

Patient Name: 구광서
Gender: M
Sample ID: N25-333

Primary Tumor Site: skin
Collection Date: 20251125

Sample Cancer Type: Melanoma

Table of Contents

Variant Details	2
Biomarker Descriptions	3
Alert Details	10
Relevant Therapy Summary	11

Report Highlights

6 Relevant Biomarkers
3 Therapies Available
16 Clinical Trials

Relevant Melanoma Findings

Gene	Finding	Gene	Finding
BRAF	None detected	NTRK2	None detected
KIT	None detected	NTRK3	None detected
NRAS	None detected	RET	None detected
NTRK1	None detected	ROS1	None detected

Genomic Alteration	Finding
Tumor Mutational Burden	10.42 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	MET amplification MET proto-oncogene, receptor tyrosine kinase Locus: chr7:116339789	None*	capmatinib crizotinib tepotinib	11
IIC	ATM deletion ATM serine/threonine kinase Locus: chr11:108098341	None*	None*	5
IIC	BRCA1 deletion BRCA1, DNA repair associated Locus: chr17:41197602	None*	None*	3
IIC	CDK12 deletion cyclin dependent kinase 12 Locus: chr17:37618286	None*	None*	1

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	<i>CHEK1 deletion</i> checkpoint kinase 1 Locus: chr11:125496639	None*	None*	1
IIC	<i>RAD51D deletion</i> RAD51 paralog D Locus: chr17:33427950	None*	None*	1

* Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Line of therapy: I: First-line therapy, II: Other line of therapy

Tier Reference: Li et al. *Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists*. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

CBL p.(Y371H) c.1111T>C, FGFR4 p.(D127H) c.379G>C, Microsatellite stable, NF1 p.(W221) c.662G>A, TERT c.-146C>T, TP53 p.(D281N) c.841G>A, HLA-B deletion, HDAC9 p.(Q631*) c.1891C>T, Tumor Mutational Burden*

Variant Details

DNA Sequence Variants							
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
CBL	p.(Y371H)	c.1111T>C	COSM34052	chr11:119148891	19.26%	NM_005188.4	missense
FGFR4	p.(D127H)	c.379G>C	.	chr5:176517769	53.77%	NM_213647.3	missense
NF1	p.(W221*)	c.662G>A	.	chr17:29508735	17.83%	NM_001042492.3	nonsense
TERT	p.(?)	c.-146C>T	COSM1716559	chr5:1295250	6.00%	NM_198253.3	unknown
TP53	p.(D281N)	c.841G>A	COSM43596	chr17:7577097	24.46%	NM_000546.6	missense
HDAC9	p.(Q631*)	c.1891C>T	.	chr7:18767362	8.36%	NM_178425.3	nonsense
NRXN1	p.(P1122S)	c.3364C>T	.	chr2:50692580	35.19%	NM_004801.5	missense
PARD3B	p.(Q152H)	c.456G>T	.	chr2:205912365	53.70%	NM_152526.6	missense
HLA-B	p.([T118I;L119I])	c.353_355delCCCGinsT CA	.	chr6:31324208	100.00%	NM_005514.8	missense, missense
PXDNL	p.(E437Q)	c.1309G>C	.	chr8:52361619	18.38%	NM_144651.5	missense
PXDNL	p.(E433Q)	c.1297G>C	.	chr8:52361631	18.39%	NM_144651.5	missense
C8orf89	p.(Q66*)	c.196C>T	.	chr8:74169293	44.26%	NM_001243237.1	nonsense
CYP2C9	p.(S365N)	c.1094G>A	.	chr10:96741072	7.59%	NM_000771.4	missense
SYT10	p.(D479N)	c.1435G>A	.	chr12:33532832	14.69%	NM_198992.4	missense
TRHDE	p.(A775T)	c.2323G>A	.	chr12:73012672	13.04%	NM_013381.3	missense
PARP4	p.(?)	c.3285_3285+5delinsA GT	.	chr13:25021149	100.00%	NM_006437.4	unknown
ERCC4	p.(L151F)	c.451C>T	.	chr16:14020480	14.45%	NM_005236.3	missense
PRDM7	p.(?)	c.194-3C>T	.	chr16:90141434	9.18%	NM_001098173.2	unknown

Variant Details (continued)

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
MET	chr7:116339789	8.2	2.55
ATM	chr11:108098341	1	0.93
BRCA1	chr17:41197602	1	0.95
CDK12	chr17:37618286	1	0.92
CHEK1	chr11:125496639	1	0.92
RAD51D	chr17:33427950	1	0.99
HLA-B	chr6:31322252	0.42	0.6

Biomarker Descriptions

MET amplification

MET proto-oncogene, receptor tyrosine kinase

Background: The MET gene encodes the MET proto-oncogene, which encodes a receptor tyrosine kinase for the hepatocyte growth factor (HGF) protein, which is expressed by mesenchymal cells⁴⁷. MET is expressed as multiple isoforms with transcript variant 1 (NM_001127500.3) encoding a 1408 amino acid protein and transcript variant 2 (NM_000245.4) encoding a 1390 amino acid protein, both of which possess an intact protein kinase domain⁴⁷. Ubiquitin-dependent proteolysis is responsible for regulating the steady-state level of the MET protein via recognition of the tyrosine phosphorylation site Y1003(NM_000245.4), sometimes referred to as Y1021 (NM_001127500.3), in the MET Cbl-binding domain within the juxtamembrane region^{133,134,135}. Growth factor signaling leads to MET dimerization and subsequent initiation of downstream effectors, including those involved in the RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways, which regulate cell migration, proliferation, and survival^{136,137}.

