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Gene Finding Gene Finding

BRAF None detected NTRK2 None detected
KIT None detected NTRK3 None detected
NRAS None detected RET None detected
NTRK1 None detected ROS1 None detected

Genomic Alteration Finding

Tumor Mutational Burden 10.42 Mut/Mb measured

Relevant Melanoma Findings

 

Relevant Biomarkers
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC MET amplification

MET proto-oncogene, receptor tyrosine kinase
Locus: chr7:116339789

None* capmatinib
crizotinib
tepotinib

11

  
IIC ATM deletion

ATM serine/threonine kinase
Locus: chr11:108098341

None* None* 5

  
IIC BRCA1 deletion

BRCA1, DNA repair associated
Locus: chr17:41197602

None* None* 3

  
IIC CDK12 deletion

cyclin dependent kinase 12
Locus: chr17:37618286

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006). The
content of this report has not been evaluated or approved by the FDA, EMA or other regulatory agencies.
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Relevant Biomarkers (continued)
 

Tier Genomic Alteration
Relevant Therapies
(In this cancer type)

Relevant Therapies
(In other cancer type) Clinical Trials

 
IIC CHEK1 deletion

checkpoint kinase 1
Locus: chr11:125496639

None* None* 1

  
IIC RAD51D deletion

RAD51 paralog D
Locus: chr17:33427950

None* None* 1

 
* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO
* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO
Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference:  Li et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association
for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.  J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources
CBL p.(Y371H) c.1111T>C, FGFR4 p.(D127H) c.379G>C, Microsatellite stable, NF1 p.(W221*) c.662G>A, TERT c.-146C>T,
TP53 p.(D281N) c.841G>A, HLA-B deletion, HDAC9 p.(Q631*) c.1891C>T, Tumor Mutational Burden

 

Gene Amino Acid Change Coding Variant ID Locus
Allele

Frequency Transcript Variant Effect

CBL p.(Y371H) c.1111T>C COSM34052 chr11:119148891 19.26% NM_005188.4 missense

FGFR4 p.(D127H) c.379G>C . chr5:176517769 53.77% NM_213647.3 missense

NF1 p.(W221*) c.662G>A . chr17:29508735 17.83% NM_001042492.3 nonsense

TERT p.(?) c.-146C>T COSM1716559 chr5:1295250 6.00% NM_198253.3 unknown

TP53 p.(D281N) c.841G>A COSM43596 chr17:7577097 24.46% NM_000546.6 missense

HDAC9 p.(Q631*) c.1891C>T . chr7:18767362 8.36% NM_178425.3 nonsense

NRXN1 p.(P1122S) c.3364C>T . chr2:50692580 35.19% NM_004801.5 missense

PARD3B p.(Q152H) c.456G>T . chr2:205912365 53.70% NM_152526.6 missense

HLA-B p.([T118I;L119I]) c.353_355delCCCinsT
CA

. chr6:31324208 100.00% NM_005514.8 missense,
missense

PXDNL p.(E437Q) c.1309G>C . chr8:52361619 18.38% NM_144651.5 missense

PXDNL p.(E433Q) c.1297G>C . chr8:52361631 18.39% NM_144651.5 missense

C8orf89 p.(Q66*) c.196C>T . chr8:74169293 44.26% NM_001243237.1 nonsense

CYP2C9 p.(S365N) c.1094G>A . chr10:96741072 7.59% NM_000771.4 missense

SYT10 p.(D479N) c.1435G>A . chr12:33532832 14.69% NM_198992.4 missense

TRHDE p.(A775T) c.2323G>A . chr12:73012672 13.04% NM_013381.3 missense

PARP4 p.(?) c.3285_3285+5delinsA
GT

. chr13:25021149 100.00% NM_006437.4 unknown

ERCC4 p.(L151F) c.451C>T . chr16:14020480 14.45% NM_005236.3 missense

PRDM7 p.(?) c.194-3C>T . chr16:90141434 9.18% NM_001098173.2 unknown

DNA Sequence Variants

 

Variant Details

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene Locus Copy Number CNV Ratio

MET chr7:116339789 8.2 2.55

ATM chr11:108098341 1 0.93

BRCA1 chr17:41197602 1 0.95

CDK12 chr17:37618286 1 0.92

CHEK1 chr11:125496639 1 0.92

RAD51D chr17:33427950 1 0.99

HLA-B chr6:31322252 0.42 0.6

Copy Number Variations

 

