

삼광의료재단 서울특별시 서초구 바우뫼로41길 58 (양재동, 선화빌딩) 검사기관 11365200

Tel. 1661-5117 www.smlab.co.kr

Report Date: 19 Nov 2025 1 of 16

Patient Name: 이필영 Gender: M Sample ID: N25-290 Primary Tumor Site: lung
Collection Date: 2024.02.26

Sample Cancer Type: Lung Cancer

Table of Contents	Page		
Variant Details	2		
Biomarker Descriptions	3		
Relevant Therapy Summary	11		

Report Highlights 2 Relevant Biomarkers 0 Therapies Available 2 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	None detected		NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	None detected		NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	None detected		ROS1	None detected
MET	None detected			
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	1.9 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	ATRX deletion ATRX, chromatin remodeler Locus: chrX:76763769	None*	None*	1
IIC	TP53 p.(R248Q) c.743G>A tumor protein p53 Allele Frequency: 23.03% Locus: chr17:7577538 Transcript: NM_000546.6	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

BCOR p.(K839Qfs*5) c.2514_2515insC, CUL4B deletion, MSH6 p.(K1358Dfs*2) c.4068_4071dup, Microsatellite stable, HLA-B deletion, KMT2D deletion, NQO1 p.(P187S) c.559C>T, ZRSR2 deletion, BCOR deletion, USP9X deletion, DDX3X deletion, KDM6A deletion, RBM10 deletion, KDM5C deletion, SMC1A deletion, AMER1 deletion, ZMYM3 deletion, STAG2 deletion, PHF6 deletion, Tumor Mutational Burden

^{*} Public data sources included in relevant therapies. PDA1, NCCN, EMA2, ESMO

* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Variant Details

DNA :	DNA Sequence Variants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
TP53	p.(R248Q)	c.743G>A	COSM10662	chr17:7577538	23.03%	NM_000546.6	missense
BCOR	p.(K839Qfs*5)	c.2514_2515insC	COSM1319442	chrX:39932084	33.56%	NM_001123385.2	frameshift Insertion
MSH6	p.(K1358Dfs*2)	c.4068_4071dup		chr2:48033981	46.22%	NM_000179.3	frameshift Insertion
NQ01	p.(P187S)	c.559C>T		chr16:69745145	48.30%	NM_000903.3	missense
NOTCH2	p.(R2298W)	c.6892C>T		chr1:120458453	47.44%	NM_024408.4	missense
DNAH6	p.(M3929K)	c.11786T>A		chr2:85039511	3.10%	NM_001370.2	missense
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT CA		chr6:31324208	96.89%	NM_005514.8	missense, missense
KMT2A	p.(S670F)	c.2009C>T		chr11:118343883	3.69%	NM_001197104.2	missense
RPTOR	p.(F316L)	c.946T>C		chr17:78796056	43.59%	NM_020761.3	missense

Copy Number Vari	ations		
Gene	Locus	Copy Number	CNV Ratio
ATRX	chrX:76763769	1.01	0.57
CUL4B	chrX:119660593	1.08	0.61
HLA-B	chr6:31322252	1.23	0.67
KMT2D	chr12:49415529	1.3	0.7
ZRSR2	chrX:15808582	1.01	0.57
BCOR	chrX:39911340	1.15	0.64
USP9X	chrX:40982869	1.03	0.59
DDX3X	chrX:41193501	1	0.57
KDM6A	chrX:44732715	1.03	0.59
RBM10	chrX:47006798	1.1	0.61
KDM5C	chrX:53221892	1.02	0.58
SMC1A	chrX:53406966	0.99	0.57
AMER1	chrX:63409727	1.01	0.57
ZMYM3	chrX:70460753	0.98	0.56
STAG2	chrX:123156472	1.01	0.58
PHF6	chrX:133511628	0.9	0.53
ERBB3	chr12:56477596	1.22	0.67
EIF1AX	chrX:20148599	1.14	0.63
ARAF	chrX:47422311	1.01	0.57
AR	chrX:66766015	0.98	0.56

Biomarker Descriptions

ATRX deletion

ATRX, chromatin remodeler

<u>Background</u>: The ATRX gene encodes the ATRX chromatin remodeler and ATPase/helicase domain protein, which belongs to SWI/SNF family of chromatin remodeling proteins¹. The SWI/SNF proteins are a group of DNA translocases that use ATP hydrolysis to remodel chromatin structure and maintain genomic integrity by controlling transcriptional regulation, DNA repair, and chromosome stability through the regulation of telomere length^{34,35,36,37}. ATRX is a tumor suppressor that interacts with the MRE11-RAD50-NBN (MRN) complex, which is involved in double-stranded DNA (dsDNA) break repair^{38,39,40}.