Alterations and prevalence: Somatic mutations in MET are observed in 10% of uterine corpus endometrial carcinoma, 9% of skin cutaneous melanoma, 8% of kidney renal papillary cell carcinoma (PRCC), 4% of lung adenocarcinoma, colorectal adenocarcinoma, bladder urothelial carcinoma, and uterine carcinosarcoma, and 2% of diffuse large B-cell lymphoma, esophageal adenocarcinoma, glioblastoma multiforme, lung squamous cell carcinoma, stomach adenocarcinoma, and sarcoma^{16,35}. Recurrent somatic mutations fall into two classes, mutations in the MET kinase domain, which are uncommon, and splice-site mutations affecting exon 14¹³⁸. Recurrent kinase domain mutations are observed in PRCC and include M1250T, H1094Y, and V1070E (NM_000245.4)^{16,35,138}. Mutation of the Y1003 phosphorylation site is reported in approximately 2% of MET altered lung cancer¹³⁹. In contrast, splice-site mutations flanking exon 14 are observed in 3-4% of all non-small cell lung cancer (NSCLC)¹⁴⁰. These mutations include canonical splice site mutations affecting exon 14 and deletions that extend into the splicing motifs within intron 13^{139,141}. Such mutations disrupt splicing leading to the formation of an alternative transcript that joins exon 13 directly to exon 15 and skips exon 14 entirely. The MET exon 14 skipping transcript lacks the juxtamembrane domain that contains the recognition motif for ubiquitin-dependent proteolysis and thus leads to a marked increase in the steady-state level of the MET protein¹⁴². MET exon 14 skipping mutations act as oncogenic drivers in lung cancer mutually exclusive to activating mutations in EGFR and KRAS and other oncogenic fusions such as ALK and ROS1^{141,143,144}. MET amplification is observed in 3% of esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, stomach adenocarcinoma, and glioblastoma multiforme, and 2% of lung adenocarcinoma, liver hepatocellular carcinoma, bladder urothelial carcinoma, diffuse large B-cell lymphoma, kidney renal papillary cell carcinoma, skin cutaneous melanoma, sarcoma, and kidney chromophobe^{16,35}. Recurrent MET fusions, although infrequent, are observed in adult and pediatric glioblastoma, papillary renal cell carcinoma, lung cancer, liver cancer, thyroid cancer, and melanoma^{145,146,147}. MET alterations are believed to be enriched in late-stage cancers where they drive tumor progression and metastasis^{148,149,150}. Alterations in MET are rare in pediatric cancers^{16,35}. Somatic mutations are observed in less than 1% of embryonal tumors (3 in 332 cases), bone cancer (2 in 327 cases), glioma (1 in 297 cases), leukemia (1 in 354 cases), peripheral nervous system cancers (2 in 1158 cases), and Wilms tumor (1 in 710 cases)^{16,35}. Amplification of MET is observed in less than 1% of Wilms tumor (1 in 136 cases) and B-lymphoblastic leukemia/lymphoma (3 in 731 cases)^{16,35}.

Potential relevance: In 2020, the FDA granted accelerated approval to capmatinib¹⁵¹ for NSCLC harboring MET exon 14 skipping positive as detected by an FDA-approved test. The kinase inhibitor, tepotinib¹⁵², is also approved (2021) for MET exon 14 skipping mutations in NSCLC. MET exon 14 skipping mutations confer sensitivity to approved kinase inhibitors including crizotinib (2011), which is recommended for MET amplifications and exon 14 skipping mutations^{141,143,144,153}. The FDA also granted breakthrough therapy designation (2018) to crizotinib for metastatic non-small cell lung cancer (NSCLC) with MET exon 14 alterations with disease progression on or after platinum-based chemotherapy¹⁵⁴. MET amplification has been observed to mediate resistance to EGFR

Biomarker Descriptions (continued)

tyrosine kinase inhibitors (TKIs)^{155,156,157,158,159}. The FDA has granted fast track designation (2021) to the MET/CSF1R/SRC small molecule inhibitor, elzovantinib (TPX-0022)¹⁶⁰, for MET amplified advanced or metastatic gastric cancer and gastroesophageal junction adenocarcinoma (GEJ) after prior chemotherapy. Tepotinib has also been recommended for treatment of NSCLC with high-level MET amplification¹⁵³. The MET inhibitor savolitinib is also under investigation, with results from a phase II clinical trial showing increased progression-free survival in patients with advanced PRCC who had MET alterations compared to those with MET-independent PRCC¹⁶¹. MET amplification is a diagnostic marker of infant-type hemispheric glioma^{162,163}.

ATM deletion

ATM serine/threonine kinase

Background: The ATM gene encodes a serine/threonine kinase that belongs to the phosphatidylinositol-3-kinase related kinases (PIKKs) family of genes that also includes ATR and PRKDC (also known as DNA-PKc)⁷¹. ATM and ATR act as master regulators of DNA damage response. Specifically, ATM is involved in double-stranded break (DSB) repair while ATR is involved in single-stranded DNA (ssDNA) repair⁷². ATM is recruited to the DNA damage site by the MRE11/RAD50/NBN (MRN) complex that senses DSB^{72,73}. Upon activation, ATM phosphorylates several downstream proteins such as the NBN, MDC1, BRCA1, CHK2 and TP53BP1 proteins⁷⁴. ATM is a tumor suppressor gene and loss of function mutations in ATM are implicated in the BRCAneSS phenotype, which is characterized by a defect in homologous recombination repair (HRR), mimicking BRCA1 or BRCA2 loss^{69,75}. Germline mutations in ATM often result in Ataxia-telangiectasia, a hereditary disease also referred to as DNA damage response syndrome that is characterized by chromosomal instability⁷⁶.

Alterations and prevalence: Recurrent somatic mutations in ATM are observed in 17% of endometrial carcinoma, 15% of undifferentiated stomach adenocarcinoma, 13% of bladder urothelial carcinoma, 12% of colorectal adenocarcinoma, 9% of melanoma as well as esophagogastric adenocarcinoma and 8% of non-small cell lung cancer^{16,35}.

Potential relevance: The PARP inhibitor, olaparib³⁹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes ATM. Additionally, talazoparib⁴¹ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes ATM. Consistent with other genes associated with the BRCAneSS phenotype, ATM mutations may aid in selecting patients likely to respond to PARP inhibitors^{75,77,78}. Specifically, in a phase II trial of metastatic, castration-resistant prostate cancer, four of six patients with germline or somatic ATM mutations demonstrated clinical responses to olaparib⁷⁹. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁶, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

BRCA1 deletion

BRCA1, DNA repair associated

Background: The breast cancer early onset gene 1 (BRCA1) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged DNA^{21,22}. Specifically, BRCA1/2 are required for the repair of chromosomal double strand breaks (DSBs) which are highly unstable and compromise genome integrity^{21,22}. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast and ovarian cancer and in men for breast and prostate cancer^{23,24,25}. For individuals diagnosed with inherited pathogenic or likely pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian cancer by 70 years was 20-48%^{23,26}.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer, 5-10% of breast cancer, and 1-4% of prostate cancer^{27,28,29,30,31,32,33,34}. Somatic alterations in BRCA1 are observed in 5-10% of uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, diffuse large B-cell lymphoma, and cervical squamous cell carcinoma, 3-4% of lung squamous cell carcinoma, lung adenocarcinoma, stomach adenocarcinoma, ovarian serous cystadenocarcinoma, colorectal adenocarcinoma, and breast invasive carcinoma, and 2% of head and neck squamous cell carcinoma and glioblastoma multiforme^{16,35}.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)³⁶. Inhibitors targeting PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells^{37,38}. Consequently, several PARP inhibitors have been FDA approved for BRCA1/2-mutated cancers. Olaparib³⁹ (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib³⁹ is approved

Biomarker Descriptions (continued)

(2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib⁴⁰ is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and ovarian cancer. Talazoparib⁴¹ (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Additionally, talazoparib⁴¹ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes BRCA1. Niraparib⁴² (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib in combination with abiraterone acetate⁴³ received FDA approval (2023) for the treatment of deleterious or suspected deleterious BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported⁴⁴. One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality⁴⁵. In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁶, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and genomic instability.