Variant Details (continued)

 
MET amplification

MET proto-oncogene, receptor tyrosine kinase

Background: The MET gene encodes the MET proto-oncogene, encodes a receptor tyrosine kinase for the hepatocyte growth
factor (HGF) protein, which is expressed by mesenchymal cells47. MET is expressed as multiple isoforms with transcript variant 1
(NM_001127500.3) encoding a 1408 amino acid protein and transcript variant 2 (NM_000245.4) encoding a 1390 amino acid protein,
both of which possess an intact protein kinase domain47. Ubiquitin-dependent proteolysis is responsible for regulating the steady-state
level of the MET protein via recognition of the tyrosine phosphorylation site Y1003(NM_000245.4), sometimes referred to as Y1021
(NM_001127500.3), in the MET Cbl-binding domain within the juxtamembrane region133,134,135. Growth factor signaling leads to MET
dimerization and subsequent initiation of downstream effectors, including those involved in the RAS/RAF/MEK/ERK and PI3K/AKT
signaling pathways, which regulate cell migration, proliferation, and survival136,137.

Alterations and prevalence: Somatic mutations in MET are observed in 10% of uterine corpus endometrial carcinoma, 9% of skin
cutaneous melanoma, 8% of kidney renal papillary cell carcinoma (PRCC), 4% of lung adenocarcinoma, colorectal adenocarcinoma,
bladder urothelial carcinoma, and uterine carcinosarcoma, and 2% of diffuse large B-cell lymphoma, esophageal adenocarcinoma,
glioblastoma multiforme, lung squamous cell carcinoma, stomach adenocarcinoma, and sarcoma16,35. Recurrent somatic mutations
fall into two classes, mutations in the MET kinase domain, which are uncommon, and splice-site mutations affecting exon 14138.
Recurrent kinase domain mutations are observed in PRCC and include M1250T, H1094Y, and V1070E (NM_000245.4)16,35,138. Mutation
of the Y1003 phosphorylation site is reported in approximately 2% of MET altered lung cancer139. In contrast, splice-site mutations
flanking exon 14 are observed in 3-4% of all non-small cell lung cancer (NSCLC)140. These mutations include canonical splice site
mutations affecting exon 14 and deletions that extend into the splicing motifs within intron 13139,141. Such mutations disrupt splicing
leading to the formation of an alternative transcript that joins exon 13 directly to exon 15 and skips exon 14 entirely. The MET exon
14 skipping transcript lacks the juxtamembrane domain that contains the recognition motif for ubiquitin-dependent proteolysis and
thus leads to a marked increase in the steady-state level of the MET protein142. MET exon 14 skipping mutations act as oncogenic
drivers in lung cancer mutually exclusive to activating mutations in EGFR and KRAS and other oncogenic fusions such as ALK and
ROS1141,143,144. MET amplification is observed in 3% of esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, stomach
adenocarcinoma, and glioblastoma multiforme, and 2% of lung adenocarcinoma, liver hepatocellular carcinoma, bladder urothelial
carcinoma, diffuse large B-cell lymphoma, kidney renal papillary cell carcinoma, skin cutaneous melanoma, sarcoma, and kidney
chromophobe16,35. Recurrent MET fusions, although infrequent, are observed in adult and pediatric glioblastoma, papillary renal cell
carcinoma, lung cancer, liver cancer, thyroid cancer, and melanoma145,146,147. MET alterations are believed to be enriched in late-stage
cancers where they drive tumor progression and metastasis148,149,150. Alterations in MET are rare in pediatric cancers16,35. Somatic
mutations are observed in less that 1% of embryonal tumors (3 in 332 cases), bone cancer (2 in 327 cases), glioma(1 in 297 cases),
leukemia (1 in 354 cases), peripheral nervous system cancers (2 in 1158 cases), and Wilms tumor (1 in 710 cases)16,35. Amplification of
MET is observed in less than 1% of Wilms tumor (1 in 136 cases) and B-lymphoblastic leukemia/lymphoma (3 in 731 cases)16,35.

