Cancer Res.* 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
150. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
151. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
152. NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]
153. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. *Cancer.* 2015 Sep 15;121(18):3212-3220. PMID: 26096453
154. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. *Signal Transduct Target Ther.* 2019;4:5. PMID: 30854234
155. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. *Int J Mol Med.* 2014 Aug;34(2):464-74. PMID: 24891042
156. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219839s000lbl.pdf
157. <https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys>
158. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. *Oncotarget.* 2018 Dec 21;9(100):37393-37406. PMID: 30647840
159. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
160. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. *Clin. Cancer Res.* 2015 Sep 1;21(17):3924-33. PMID: 25964297
161. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. *J Thorac Oncol.* 2017 Nov;12(11):1723-1727. PMID: 28662863
162. <https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and>
163. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. *Cancer Treat Rev.* 2024 Jan;122:102664. PMID: 38064878
164. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s008lbl.pdf
165. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbl.pdf
166. <https://iis.aastocks.com/20231227/11015917-0.PDF>
167. <https://www1.hkexnews.hk/listedco/listconews/sehk/2024/1008/2024100800433.pdf>
168. <https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/>
169. NCCN Guidelines® - NCCN-Pediatric Central Nervous System Cancers [Version 3.2025]
170. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. *Genes (Basel).* 2022 Mar 31;13(4). PMID: 35456430
171. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. *Nat. Rev. Cancer.* 2009 Mar;9(3):153-66. PMID: 19238148
172. Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. *Oncogene.* 2013 Aug 15;32(33):3840-5. PMID: 22964630
173. Ding et al. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. *Cancer Med.* 2019 Jun;8(6):2717-2729. PMID: 30950241
174. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. *FEBS Lett.* 2001 Feb 16;490(3):117-22. PMID: 11223026
175. Shan et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. *Oncol Lett.* 2017 Oct;14(4):4517-4526. PMID: 28943959
176. Beà et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. *Proc. Natl. Acad. Sci. U.S.A.* 2013 Nov 5;110(45):18250-5. PMID: 24145436
177. Diehl et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. *Genes Dev.* 1998 Nov 15;12(22):3499-511. PMID: 9832503
178. Alt et al. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. *Genes Dev.* 2000 Dec 15;14(24):3102-14. PMID: 11124803

References (continued)

179. Moreno-Bueno et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. *Oncogene*. 2003 Sep 4;22(38):6115-8. PMID: 12955092
180. Benzeno et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. *Oncogene*. 2006 Oct 12;25(47):6291-303. PMID: 16732330
181. Kim et al. Nuclear cyclin D1: an oncogenic driver in human cancer. *J. Cell. Physiol.* 2009 Aug;220(2):292-6. PMID: 19415697
182. Jares et al. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. *Nat. Rev. Cancer*. 2007 Oct;7(10):750-62. PMID: 17891190
183. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]