CDK12 deletion

cyclin dependent kinase 12

Background: CDK12 encodes the cyclin-dependent kinase 12 protein and is required for the maintenance of genomic stability^{66,67,68}. CDK12 phosphorylates RNA polymerase II and is a regulator of transcription elongation and expression of DNA repair genes^{66,67,68,69,70}. Alterations in CDK12 impair the transcription of homologous recombination repair (HRR) genes such as BRCA1, ATR, FANCI, and FANCD2, contributing to a BRCAnezz phenotype^{68,69}. CDK12 is a tumor suppressor gene and loss of function mutations are observed in various solid tumors⁷⁰. However, observations of CDK12 amplification and overexpression in breast cancer indicate that it could also function as an oncogene⁷⁰.

Alterations and prevalence: Somatic alterations of CDK12 include mutations and amplification. Missense and truncating mutations in CDK12 are observed in 8% of undifferentiated stomach adenocarcinoma, 7% of bladder urothelial, and 6% endometrial carcinoma^{16,47}. CDK12 is amplified in 9% of esophagogastric adenocarcinoma and invasive breast carcinoma, 8% of undifferentiated stomach adenocarcinoma, and 3% of bladder urothelial and endometrial carcinoma^{16,47}.

Potential relevance: The PARP inhibitor, olaparib³⁹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CDK12. Additionally, talazoparib⁴¹ in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CDK12. Consistent with other genes associated with homologous recombination repair, CDK12 loss may aid in selecting patients likely to respond to PARP inhibitors^{69,70}. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁶, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CHEK1 deletion

checkpoint kinase 1

Background: The CHEK1 gene encodes the checkpoint kinase 1 protein and belongs to a family of serine/threonine checkpoint kinases, that also includes CHEK2⁴⁷. Checkpoint kinases play an important role in S phase and G2/M transition and DNA damage induced cell cycle arrest⁵⁵. CHEK1 is a tumor suppressor and it interacts with proteins involved in transcription regulation, cell-cycle arrest, and DNA repair including homologous recombination repair (HRR)^{56,57}. Upon DNA damage, CHEK1 is phosphorylated and activated by DNA damage repair proteins ATM and ATR⁵⁶. Activated CHEK1 subsequently phosphorylates and negatively regulates downstream proteins such as CDC25A thereby slowing or stalling DNA replication^{56,58}.

Alterations and prevalence: Recurrent somatic alterations of CHEK1 include mutations and copy number loss. Somatic mutations of CHEK1 are observed in 3% of endometrial carcinoma, 2% of non-small cell lung cancer and 1% of cervical squamous carcinoma cases^{16,59}. CHEK1 copy number loss occurs in 10% of seminoma, 8% of non-seminomatous germ cell tumor, 5% of ocular melanoma, and 3% of melanoma cases^{16,59}.

Potential relevance: The PARP inhibitor, olaparib³⁹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK1. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁶, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

Biomarker Descriptions (continued)

RAD51D deletion

RAD51 paralog D

Background: The RAD51D gene encodes the RAD51 paralog D protein, a member of the RAD51 recombinase family that also includes RAD51, RAD51B (RAD51L1), RAD51C (RAD51L2), XRCC2, and XRCC3 paralogs. The RAD51 family proteins are involved in homologous recombination repair (HRR) and DNA repair of double-strand breaks (DSB)⁸⁰. RAD51D associates with other RAD51 paralogs to form RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex⁸¹. The BCDX2 complex binds single- and double-stranded DNA to hydrolyze ATP⁸². RAD51D is a tumor suppressor gene. Loss of function mutations in RAD51D are implicated in the BRCAness phenotype, which is characterized by a defect in HRR, mimicking BRCA1 or BRCA2 loss^{69,75}. Germline point mutations in RAD51D are implicated in non-BRCA2 associated breast, ovarian, and colorectal cancer⁸³.

Alterations and prevalence: Somatic mutations in RAD51D are rare but have been reported in 1-2% of uterine cancer¹⁶.

Potential relevance: The PARP inhibitor, olaparib³⁹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes RAD51D. Additionally, consistent with other genes associated with the BRCAness phenotype, RAD51D mutations may aid in selecting patients likely to respond to PARP inhibitors⁷⁵. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁶, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

CBL p.(Y371H) c.1111T>C

Cbl proto-oncogene

Background: The CBL gene encodes the casitas B-lineage lymphoma (CBL) ubiquitin ligase, a member of the ubiquitin ligase (E3) protein family that also includes CBL-b and CBL-c⁷. CBL proteins are characterized by their highly conserved N-terminal tyrosine kinase binding (TKB) domain and RING finger (RF) catalytic domain which are directly involved in the regulation of receptor tyrosine kinase (RTK) signaling^{7,8}. Upon recognition of an activated RTK via its TKB domain, CBL mediates the transfer of ubiquitin from the ubiquitin-conjugating enzyme (E2) via its RF domain, consequently targeting the RTK for proteasome degradation. CBL can also function as an adaptor protein via recruitment of signaling molecules to active RTKs⁸. CBL is the target of genetic aberrations, including missense mutations and translocations, which can lead to oncogenic transformation in hematological malignancies as well as solid tumors^{8,9,10,11}. Mutations in CBL often result in a loss of E3 ligase activity, thereby preventing proteasome-mediated RTK degradation, which supports the role of CBL as a tumor suppressor gene⁹. However, CBL mutants often maintain their adapter function, contributing to their transforming potential and suggesting a simultaneous oncogenic role for CBL in cancer⁸. Hereditary mutations in CBL lead to constitutive activation of RAS and MAPK pathways resulting in genetic disorders known as RASopathies which can lead to increased cancer risk⁴.

Alterations and prevalence: Genetic alterations in CBL were first recognized in acute myeloid leukemia (AML) as a result of an interstitial deletion leading to MLL:CBL fusion^{12,13}. However, fusions involving CBL are relatively rare. Aberrations in CBL most often involve missense mutations which commonly cluster in the linker region or RF domain corresponding to exons 8 and 9^{8,9}. Such mutations lead to disruption of E3 ligase activity and have been reported in systemic mastocytosis (SM), 1-3% of de novo AML, 10% of secondary AML, 8% of atypical AML, and 10-15% of juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML)^{8,14,15,16,17,18,19}. Mutations in CBL have also been reported in 1-6% of melanomas, lung, stomach, colorectal, esophageal, and uterine cancers^{11,16}.