Potential relevance: In 2020, the FDA granted accelerated approval to capmatinib151 for NSCLC harboring MET exon 14 skipping
positive as detected by an FDA-approved test. The kinase inhibitor, tepotinib152, is also approved (2021) for MET exon 14 skipping
mutations in NSCLC. MET exon 14 skipping mutations confer sensitivity to approved kinase inhibitors including crizotinib (2011),
which is recommended for MET amplifications and exon 14 skipping mutations141,143,144,153. The FDA also granted breakthrough
therapy designation (2018) to crizotinib for metastatic non-small cell lung cancer (NSCLC) with MET exon 14 alterations with disease
progression on or after platinum-based chemotherapy154. MET amplification has been observed to mediate resistance to EGFR

Biomarker Descriptions
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tyrosine kinase inhibitors (TKIs)155,156,157,158,159. The FDA has granted fast track designation (2021) to the MET/CSF1R/SRC small
molecule inhibitor, elzovantinib (TPX-0022)160, for MET amplified advanced or metastatic gastric cancer and gastroesophageal junction
adenocarcinoma (GEJ) after prior chemotherapy. Tepotinib has also been recommended for treatment of NSCLC with high-level MET
amplification153. The MET inhibitor savolitinib is also under investigation, with results from a phase II clinical trial showing increased
progression-free survival in patients with advanced PRCC who had MET alterations compared to those with MET-independent PRCC161.
MET amplification is a diagnostic marker of infant-type hemispheric glioma162,163.

ATM deletion

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases
(PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)71. ATM and ATR act as master regulators of DNA
damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA
(ssDNA) repair72. ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB72,73. Upon
activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins74. ATM is
a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAness phenotype, which is characterized by
a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss69,75. Germline mutations in ATM often result in
Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal
instability76.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of
undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma
as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer16,35.

Potential relevance: The PARP inhibitor, olaparib39 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC)
with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib41 in
combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR
genes that includes ATM. Consistent with other genes associated with the BRCAness phenotype, ATM mutations may aid in selecting
patients likely to respond to PARP inhibitors75,77,78. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer,
four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib79. In 2022, the FDA granted
fast track designation to the small molecule inhibitor, pidnarulex46, for BRCA1/2, PALB2, or other homologous recombination deficiency
(HRD) mutations in breast and ovarian cancers.

BRCA1 deletion

BRCA1, DNA repair associated

Background: The breast cancer early onset gene 1 (BRCA1) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered
as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function
and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged
DNA21,22. Specifically, BRCA1/2 are required for the repair of chromosomal double strand breaks (DSBs) which are highly unstable
and compromise genome integrity21,22. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for
breast and ovarian cancer and in men for breast and prostate cancer23,24,25. For individuals diagnosed with inherited pathogenic or likely
pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian
cancer by 70 years was 20-48%23,26.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian
cancer, 5-10% of breast cancer, and 1-4% of prostate cancer27,28,29,30,31,32,33,34. Somatic alterations in BRCA1 are observed in 5-10% of
uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, diffuse large B-cell lymphoma, and cervical
squamous cell carcinoma, 3-4% of lung squamous cell carcinoma, lung adenocarcinoma, stomach adenocarcinoma, ovarian serous
cystadenocarcinoma, colorectal adenocarcinoma, and breast invasive carcinoma, and 2% of head and neck squamous cell carcinoma
and glioblastoma multiforme16,35.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity
to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)36. Inhibitors targeting
PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells37,38. Consequently, several PARP inhibitors have
been FDA approved for BRCA1/2-mutated cancers. Olaparib39 (2014) was the first PARPi to be approved by the FDA for BRCA1/2
aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment
of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary
peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with
gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib39 is approved
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(2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic
mutations in HRR genes that includes BRCA1. Rucaparib40 is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and
ovarian cancer. Talazoparib41 (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast
cancer. Additionally, talazoparib41 in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate
cancer (mCRPC) with mutations in HRR genes that includes BRCA1. Niraparib42 (2017) is another PARPi approved for the treatment of
epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib
in combination with abiraterone acetate43 received FDA approval (2023) for the treatment of deleterious or suspected deleterious
BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported44.
One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality45.
In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022,
the FDA granted fast track designation to the small molecule inhibitor, pidnarulex46, for BRCA1/2, PALB2, or other homologous
recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but
through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and
genomic instability.