Alterations and prevalence: Somatic mutations of ATRX are observed in 38% of brain lower grade glioma, 15% of uterine corpus endometrial carcinoma, 14% of sarcoma, 9% of glioblastoma multiforme and skin cutaneous melanoma, 7% of colorectal adenocarcinoma, 6% of lung adenocarcinoma, stomach adenocarcinoma, and cervical squamous cell carcinoma, 5% of bladder urothelial carcinoma and lung squamous cell carcinoma, 4% of adrenocortical carcinoma, head and neck squamous cell carcinoma and uterine carcinosarcoma, and 2% of diffuse large B-cell lymphoma, ovarian serous cystadenocarcinoma, breast invasive carcinoma, pheochromocytoma and paraganglioma, kidney renal clear cell carcinoma, pancreatic adenocarcinoma, liver hepatocellular carcinoma and kidney chromophobe^{5,6}. Biallelic deletion of ATRX is observed in 7% of sarcoma, 3% of kidney chromophobe, and 2% of brain lower grade glioma^{5,6}. Although alterations of ATRX in pediatric populations are rare, somatic mutations are observed in 6% of gliomas, 4% of bone cancer, 3% of soft tissue sarcoma, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), embryonal tumor (3 in 332 cases), and leukemia (2 in 354 cases)⁶. Biallelic deletion of ATRX is observed in 1% of peripheral nervous system tumors (1 in 91 cases) in and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases)⁶.

Potential relevance: Currently, no therapies are approved for ATRX aberrations. Loss of ATRX protein expression correlates with the presence of ATRX mutations^{41,42}. ATRX deficiency along with IDH mutation and TP53 mutation is diagnostic of astrocytoma IDH-mutant as defined by the World Health Organization (WHO)^{43,44}.

TP53 p.(R248Q) c.743G>A

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁹⁹. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹⁰⁰. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{101,102}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{5,6,103,104,105,106}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{5,6}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{107,108,109,110}. Alterations in TP53 are also observed in pediatric cancers^{5,6}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{5,6}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{5,6}.

Potential relevance: The small molecule p53 reactivator, PC14586¹¹¹ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{112,113}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁴³. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{12,23,114,115,116}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant¹¹⁷. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system¹¹⁸.

4 of 16

Report Date: 19 Nov 2025

Biomarker Descriptions (continued)

BCOR p.(K839Qfs*5) c.2514_2515insC, BCOR deletion

BCL6 corepressor

<u>Background</u>: The BCOR gene encodes the B-cell CLL/lymphoma 6 (BCL6) co-repressor protein, which potentiates transcriptional repression by BCL6^{7,8}. BCOR also associates with class I and II histone deacetylases (HDACs), suggesting an alternate mechanism for BCOR-mediated transcriptional repression independent of BCL6⁸. Genetic alterations in BCOR result in protein dysfunction, which suggests BCOR functions as a tumor suppressor gene^{9,10,11}.

Alterations and prevalence: Genetic alterations in BCOR include missense, nonsense, and frameshift mutations that result in loss of function and have been observed in up to 5% of myelodysplastic syndromes (MDS), 5-10% of chronic myelomonocytic leukemia (CMML), and 1-5% of acute myeloid leukemia (AML)^{5,12,13,14}. Higher mutational frequencies are reported in some solid tumors, including up to 15% of uterine cancer and 5-10% of colorectal cancer, stomach cancer, cholangiocarcinoma, and melanoma^{5,6}. Although less common, BCOR fusions and internal tandem duplications (ITDs) have been reported in certain rare cancer types^{15,16,17}. Specifically, BCOR::CCNB3 rearrangements define a particular subset of sarcomas with Ewing sarcoma-like morphology known as BCOR::CCNB3 sarcomas (BCS)^{18,19}. Alterations in BCOR are also observed in pediatric cancers^{5,6}. Somatic mutations are observed in 13% of soft tissue sarcoma, 4% of glioma, 3% of retinoblastoma, 2% of bone cancer, 1% of B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and less than 1% of embryonal tumors (3 in 332 cases), leukemia (2 in 311 cases), and Wilms tumor (2 in 710 cases)^{5,6}. Other alterations have been reported in clear cell carcinoma of the kidney, a rare pediatric renal malignant tumor, with one study reporting the presence of BCOR ITDs in more than 90% of cases¹⁵.

Potential relevance: BCOR rearrangement, including inv(X)(p11.4p11.22) resulting in BCOR::CCNB3 fusion, is diagnostic of sarcoma with BCOR genetic alterations, a subset of undifferentiated round cell sarcomas 20,21 . Additionally, translocation t(x;22)(p11;q13) resulting in ZC3H7B::BCOR fusion is a useful ancillary diagnostic marker of high-grade endometrial stromal sarcoma 20 . Somatic mutation in BCOR is one of the possible molecular abnormality requirements for the diagnosis of myelodysplasia-related AML (AML-MR) and is associated with poor prognosis in AML and MDS 12,13,22,23,24 . In FLT3-ITD negative AML patients under 65 with intermediate cytogenetic prognosis, mutations in BCOR confer inferior overall survival (OS) as well as relapse-free survival (RFS) compared to those without BCOR abnormalities (OS = 13.6% vs. 55%; RFS = 14.3% vs. 44.5%) 14 . Additionally, BCOR ITDs and BCOR::EP300 fusion are molecular alterations of significance in pediatric gliomas 25,26 .