Potential relevance: Mutations in CBL confer adverse prognosis in SM and have been shown to be independently predictive of inferior survival^{15,20}.

FGFR4 p.(D127H) c.379G>C

fibroblast growth factor receptor 4

Background: The FGFR4 gene encodes fibroblast growth receptor 4, a member of the fibroblast growth-factor receptor (FGFR) family that also includes FGFR1, 2, and 3. These proteins are single-transmembrane receptors composed of three extracellular immunoglobulin (Ig)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{164,165,166}. FGFR4 selectively binds the ligand FGF19, wherein FGF19-mediated aberrant signaling has been identified as an oncogenic driver in hepatocellular carcinoma^{167,168}.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions. The majority of these aberrations result in gain of function¹⁶⁹. FGFR4 exhibits amplification in up to 15% of clear-cell renal cell carcinomas, with somatic mutations observed in up to 6% of melanomas and uterine cancer^{16,35}.

Biomarker Descriptions (continued)

Potential relevance: Currently, no targeted therapies are approved for FGFR4 aberrations. However, FDA-approved multi-kinase inhibitors known to inhibit FGFR family members, including regorafenib (2013), ponatinib (2012), lenvatinib (2015), nintedanib (2014), and pazopanib (2009), have demonstrated anti-tumor activity in select cancer types harboring FGFR alterations^{170,171,172,173,174,175,176}. Selective, irreversible FGFR4 inhibitors, including BLU-554, have undergone clinical trial evaluation. In a phase-I clinical study of BLU-554 in patients with FGF19-positive advanced hepatocellular carcinoma, the overall response rate was 17%¹⁷⁷.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹¹¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{112,113}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2¹¹⁴. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹¹⁵. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹¹⁵. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{116,117,118,119,120}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹¹³. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{112,113,117,121}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{112,113,122,123}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{122,123}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹²⁴ (2014) and nivolumab¹²⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹²⁴ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹²⁴. Dostarlimab¹²⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{118,127}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹²⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{118,129,130}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹³⁰. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{131,132}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{131,132}.

NF1 p.(W221*) c.662G>A

neurofibromin 1

Background: The NF1 gene encodes the neurofibromin protein, a tumor suppressor within the Ras-GTPase-activating protein (GAP) family¹. NF1 regulates cellular levels of activated RAS proteins including KRAS, NRAS, and HRAS, by down regulating the active GTP-bound state to an inactive GDP-bound state^{1,2}. Inactivation of NF1 due to missense mutations results in sustained intracellular levels of RAS-GTP and prolonged activation of the RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways leading to increased proliferation and survival¹. Constitutional mutations in NF1 are associated with neurofibromatosis type 1, a RASopathy autosomal dominant tumor syndrome with predisposition to myeloid malignancies such as juvenile myelomonocytic leukemia (JMML) and myeloproliferative neoplasms (MPN)^{1,3,4}.

Alterations and prevalence: NF1 aberrations include missense mutations, insertions, indels, aberrant splicing, microdeletions, and rearrangements¹. The majority of NF1 mutated tumors exhibit biallelic inactivation of NF1, supporting the 'two-hit' hypothesis of carcinogenesis^{1,5}. Somatic mutations in NF1 have been identified in over 30% of ovarian serous carcinoma, 12-30% of melanoma, 10-20% of chronic myelomonocytic leukemia (CMML), and 7% of acute myeloid leukemia (AML)^{1,4}.

Potential relevance: Currently, no therapies are approved for NF1 aberrations. Somatic mutation of NF1 is useful as an ancillary diagnostic marker for malignant peripheral nerve sheath tumor (MPNST)⁶.

Biomarker Descriptions (continued)

TERT c.-146C>T

telomerase reverse transcriptase

Background: The TERT gene encodes telomerase reverse transcriptase, a component of the telomerase core enzyme along with the internal telomerase RNA template (TERC)⁸⁴. TERT is repressed in most differentiated cells, resulting in telomerase silencing⁸⁴. In cancer, telomerase reactivation is known to contribute to cellular immortalization^{84,85}. Increased TERT expression results in telomerase activation, allowing for unlimited cancer cell proliferation through telomere stabilization⁸⁴. In addition to its role in telomere maintenance, TERT has RNA-dependent RNA polymerase activity, which, when deregulated, can promote oncogenesis by facilitating mitotic progression and cancer cell stemness⁸⁴.

Alterations and prevalence: Somatic mutations are observed in 4% of skin cutaneous melanoma and uterine corpus endometrial carcinoma, 3% of kidney renal papillary cell carcinoma, and 2% of pancreatic adenocarcinoma, stomach adenocarcinoma, and sarcoma^{16,35}. Additionally, TERT promoter mutations causing upregulation are observed in many cancer types, especially non-aural cutaneous melanoma (80% of cases), and glioblastoma (70% of cases)⁸⁵. Specifically, TERT promoter mutations at C228T and C250T are recurrent and result in de novo binding sites for ETS transcription factors, leading to enhanced TERT transcription⁸⁴. Amplification of TERT is observed in 15% of lung squamous cell carcinoma, 14% of esophageal adenocarcinoma, 13% of adrenocortical carcinoma and lung adenocarcinoma, and 10% of bladder urothelial carcinoma, 9% of ovarian serous cystadenocarcinoma, 6% of cervical squamous cell carcinoma, 5% of liver hepatocellular carcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, head and neck squamous cell carcinoma, 4% of uterine carcinosarcoma, 3% of uterine corpus endometrial carcinoma, breast invasive carcinoma, and 2% of diffuse large B-cell lymphoma^{16,35}. TERT is overexpressed in over 85% of tumors and is considered a universal tumor associated antigen⁸⁶. Alterations in TERT are rare in pediatric cancers^{16,35}. Somatic mutations are observed in less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (2 in 297 cases), bone cancer (1 in 327 cases), and Wilms tumor (1 in 710 cases)^{16,35}. TERT amplification is observed in 1-2% of peripheral nervous system cancers (2 in 91 cases), leukemia (2 in 250 cases), and B-lymphoblastic leukemia/lymphoma (5 in 731 cases)^{16,35}.

Potential relevance: Currently, no therapies are approved for TERT aberrations. TERT promoter mutations are diagnostic of oligodendrogloma IDH-mutant with 1p/19q co-deletion, while the absence of promoter mutations combined with an IDH mutation is characteristic of astrocytoma^{87,88}. Due to its immunogenicity and near-universal expression on cancer cells, TERT has been a focus of immunotherapy research, including peptide, dendritic, and DNA vaccines as well as T-cell therapy⁸⁶.