CDK12 deletion

cyclin dependent kinase 12

Background: CDK12 encodes the cyclin-dependent kinase 12 protein and is required for the maintenance of genomic stability66,67,68.
CDK12 phosphorylates RNA polymerase II and is a regulator of transcription elongation and expression of DNA repair genes66,67,68,69,70.
Alterations in CDK12 impair the transcription of homologous recombination repair (HRR) genes such as BRCA1, ATR, FANCI, and
FANCD2, contributing to a BRCAness phenotype68,69. CDK12 is a tumor suppressor gene and loss of function mutations are observed
in various solid tumors70. However, observations of CDK12 amplification and overexpression in breast cancer indicate that it could also
function as an oncogene70.

Alterations and prevalence: Somatic alterations of CDK12 include mutations and amplification. Missense and truncating mutations in
CDK12 are observed in 8% of undifferentiated stomach adenocarcinoma, 7% of bladder urothelial, and 6% endometrial carcinoma16,47.
CDK12 is amplified in 9% of esophagogastric adenocarcinoma and invasive breast carcinoma, 8% of undifferentiated stomach
adenocarcinoma, and 3% of bladder urothelial and endometrial carcinoma16,47.

Potential relevance: The PARP inhibitor, olaparib39 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC)
with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CDK12. Additionally, talazoparib41

in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CDK12. Consistent with
other genes associated with homologous recombination repair, CDK12 loss may aid in selecting patients likely to respond to PARP
inhibitors69,70. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex46, for BRCA1/2, PALB2, or
other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CHEK1 deletion

checkpoint kinase 1

Background: The CHEK1 gene encodes the checkpoint kinase 1 protein and belongs to a family of serine/threonine checkpoint kinases,
that also includes CHEK247. Checkpoint kinases play an important role in S phase and G2/M transition and DNA damage induced cell
cycle arrest55. CHEK1 is a tumor suppressor and it interacts with proteins involved in transcription regulation, cell-cycle arrest, and
DNA repair including homologous recombination repair (HRR)56,57. Upon DNA damage, CHEK1 is phosphorylated and activated by DNA
damage repair proteins ATM and ATR56. Activated CHEK1 subsequently phosphorylates and negatively regulates downstream proteins
such as CDC25A thereby slowing or stalling DNA replication56,58.

Alterations and prevalence: Recurrent somatic alterations of CHEK1 include mutations and copy number loss. Somatic mutations
of CHEK1 are observed in 3% of endometrial carcinoma, 2% of non-small cell lung cancer and 1% of cervical squamous carcinoma
cases16,59. CHEK1 copy number loss occurs in 10% of seminoma, 8% of non-seminomatous germ cell tumor, 5% of ocular melanoma,
and 3% of melanoma cases16,59.

Potential relevance: The PARP inhibitor, olaparib39 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with
deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK1. In 2022, the FDA granted fast
track designation to the small molecule inhibitor, pidnarulex46, for BRCA1/2, PALB2, or other homologous recombination deficiency
(HRD) mutations in breast and ovarian cancers.
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RAD51D deletion

RAD51 paralog D

Background: The RAD51D gene encodes the RAD51 paralog D protein, a member of the RAD51 recombinase family that also includes
RAD51, RAD51B (RAD51L1), RAD51C (RAD51L2), XRCC2, and XRCC3 paralogs. The RAD51 family proteins are involved in homologous
recombination repair (HRR) and DNA repair of double-strand breaks (DSB)80. RAD51D associates with other RAD51 paralogs to form
RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex81. The BCDX2 complex binds single- and double-stranded DNA to hydrolyze ATP82.
RAD51D is a tumor suppressor gene. Loss of function mutations in RAD51D are implicated in the BRCAness phenotype, which is
characterized by a defect in HRR, mimicking BRCA1 or BRCA2 loss69,75. Germline point mutations in RAD51D are implicated in non-
BRCA2 associated breast, ovarian, and colorectal cancer83.

Alterations and prevalence: Somatic mutations in RAD51D are rare but have been reported in 1-2% of uterine cancer16.

Potential relevance: The PARP inhibitor, olaparib39 is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC)
with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes RAD51D. Additionally, consistent
with other genes associated with the BRCAness phenotype, RAD51D mutations may aid in selecting patients likely to respond to PARP
inhibitors75. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex46, for BRCA1/2, PALB2, or other
homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CBL p.(Y371H) c.1111T>C

Cbl proto-oncogene

Background: The CBL gene encodes the casitas B-lineage lymphoma (CBL) ubiquitin ligase, a member of the ubiquitin ligase (E3)
protein family that also includes CBL-b and CBL-c7. CBL proteins are characterized by their highly conserved N-terminal tyrosine kinase
binding (TKB) domain and RING finger (RF) catalytic domain which are directly involved in the regulation of receptor tyrosine kinase
(RTK) signaling7,8. Upon recognition of an activated RTK via its TKB domain, CBL mediates the transfer of ubiquitin from the ubiquitin-
conjugating enzyme (E2) via its RF domain, consequently targeting the RTK for proteasome degradation. CBL can also function
as an adaptor protein via recruitment of signaling molecules to active RTKs8. CBL is the target of genetic aberrations, including
missense mutations and translocations, which can lead to oncogenic transformation in hematological malignancies as well as solid
tumors8,9,10,11. Mutations in CBL often result in a loss of E3 ligase activity, thereby preventing proteasome-mediated RTK degradation,
which supports the role of CBL as a tumor suppressor gene9. However, CBL mutants often maintain their adapter function, contributing
to their transforming potential and suggesting a simultaneous oncogenic role for CBL in cancer8. Hereditary mutations in CBL lead to
constitutive activation of RAS and MAPK pathways resulting in genetic disorders known as RASopathies which can lead to increased
cancer risk4.

Alterations and prevalence: Genetic alterations in CBL were first recognized in acute myeloid leukemia (AML) as a result of an
interstitial deletion leading to MLL::CBL fusion12,13. However, fusions involving CBL are relatively rare. Aberrations in CBL most often
involve missense mutations which commonly cluster in the linker region or RF domain corresponding to exons 8 and 98,9. Such
mutations lead to disruption of E3 ligase activity and have been reported in systemic mastocytosis (SM), 1-3% of de novo AML, 10% of
secondary AML, 8% of atypical AML, and 10-15% of juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia
(CMML)8,14,15,16,17,18,19. Mutations in CBL have also been reported in 1-6% of melanomas, lung, stomach, colorectal, esophageal, and
uterine cancers11,16.

Potential relevance: Mutations in CBL confer adverse prognosis in SM and have been shown to be independently predictive of inferior
survival15,20.

FGFR4 p.(D127H) c.379G>C

fibroblast growth factor receptor 4

Background: The FGFR4 gene encodes fibroblast growth receptor 4, a member of the fibroblast growth-factor receptor (FGFR)
family that also includes FGFR1, 2, and 3. These proteins are single-transmembrane receptors composed of three extracellular
immunoglobulin (Ig)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several
oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell
proliferation, migration, and survival164,165,166. FGFR4 selectively binds the ligand FGF19, wherein FGF19-mediated aberrant signaling
has been identified as an oncogenic driver in hepatocellular carcinoma167,168.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions. The
majority of these aberrations result in gain of function169. FGFR4 exhibits amplification in up to 15% of clear-cell renal cell carcinomas,
with somatic mutations observed in up to 6% of melanomas and uterine cancer16,35.
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Potential relevance: Currently, no targeted therapies are approved for FGFR4 aberrations. However, FDA-approved multi-kinase
inhibitors known to inhibit FGFR family members, including regorafenib (2013), ponatinib (2012), lenvatinib (2015), nintedanib (2014),
and pazopanib (2009), have demonstrated anti-tumor activity in select cancer types harboring FGFR alterations170,171,172,173,174,175,176.
Selective, irreversible FGFR4 inhibitors, including BLU-554, have underwent clinical trial evaluation. In a phase-I clinical study of
BLU-554 in patients with FGF19-positive advanced hepatocellular carcinoma, the overall response rate was 17%177.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are
approximately 0.5 million STRs that occupy 3% of the human genome111. Microsatellite instability (MSI) is defined as a change in the
length of a microsatellite in a tumor as compared to normal tissue112,113. MSI is closely tied to the status of the mismatch repair (MMR)
genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2114. Mutations and loss of expression in MMR genes,
known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient
(pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following
five markers: BAT25, BAT26, D5S346, D2S123, and D17S250115. Tumors with instability in one of the five markers were defined as
MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)115. Tumors classified as MSI-L are
often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS116,117,118,119,120. MSI-H is a hallmark of Lynch
syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes113.
LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach
cancer112,113,117,121.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach
adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma112,113,122,123. MSI-H is also observed in 5% of
adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers122,123.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab124 (2014) and nivolumab125 (2015) are approved
for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab124 is also approved
as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression
on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-
H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be
approved with a tumor agnostic indication124. Dostarlimab126 (2021) is also approved for dMMR recurrent or advanced endometrial
carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/
MSI-H advanced or metastatic colon or rectal cancer118,127. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,
ipilimumab128 (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed
following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary
depending on stage and tumor location118,129,130. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS)
and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients130. The majority of patients with tumors
classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those
with MSI-H tumors131,132. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated
response in MSS or pMMR cancers131,132.