TP53 p.(D281N) c.841G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair⁴⁷. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁸⁹. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential⁹⁰. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{91,92}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{16,35,93,94,95,96}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{16,35}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{97,98,99,100}. Alterations in TP53 are also observed in pediatric cancers^{16,35}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{16,35}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{16,35}.

Potential relevance: The small molecule p53 reactivator, PC14586¹⁰¹ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{102,103}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma¹⁰⁴. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{4,105,106,107,108}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant¹⁰⁹. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS,

Biomarker Descriptions (continued)

with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system¹¹⁰.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B⁴⁷. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁶⁰. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M⁶¹. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{62,63,64}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁶⁵.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{16,35}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{16,35}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

HDAC9 p.(Q631*) c.1891C>T

histone deacetylase 9

Background: The HDAC9 gene encodes the histone deacetylase 9 protein⁴⁷. HDAC9 is part of the histone deacetylase (HDAC) family consisting of 18 different isoforms categorized into four classes (I-IV)⁴⁸. HDACs, including HDAC9, function by removing acetyl groups on histone lysines resulting in chromatin condensation, transcriptional repression, and regulation of cell proliferation and differentiation^{48,49}. HDAC9 functions in neurological function, brain development, and maintains regulatory T-cell homeostasis⁴⁸. HDAC deregulation, including overexpression, is observed in a variety of tumor types, which is proposed to affect the expression of genes involved in cellular regulation and promote tumor development^{48,50}.

Alterations and prevalence: Somatic mutations in HDAC9 are observed in 16% of skin cutaneous melanoma, 8% of lung adenocarcinoma, 7% of colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma and lung squamous cell carcinoma, 4% of esophageal adenocarcinoma, 3% of esophageal adenocarcinoma, head and neck squamous cell carcinoma, cholangiocarcinoma, and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, diffuse large B-cell lymphoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, pancreatic adenocarcinoma, and kidney chromophobe^{16,35}. Biallelic deletion of HDAC9 is observed in 2% of diffuse large B-cell lymphoma³⁵. Alterations in HDAC9 are also observed in pediatric cancers³⁵. Somatic mutations in HDAC9 are observed in 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and less than 1% of embryonal tumors (2 in 332 cases), B-lymphoblastic leukemia/lymphoma (1 in 252 cases), glioma (1 in 297 cases), leukemia (1 in 311 cases), bone cancer (1 in 327 cases), and peripheral nervous system cancers (1 in 1158 cases)³⁵. Biallelic deletion of HDAC9 is observed in 1% of peripheral nervous system cancers (1 in 91 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (3 in 731 cases)³⁵.

Potential relevance: Currently, no therapies are approved for specific HDAC2 alterations. Although not approved for specific HDAC2 alterations, the pan-HDAC inhibitor vorinostat⁵¹ (2006) is approved for the treatment of progressive, persistent, or recurrent cutaneous T-cell lymphoma (CTCL) following treatment with two systemic therapies. The pan-HDAC inhibitor, romidepsin⁵² (2009), is approved for the treatment of CTCL and peripheral T-cell lymphoma (PTCL) having received at least one prior systemic therapy. The pan-HDAC inhibitor, belinostat⁵³ (2014), is approved for the treatment of relapsed or refractory PTCL. The FDA granted fast track designation to the pan-HDAC inhibitor, panobinostat⁵⁴ (2024), for the treatment of recurrent glioblastoma.

Alerts Informed By Public Data Sources

Current FDA Information

 Contraindicated

 Not recommended

 Resistance

 Breakthrough

 Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

MET amplification

elzovantinib

Cancer type: Gastric Cancer, Gastroesophageal Junction Adenocarcinoma

Variant class: MET amplification

Supporting Statement:

The FDA has granted Fast Track designation to the MET/CSF1R/SRC small molecule inhibitor, elzovantinib (TPX-0022), for MET amplified advanced or metastatic gastric cancer, including gastroesophageal junction adenocarcinoma (GEJ) after prior chemotherapy.

Reference:

https://www.sec.gov/Archives/edgar/data/1595893/000156459021042621/tptx-ex991_20.htm

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYD88L, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAKAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERF1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLC01B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSP02, RSP03, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

● In this cancer type ○ In other cancer type ● In this cancer type and other cancer types ✕ No evidence

MET amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
capmatinib	✕	○	✕	✕	● (II/III)
crizotinib	✕	○	✕	✕	● (II)
tepotinib	✕	○	✕	✕	● (II)
cabozantinib	✕	✕	✕	✕	● (II)
bozitinib	✕	✕	✕	✕	● (I/II)
MCLA-129	✕	✕	✕	✕	● (I/II)
ANS-014004	✕	✕	✕	✕	● (I)
ST-1898	✕	✕	✕	✕	● (I)
talazoparib, crizotinib	✕	✕	✕	✕	● (I)
TSN-084	✕	✕	✕	✕	● (I)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

● In this cancer type
 ○ In other cancer type
 ● In this cancer type and other cancer types
 ✗ No evidence

ATM deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
olaparib	✗	✗	✗	✗	● (II)
olaparib, pembrolizumab	✗	✗	✗	✗	● (II)
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)
senaparib, IMP-9064	✗	✗	✗	✗	● (I/II)

BRCA1 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
olaparib	✗	✗	✗	✗	● (II)
olaparib, pembrolizumab	✗	✗	✗	✗	● (II)
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)

CDK12 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)

CHEK1 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)

RAD51D deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	✗	✗	✗	✗	● (II)

* Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	25.2%
BRCA1	CNV, CN:1.0
BRCA1	LOH, 17q21.31(41197602-41276231)x1
ATM	CNV, CN:1.0
ATM	LOH, 11q22.3(108098341-108236285)x1
CDK12	CNV, CN:1.0
CDK12	LOH, 17q12(37618286-37687611)x1
CHEK1	CNV, CN:1.0
CHEK1	LOH, 11q24.2(125496639-125525271)x1
RAD51D	CNV, CN:1.0
RAD51D	LOH, 17q12(33427950-33446720)x1