NF1 p.(W221*) c.662G>A

neurofibromin 1

Background: The NF1 gene encodes the neurofibromin protein, a tumor suppressor within the Ras-GTPase-activating protein (GAP)
family1. NF1 regulates cellular levels of activated RAS proteins including KRAS, NRAS, and HRAS, by down regulating the active GTP-
bound state to an inactive GDP-bound state1,2. Inactivation of NF1 due to missense mutations results in sustained intracellular levels of
RAS-GTP and prolonged activation of the RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways leading to increased proliferation
and survival1. Constitutional mutations in NF1 are associated with neurofibromatosis type 1, a RASopathy autosomal dominant tumor
syndrome with predisposition to myeloid malignancies such as juvenile myelomonocytic leukemia (JMML) and myeloproliferative
neoplasms (MPN)1,3,4.

Alterations and prevalence: NF1 aberrations include missense mutations, insertions, indels, aberrant splicing, microdeletions, and
rearrangements1. The majority of NF1 mutated tumors exhibit biallelic inactivation of NF1, supporting the 'two-hit' hypothesis of
carcinogenesis1,5. Somatic mutations in NF1 have been identified in over 30% of ovarian serous carcinoma, 12-30% of melanoma,
10-20% of chronic myelomonocytic leukemia (CMML), and 7% of acute myeloid leukemia (AML)1,4.

Potential relevance: Currently, no therapies are approved for NF1 aberrations. Somatic mutation of NF1 is useful as an ancillary
diagnostic marker for malignant peripheral nerve sheath tumor (MPNST)6.

Biomarker Descriptions (continued)
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TERT c.-146C>T

telomerase reverse transcriptase

Background: The TERT gene encodes telomerase reverse transcriptase, a component of the telomerase core enzyme along with
the internal telomerase RNA template (TERC)84. TERT is repressed in most differentiated cells, resulting in telomerase silencing84.
In cancer, telomerase reactivation is known to contribute to cellular immortalization84,85. Increased TERT expression results in
telomerase activation, allowing for unlimited cancer cell proliferation through telomere stabilization84. In addition to its role in telomere
maintenance, TERT has RNA-dependent RNA polymerase activity, which, when deregulated, can promote oncogenesis by facilitating
mitotic progression and cancer cell stemness84.

Alterations and prevalence: Somatic mutations are observed in 4% of skin cutaneous melanoma and uterine corpus endometrial
carcinoma, 3% of kidney renal papillary cell carcinoma, and 2% of pancreatic adenocarcinoma, stomach adenocarcinoma, and
sarcoma16,35. Additionally, TERT promoter mutations causing upregulation are observed in many cancer types, especially non-aural
cutaneous melanoma (80% of cases), and glioblastoma (70% of cases)85. Specifically, TERT promoter mutations at C228T and C250T
are recurrent and result in de novo binding sites for ETS transcription factors, leading to enhanced TERT transcription84. Amplification
of TERT is observed in 15% of lung squamous cell carcinoma, 14% of esophageal adenocarcinoma, 13% of adrenocortical carcinoma
and lung adenocarcinoma, and 10% of bladder urothelial carcinoma, 9% of ovarian serous cystadenocarcinoma, 6% of cervical
squamous cell carcinoma, 5% of liver hepatocellular carcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma,
head and neck squamous cell carcinoma, 4% of uterine carcinosarcoma, 3% of uterine corpus endometrial carcinoma, breast invasive
carcinoma, and 2% of diffuse large B-cell lymphoma16,35. TERT is overexpressed in over 85% of tumors and is considered a universal
tumor associated antigen86. Alterations in TERT are rare in pediatric cancers16,35. Somatic mutations are observed in less than 1% of B-
lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (2 in 297 cases), bone cancer (1 in 327 cases), and Wilms tumor (1 in 710
cases)16,35. TERT amplification is observed in 1-2% of peripheral nervous system cancers (2 in 91 cases), leukemia (2 in 250 cases),
and B-lymphoblastic leukemia/lymphoma (5 in 731 cases)16,35.

Potential relevance: Currently, no therapies are approved for TERT aberrations. TERT promoter mutations are diagnostic of
oligodendroglioma IDH-mutant with 1p/19q co-deletion, while the absence of promoter mutations combined with an IDH mutation is
characteristic of astrocytoma87,88. Due to its immunogenicity and near-universal expression on cancer cells, TERT has been a focus of
immunotherapy research, including peptide, dendritic, and DNA vaccines as well as T-cell therapy86.

TP53 p.(D281N) c.841G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response
to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair47. In unstressed cells, TP53 is kept inactive by
targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis89. Alterations in TP53 are required
for oncogenesis as they result in loss of protein function and gain of transforming potential90. Germline mutations in TP53 are
the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset
cancers91,92.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers
experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation
rates (60-90%)16,35,93,94,95,96. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense
mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R28216,35. Invariably, recurrent missense
mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes97,98,99,100. Alterations in TP53 are also
observed in pediatric cancers16,35. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19%
of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia,
2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases )16,35. Biallelic
loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731
cases) and leukemia (1 in 250 cases)16,35.

Potential relevance: The small molecule p53 reactivator, PC14586101 (2020), received a fast track designation by the FDA for
advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53
activity, compounds that induce synthetic lethality are also under clinical evaluation102,103. TP53 mutation are a diagnostic marker
of SHH-activated, TP53-mutant medulloblastoma104. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers
including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia
(ALL)4,105,106,107,108. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional
therapy including hematopoietic cell transplant109. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS,

Biomarker Descriptions (continued)
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with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease
presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system110.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B47. MHC (major histocompatibility complex)
class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by
cytotoxic T cells60. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M61. The classical MHC
class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11
amino acids, to the immune system to distinguish self from non-self62,63,64. Downregulation of MHC class I promotes tumor evasion of
the immune system, suggesting a tumor suppressor role for HLA-B65.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of
cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal
adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma16,35. Biallelic loss of
HLA-B is observed in 5% of DLBCL16,35.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

HDAC9 p.(Q631*) c.1891C>T

histone deacetylase 9

Background: The HDAC9 gene encodes the histone deacetylase 9 protein47. HDAC9 is part of the histone deacetylase (HDAC) family
consisting of 18 different isoforms categorized into four classes (I-IV)48. HDACs, including HDAC9, function by removing acetyl
groups on histone lysines resulting in chromatin condensation, transcriptional repression, and regulation of cell proliferation and
differentiation48,49. HDAC9 functions in neurological function, brain development, and maintains regulatory T-cell homeostasis48. HDAC
deregulation, including overexpression, is observed in a variety of tumor types, which is proposed to affect the expression of genes
involved in cellular regulation and promote tumor development48,50.

Alterations and prevalence: Somatic mutations in HDAC9 are observed in 16% of skin cutaneous melanoma, 8% of lung
adenocarcinoma, 7% of colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma and lung squamous cell
carcinoma, 4% of esophageal adenocarcinoma, 3% of esophageal adenocarcinoma, head and neck squamous cell carcinoma,
cholangiocarcinoma, and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, diffuse large B-cell lymphoma, cervical
squamous cell carcinoma, bladder urothelial carcinoma, pancreatic adenocarcinoma, and kidney chromophobe16,35. Biallelic deletion
of HDAC9 is observed in 2% of diffuse large B-cell lymphoma35. Alterations in HDAC9 are also observed in pediatric cancers35. Somatic
mutations in HDAC9 are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of embryonal tumors
(2 in 332 cases), B-lymphoblastic leukemia/lymphoma (1 in 252 cases), glioma (1 in 297 cases), leukemia (1 in 311 cases), bone
cancer (1 in 327 cases), and peripheral nervous system cancers (1 in 1158 cases)35. Biallelic deletion of HDAC9 is observed in 1% of
peripheral nervous system cancers (1 in 91 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (3 in 731 cases)35.