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

1. Philpott et al. The NF1 somatic mutational landscape in sporadic human cancers. 2017 Jun 21;11(1):13. doi: 10.1186/s40246-017-0109-3. PMID: 28637487
2. Scheffzek et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. *Science*. 1997 Jul 18;277(5324):333-8. PMID: 9219684
3. Fioretos et al. Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. *Blood*. 1999 Jul 1;94(1):225-32. PMID: 10381517
4. NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 2.2025]
5. Brems et al. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. *Lancet Oncol*. 2009 May;10(5):508-15. PMID: 19410195
6. NCCN Guidelines® - NCCN-Soft Tissue Sarcoma [Version 1.2025]
7. Ryan et al. The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. *J. Biol. Chem.* 2010 Jul 30;285(31):23687-98. PMID: 20525694
8. Liyasova et al. Molecular pathways: cbl proteins in tumorigenesis and antitumor immunity-opportunities for cancer treatment. *Clin. Cancer Res.* 2015 Apr 15;21(8):1789-94. PMID: 25477533
9. Katzav et al. Mutations of c-Cbl in myeloid malignancies. *Oncotarget*. 2015 May 10;6(13):10689-96. PMID: 26028666
10. Kales et al. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. *Cancer Res.* 2010 Jun 15;70(12):4789-94. PMID: 20501843
11. Tan et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. *PLoS ONE*. 2010 Jan 29;5(1):e8972. PMID: 20126411
12. Tefferi. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. *Leukemia*. 2010 Jun;24(6):1128-38. PMID: 20428194
13. Fu et al. Identification of CBL, a proto-oncogene at 11q23.3, as a novel MLL fusion partner in a patient with de novo acute myeloid leukemia. *Genes Chromosomes Cancer*. 2003 Jun;37(2):214-9. PMID: 12696071
14. Traina et al. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. *PLoS ONE*. 2012;7(8):e43090. PMID: 22905207
15. Pardanani et al. ASXL1 and CBL mutations are independently predictive of inferior survival in advanced systemic mastocytosis. *Br. J. Haematol.* 2016 Nov;175(3):534-536. PMID: 26628266
16. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* 2013 Oct;45(10):1113-20. PMID: 24071849
17. Loh et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. *Blood*. 2009 Aug 27;114(9):1859-63. PMID: 19571318
18. Jankowska et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. *Blood*. 2011 Oct 6;118(14):3932-41. PMID: 21828135
19. Itzykson et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. *J. Clin. Oncol.* 2013 Jul 1;31(19):2428-36. PMID: 23690417
20. NCCN Guidelines® - NCCN-Systemic Mastocytosis [Version 1.2020]
21. Liu et al. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. *Breast Cancer Res.* 2002;4(1):9-13. PMID: 11879553
22. Jasin. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. *Oncogene*. 2002 Dec 16;21(58):8981-93. PMID: 12483514
23. Kuchenbaecker et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. *JAMA*. 2017 Jun 20;317(23):2402-2416. PMID: 28632866
24. Tai et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. *J. Natl. Cancer Inst.* 2007 Dec 5;99(23):1811-4. PMID: 18042939
25. Levy-Lahad et al. Cancer risks among BRCA1 and BRCA2 mutation carriers. *Br. J. Cancer*. 2007 Jan 15;96(1):11-5. PMID: 17213823
26. Chen et al. Penetrance of Breast and Ovarian Cancer in Women Who Carry a BRCA1/2 Mutation and Do Not Use Risk-Reducing Salpingo-Oophorectomy: An Updated Meta-Analysis. *JNCI Cancer Spectr.* 2020 Aug;4(4):pkaa029. PMID: 32676552
27. Petrucci et al. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. *GeneReviews® [Internet]*. PMID: 20301425
28. Pruthi et al. Identification and Management of Women With BRCA Mutations or Hereditary Predisposition for Breast and Ovarian Cancer. *Mayo Clin. Proc.* 2010 Dec;85(12):1111-20. PMID: 21123638

References (continued)

29. Walsh et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. *Proc. Natl. Acad. Sci. U.S.A.* 2011 Nov 1;108(44):18032-7. PMID: 22006311
30. Alsop et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. *J. Clin. Oncol.* 2012 Jul 20;30(21):2654-63. PMID: 22711857
31. Whittemore et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. *Cancer Epidemiol. Biomarkers Prev.* 2004 Dec;13(12):2078-83. PMID: 15598764
32. King et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. *Science.* 2003 Oct 24;302(5645):643-6. PMID: 14576434
33. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. *Br. J. Cancer.* 2000 Nov;83(10):1301-8. PMID: 11044354
34. Shao et al. A comprehensive literature review and meta-analysis of the prevalence of pan-cancer BRCA mutations, homologous recombination repair gene mutations, and homologous recombination deficiencies. *Environ Mol Mutagen.* 2022 Jul;63(6):308-316. PMID: 36054589
35. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012 May;2(5):401-4. PMID: 22588877
36. Hodgson et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. *Br. J. Cancer.* 2018 Nov;119(11):1401-1409. PMID: 30353044
37. Bryant et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. *Nature.* 2005 Apr 14;434(7035):913-7. PMID: 15829966
38. Farmer et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. *Nature.* 2005 Apr 14;434(7035):917-21. PMID: 15829967
39. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/208558s031lbl.pdf
40. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209115s013lbl.pdf
41. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/217439s003lbl.pdf
42. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/214876s003s004lbl.pdf
43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216793s000lbl.pdf
44. Barber et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. *J. Pathol.* 2013 Feb;229(3):422-9. PMID: 23165508
45. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. *DNA Repair (Amst.).* 2018 Nov;71:172-176. PMID: 30177437
46. <https://www.senhwabio.com//en/news/20220125>
47. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* 2016 Jan 4;44(D1):D733-45. PMID: 26553804
48. Falkenberg et al. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. *Nat Rev Drug Discov.* 2014 Sep;13(9):673-91. PMID: 25131830
49. Li et al. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. *Biomed Pharmacother.* 2016 Dec;84:284-290. PMID: 27665474
50. Li et al. HDACs and HDAC Inhibitors in Cancer Development and Therapy. *Cold Spring Harb Perspect Med.* 2016 Oct 3;6(10). PMID: 27599530
51. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021991s009lbl.pdf
52. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022393s017lbl.pdf
53. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/2062560rig1s006lbl.pdf
54. <https://biodexapharma.com/fast-track-designation-granted-to-mtx110-development-for-the-treatment-of-recurrent-glioblastoma/>
55. Patil et al. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. *Cell. Mol. Life Sci.* 2013 Nov;70(21):4009-21. PMID: 23508805
56. Bartek et al. Chk1 and Chk2 kinases in checkpoint control and cancer. *Cancer Cell.* 2003 May;3(5):421-9. PMID: 12781359
57. Huang et al. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. *Mol. Cancer Ther.* 2008 Jun;7(6):1440-9. PMID: 18566216
58. Zhang et al. Roles of Chk1 in cell biology and cancer therapy. *Int. J. Cancer.* 2014 Mar 1;134(5):1013-23. PMID: 23613359
59. Sen et al. CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. *Cancer Res.* 2017 Jul 15;77(14):3870-3884. PMID: 28490518

References (continued)

60. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. *Trends Biochem Sci.* PMID: 23849087
61. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. *Annu Rev Immunol.* 2013;31:529-61. PMID: 23298204
62. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. *Annu Rev Immunol.* 2015;33:169-200. PMID: 25493333
63. Parham. MHC class I molecules and KIRs in human history, health and survival. *Nat Rev Immunol.* 2005 Mar;5(3):201-14. PMID: 15719024
64. Sidney et al. HLA class I supertypes: a revised and updated classification. *BMC Immunol.* 2008 Jan 22;9:1. PMID: 18211710
65. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. *Cancers (Basel).* 2020 Jul 2;12(7). PMID: 32630675
66. Malgorzata et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. *Nat Commun.* 2019 Apr 15;10(1):1757. PMID: 30988284
67. Joshi et al. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. *J. Biol. Chem.* 2014 Mar 28;289(13):9247-53. PMID: 24554720
68. Blazek et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. *Genes Dev.* 2011 Oct 15;25(20):2158-72. PMID: 22012619
69. Lord et al. BRCAneSS revisited. *Nat. Rev. Cancer.* 2016 Feb;16(2):110-20. PMID: 26775620
70. Paculová et al. The emerging roles of CDK12 in tumorigenesis. . doi: 10.1186/s13008-017-0033-x. eCollection 2017. PMID: 29090014
71. Maréchal et al. DNA damage sensing by the ATM and ATR kinases. *Cold Spring Harb Perspect Biol.* 2013 Sep 1;5(9). PMID: 24003211
72. Matsuoka et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. *Science.* 2007 May 25;316(5828):1160-6. PMID: 17525332
73. Ditch et al. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. *Trends Biochem. Sci.* 2012 Jan;37(1):15-22. PMID: 22079189
74. Kozlov et al. Autophosphorylation and ATM activation: additional sites add to the complexity. *J. Biol. Chem.* 2011 Mar 18;286(11):9107-19. PMID: 21149446
75. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. *Endocr. Relat. Cancer.* 2016 Jun;23(6):R267-85. PMID: 27226207
76. Cynthia et al. Ataxia telangiectasia: a review. *Orphanet J Rare Dis.* 2016 Nov 25;11(1):159. PMID: 27884168
77. Gilardini et al. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. *CR.* PMID: 24252502
78. Pennington et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. *Clin. Cancer Res.* 2014 Feb 1;20(3):764-75. PMID: 24240112
79. Mateo et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. *N. Engl. J. Med.* 2015 Oct 29;373(18):1697-708. PMID: 26510020
80. Sullivan et al. RAD-ical New Insights into RAD51 Regulation. *Genes (Basel).* 2018 Dec 13;9(12). PMID: 30551670
81. Suwaki et al. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. *Semin. Cell Dev. Biol.* 2011 Oct;22(8):898-905. PMID: 21821141
82. Chun et al. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. *Mol. Cell. Biol.* 2013 Jan;33(2):387-95. PMID: 23149936
83. Godin et al. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. *Biochem. Cell Biol.* 2016 Oct;94(5):407-418. PMID: 27224545
84. Yuan et al. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. *Oncogene.* 2019 Aug;38(34):6172-6183. PMID: 31285550
85. Colebatch et al. TERT gene: its function and dysregulation in cancer. *J Clin Pathol.* 2019 Apr;72(4):281-284. PMID: 30696697
86. Mizukoshi et al. Telomerase-Targeted Cancer Immunotherapy. *Int J Mol Sci.* 2019 Apr 12;20(8). PMID: 31013796
87. NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2025]
88. Arita et al. TERT promoter mutation confers favorable prognosis regardless of 1p/19q status in adult diffuse gliomas with IDH1/2 mutations. *Acta Neuropathol Commun.* 2020 Nov 23;8(1):201. PMID: 33228806
89. Nag et al. The MDM2-p53 pathway revisited. *J Biomed Res.* 2013 Jul;27(4):254-71. PMID: 23885265

References (continued)

90. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. *Cancer Cell*. 2014 Mar 17;25(3):304-17. PMID: 24651012
91. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. *Cold Spring Harb Perspect Biol*. 2010 Jan;2(1):a001008. PMID: 20182602
92. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring Harb Perspect Med*. 2017 Apr 3;7(4). PMID: 28270529
93. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. *Nature*. 2012 Sep 27;489(7417):519-25. PMID: 22960745
94. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature*. 2015 Jan 29;517(7536):576-82. PMID: 25631445
95. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat. Genet*. 2016 Jun;48(6):607-16. PMID: 27158780
96. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. *Nature*. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
97. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. *Hum. Mutat*. 2002 Jun;19(6):607-14. PMID: 12007217
98. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. *Genes Cancer*. 2011 Apr;2(4):466-74. PMID: 21779514
99. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. *Oncogene*. 2007 Apr 2;26(15):2157-65. PMID: 17401424
100. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. *Hum. Mutat*. 2014 Jun;35(6):766-78. PMID: 24729566
101. <https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html>
102. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. *Front Oncol*. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
103. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. *Cell. Mol. Life Sci*. 2017 Nov;74(22):4171-4187. PMID: 28643165
104. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol*. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
105. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood*. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
106. NCCN Guidelines® - NCCN-Myeloproliferative Neoplasms [Version 2.2025]
107. NCCN Guidelines® - NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
108. NCCN Guidelines® - NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
109. NCCN Guidelines® - NCCN-B-Cell Lymphomas [Version 3.2025]
110. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. *Nat. Med*. 2020 Aug 3. PMID: 32747829
111. Lander et al. Initial sequencing and analysis of the human genome. *Nature*. 2001 Feb 15;409(6822):860-921. PMID: 11237011
112. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. *Front Oncol*. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
113. Nojadeh et al. Microsatellite instability in colorectal cancer. *EXCLI J*. 2018;17:159-168. PMID: 29743854
114. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. *Front Microbiol*. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
115. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. *Cancer Res*. 1998 Nov 15;58(22):5248-57. PMID: 9823339
116. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. *Cancer Res*. 2002 Jan 1;62(1):53-7. PMID: 11782358
117. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. *Carcinogenesis*. 2008 Apr;29(4):673-80. PMID: 17942460

References (continued)

118. NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]
119. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. *Dis. Markers.* 2004;20(4-5):199-206. PMID: 15528785
120. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. *Medicine (Baltimore).* 2015 Dec;94(50):e2260. PMID: 26683947
121. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. *J. Clin. Oncol.* 2019 Feb 1;37(4):286-295. PMID: 30376427
122. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. *Nat Commun.* 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
123. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO Precis Oncol.* 2017;2017. PMID: 29850653
124. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
125. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
126. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
127. NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]
128. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
129. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. *N. Engl. J. Med.* 2003 Jul 17;349(3):247-57. PMID: 12867608
130. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. *Ann. Oncol.* 2015 Jan;26(1):126-32. PMID: 25361982
131. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. *J Pers Med.* 2019 Jan 16;9(1). PMID: 30654522
132. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. *Cancer Treat. Rev.* 2019 Jun;76:22-32. PMID: 31079031
133. Peschard et al. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. *J. Biol. Chem.* 2004 Jul 9;279(28):29565-71. PMID: 15123609
134. Peschard et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. *Mol. Cell.* 2001 Nov;8(5):995-1004. PMID: 11741535
135. Abella et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. *Mol. Cell. Biol.* 2005 Nov;25(21):9632-45. PMID: 16227611
136. Sierra et al. c-MET as a potential therapeutic target and biomarker in cancer. *Ther Adv Med Oncol.* 2011 Nov;3(1 Suppl):S21-35. PMID: 22128285
137. Mo et al. Targeting MET in cancer therapy. *Chronic Dis Transl Med.* 2017 Sep;3(3):148-153. PMID: 29063069
138. Recondo et al. Targeting MET Dysregulation in Cancer. *Cancer Discov.* 2020 Jul;10(7):922-934. PMID: 32532746
139. Schrock et al. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations. *J Thorac Oncol.* 2016 Sep;11(9):1493-502. PMID: 27343443
140. Socinski et al. MET Exon 14 Skipping Mutations in Non-Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations. *JCO Precis Oncol.* 2021;5. PMID: 34036238
141. Frampton et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. *Cancer Discov.* 2015 Aug;5(8):850-9. PMID: 25971938
142. Pilotto et al. MET exon 14 juxtamembrane splicing mutations: clinical and therapeutic perspectives for cancer therapy. *Ann Transl Med.* 2017 Jan;5(1):2. doi: 10.21037/atm.2016.12.33. PMID: 28164087
143. Reungwetwattana et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The Why, the How, the Who, the Unknown, and the Inevitable. *Lung Cancer.* 2017 Jan;103:27-37. PMID: 28024693
144. Saffroy et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. *Oncotarget.* 2017 Jun 27;8(26):42428-42437. PMID: 28418914
145. Yeh et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. *Nat Commun.* 2015 May 27;6:7174. doi: 10.1038/ncomms8174. PMID: 26013381
146. Bao et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. *Genome Res.* 2014 Nov;24(11):1765-73. PMID: 25135958
147. Sebastian et al. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. *Nat. Med.* 2016 Nov;22(11):1314-1320. PMID: 27748748

References (continued)

148. Zeng et al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. *Cancer Lett.* 2008 Jul 8;265(2):258-69. PMID: 18395971
149. Tsugawa et al. Amplification of the c-met, c-erbB-2 and epidermal growth factor receptor gene in human gastric cancers: correlation to clinical features. *Oncology.* 1998 Sep-Oct;55(5):475-81. PMID: 9732228
150. Di et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. *Clin. Cancer Res.* 1995 Feb;1(2):147-54. PMID: 9815967
151. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/213591s011lbl.pdf
152. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/214096s003lbl.pdf
153. NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 8.2025]
154. [https://www\(pfizer.com/news/press-release/press-release-detail/pfizer_s_xalkori_crizotinib_receives_fda_breakthrough_therapy_designation_in_two_new_indications-0](https://www(pfizer.com/news/press-release/press-release-detail/pfizer_s_xalkori_crizotinib_receives_fda_breakthrough_therapy_designation_in_two_new_indications-0)
155. Bean et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. *Proc. Natl. Acad. Sci. U.S.A.* 2007 Dec 26;104(52):20932-7. PMID: 18093943
156. Chen et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. *Pathol Oncol Res.* 2009 Dec;15(4):651-8. doi: 10.1007/s12253-009-9167-8. Epub 2009 Apr 21. PMID: 19381876
157. Suda et al. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. *Clin. Cancer Res.* 2010 Nov 15;16(22):5489-98. PMID: 21062933
158. Zhang et al. Current mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and updated therapy strategies in human nonsmall cell lung cancer. *J Cancer Res Ther.* 2016 Dec;12(Supplement):C131-C137. PMID: 28230005
159. Nguyen et al. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. *Clin Lung Cancer.* 2009 Jul;10(4):281-9. PMID: 19632948
160. https://www.sec.gov/Archives/edgar/data/1595893/000156459021042621/tptx-ex991_20.htm
161. Choueiri et al. Biomarker-Based Phase II Trial of Savolitinib in Patients With Advanced Papillary Renal Cell Cancer. *J. Clin. Oncol.* 2017 Sep 10;35(26):2993-3001. PMID: 28644771
162. NCCN Guidelines® - NCCN-Pediatric Central Nervous System Cancers [Version 3.2025]
163. Park et al. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 2-Summary of Imaging Findings on Pediatric-Type Diffuse High-Grade Gliomas, Pediatric-Type Diffuse Low-Grade Gliomas, and Circumscribed Astrocytic Gliomas. *J Magn Reson Imaging.* 2023 Sep;58(3):690-708. PMID: 37069764
164. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. *Nat. Rev. Cancer.* 2017 May;17(5):318-332. PMID: 28303906
165. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. *Biochim. Biophys. Acta.* 2012 Apr;1823(4):850-60. PMID: 22273505
166. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. *Nat Commun.* 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
167. Repana et al. Targeting FGF19/FGFR4 Pathway: A Novel Therapeutic Strategy for Hepatocellular Carcinoma. *Diseases.* 2015 Oct 28;3(4):294-305. PMID: 28943626
168. Lu et al. Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Carcinoma Therapy: Advances and Prospects. *J. Med. Chem.* 2018 Nov 16. PMID: 30403487
169. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. *Clin. Cancer Res.* 2016 Jan 1;22(1):259-67. PMID: 26373574
170. Cha et al. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro. *Mol Oncol.* 2018 Jun;12(7):993-1003. PMID: 29573334
171. Chae et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. *Oncotarget.* 2017 Feb 28;8(9):16052-16074. PMID: 28030802
172. Porta et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs. *Crit. Rev. Oncol. Hematol.* 2017 May;113:256-267. PMID: 28427515
173. Gozgit et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. *Mol. Cancer Ther.* 2012 Mar;11(3):690-9. PMID: 22238366
174. Yamamoto et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. *Vasc Cell.* 2014 Sep 6;6:18. doi: 10.1186/2045-824X-6-18. eCollection 2014. PMID: 25197551

References (continued)

175. Kim et al. Pazopanib, a novel multitargeted kinase inhibitor, shows potent in vitro antitumor activity in gastric cancer cell lines with FGFR2 amplification. *Mol. Cancer Ther.* 2014 Nov;13(11):2527-36. PMID: 25249557
176. Hibi et al. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. *Cancer Sci.* 2016 Nov;107(11):1667-1676. PMID: 27581340
177. Kim et al. First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. *Cancer Discov.* 2019 Dec;9(12):1696-1707. PMID: 31575541