Potential relevance: Currently, no therapies are approved for HDAC9 aberrations. Although not approved for specific HDAC2 alterations,
the pan-HDAC inhibitor vorinostat51 (2006) is approved for the treatment of progressive, persistent, or recurrent cutaneous T-cell
lymphoma (CTCL) following treatment with two systemic therapies. The pan-HDAC inhibitor, romidepsin52 (2009), is approved for the
treatment of CTCL and peripheral T-cell lymphoma (PTCL) having received at least one prior systemic therapy. The pan-HDAC inhibitor,
belinostat53 (2014), is approved for the treatment of relapsed or refractory PTCL. The FDA granted fast track designation to the pan-
HDAC inhibitor, panobinostat54 (2024), for the treatment of recurrent glioblastoma.

Biomarker Descriptions (continued)
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Alerts Informed By Public Data Sources

Current FDA Information
 
 Contraindicated  Not recommended  Resistance  Breakthrough  Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

 

 elzovantinib

Cancer type: Gastric Cancer,
Gastroesophageal Junction Adenocarcinoma

Variant class: MET amplification

Supporting Statement:

The FDA has granted Fast Track designation to the MET/CSF1R/SRC small molecule inhibitor, elzovantinib (TPX-0022), for
MET amplified advanced or metastatic gastric cancer, including gastroesophageal junction adenocarcinoma (GEJ) after prior
chemotherapy.

Reference:

https://www.sec.gov/Archives/edgar/data/1595893/000156459021042621/tptx-ex991_20.htm
 

MET amplification

 

 
ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5,
BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,
DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3,
FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4,
IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B,
MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1,
PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,
PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO,
SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1,
USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of DNA Sequence Variants

 

 
ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF,
ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1,
BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1,
CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC,
CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,
DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,
ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19,
FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2,
HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5,
KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1,
MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6,
MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS,
NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6,
PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D,
RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,
RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Genes Assayed for the Detection of Copy Number Variations

 

Genes Assayed
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TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1,
YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Copy Number Variations (continued)

 

 
AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR,
FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB,
PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed for the Detection of Fusions

 

 
ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2,
ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276,
CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF,
CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1,
EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1,
JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1,
MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1,
NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1,
PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50,
RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C,
RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,
SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14,
TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Genes Assayed with Full Exon Coverage

 

Genes Assayed (continued)

 

 
 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

capmatinib      (II/III)

crizotinib      (II)

tepotinib      (II)

cabozantinib      (II)

bozitinib      (I/II)

MCLA-129      (I/II)

ANS-014004      (I)

ST-1898      (I)

talazoparib, crizotinib      (I)

TSN-084      (I)

MET amplification

 

Relevant Therapy Summary

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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 In this cancer type  In other cancer type  In this cancer type and other cancer types  No evidence
 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

olaparib, pembrolizumab      (II)

pamiparib, tislelizumab      (II)

senaparib, IMP-9064      (I/II)

ATM deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

olaparib      (II)

olaparib, pembrolizumab      (II)

pamiparib, tislelizumab      (II)

BRCA1 deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pamiparib, tislelizumab      (II)

CDK12 deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pamiparib, tislelizumab      (II)

CHEK1 deletion

 

Relevant Therapy FDA NCCN EMA ESMO Clinical Trials*

pamiparib, tislelizumab      (II)

RAD51D deletion

 

Relevant Therapy Summary (continued)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

 

Disclaimer: The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. The data version is 2025.10(006).
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Gene/Genomic Alteration Finding

LOH percentage 25.2%
BRCA1 CNV, CN:1.0
BRCA1 LOH, 17q21.31(41197602-41276231)x1
ATM CNV, CN:1.0
ATM LOH, 11q22.3(108098341-108236285)x1
CDK12 CNV, CN:1.0
CDK12 LOH, 17q12(37618286-37687611)x1
CHEK1 CNV, CN:1.0
CHEK1 LOH, 11q24.2(125496639-125525271)x1
RAD51D CNV, CN:1.0
RAD51D LOH, 17q12(33427950-33446720)x1

HRR Details

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1,
BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and
designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The
data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information
was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current
as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was
sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-
to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website
by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/
ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in
order of potential clinical significance but not for predicted efficacy of the therapies.
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