CUL4B deletion

cullin 4B

Background: The CUL4B gene encodes cullin 4B, a member of the cullin family, which includes CUL1, CUL2, CUL3, CUL4A, CUL5, CUL7, and Parc1,2. CUL4B belongs to the CUL4 subfamily which also includes CUL4A3. CUL4A and CUL4B share greater than 80% sequence identity and functional redundancy3,4. Cullin proteins share a conserved cullin homology domain and act as molecular scaffolds for RING E3 ubiquitin ligases to assemble into cullin-RING ligase complexes (CRLs)2. CUL4B is part of the CRL4 complex which is responsible for ubiquitination and degradation of a variety of substrates where substrate specificity is dependent on the substrate recognition component of the CRL4 complex4. CRL4 substrates include oncoproteins, tumor suppressors, nucleotide excision repair proteins, cell cycle promoters, histone methylation proteins, and tumor-related signaling molecules, thereby impacting various processes critical to tumor development and progression and supporting a complex role of CUL4B in oncogenesis3,4.

Alterations and prevalence: Somatic mutations in CUL4B are observed in 9% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, and 2% of bladder urothelial carcinoma, cervical squamous cell carcinoma, colorectal adenocarcinoma, uterine carcinosarcoma, brain lower grade glioma, and lung squamous cell carcinoma^{5,6}. Amplification of CUL4B is observed in 2% of diffuse large B-cell lymphoma^{5,6}. Biallelic loss of CUL4B is observed in 1% sarcoma and testicular germ cell tumors^{5,6}.

Potential relevance: Currently, no therapies are approved for CUL4B aberrations.

MSH6 p.(K1358Dfs*2) c.4068_4071dup

mutS homolog 6

Background: The MSH6 gene encodes the mutS homolog 6 protein¹. MSH6 is a tumor suppressor gene that heterodimerizes with MSH2 to form the MutSα complex8¹. The MutSα complex functions in the DNA damage recognition of base-base mismatches or insertion/deletion (indels) of 1-2 nucleotides8¹. DNA damage recognition initiates the mismatch repair (MMR) process that repairs mismatch errors which typically occur during DNA replication8¹. Mutations in MSH2 result in the degradation of MSH68². MSH6, along with MLH1, MSH2, and PMS2, form the core components of the MMR pathway8¹. The MMR pathway is critical to the repair of mismatch errors which typically occur during DNA replication8¹. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression in these genes8³. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue84,85,86. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in MMR genes84,87. LS is associated

Biomarker Descriptions (continued)

with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{85,87,88,89}. Specifically, MSH6 mutations are associated with an increased risk of ovarian and pancreatic cancer^{90,91,92,93}.

Alterations and prevalence: Somatic mutations in MSH6 are observed in 11% of uterine corpus endometrial carcinoma, 4% colorectal adenocarcinoma, and 3% skin cutaneous melanoma^{5,6}. Alterations in MSH6 are observed in pediatric cancers^{5,6}. Somatic mutations are observed in 9% of hepatobiliary cancer, 2% of T-lymphoblastic leukemia/lymphoma, 1% of B-lymphoblastic leukemia/lymphoma, and less than 1% of glioma (2 in 297 cases) and bone cancer (2 in 327 cases)^{5,6}.

Potential relevance: Pembrolizumab (2014) is an anti-PD-1 immune checkpoint inhibitor that is approved for patients with dMMR solid tumors that have progressed on prior therapies⁹⁴. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone or in combination with the cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR colorectal cancer that have progressed on prior treatment^{95,96}. MSH6 mutations are consistent with high grade in pediatric diffuse gliomas^{97,98}.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹³¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{85,87}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁸⁶. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹³². Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹³². Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{88,133,134,135,136}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁸⁷. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{85,87,88,89}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{85,87,137,138}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{137,138}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁹⁴ (2014) and nivolumab⁹⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁹⁴ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁹⁴. Dostarlimab¹³⁹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{134,140}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁹⁶ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{134,141,142}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹⁴². The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{143,144}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{143,144}.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁷⁵. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M⁷⁶. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{77,78,79}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁸⁰.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal

Biomarker Descriptions (continued)

adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{5,6}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{5,6}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

KMT2D deletion

lysine methyltransferase 2D

Background: The KMT2D gene encodes the lysine methyltransferase 2D protein, a transcriptional coactivator and histone H3 lysine 4 (H3K4) methyltransferase¹. KMT2D belongs to the SET domain protein methyltransferase superfamily⁶⁸. KMT2D is known to be involved in the regulation of cell differentiation, metabolism, and tumor suppression due to its methyltransferase activity⁶⁸. Mutations or deletions in the enzymatic SET domain of KMT2D are believed to result in loss of function and may contribute to defective enhancer regulation and altered gene expression⁶⁸.

Alterations and prevalence: Somatic mutations in KMT2D are predominantly missense or truncating and are observed in 29% of diffuse large B-cell lymphoma (DLBCL), 28% of bladder urothelial carcinoma, 27% of uterine corpus endometrial carcinoma, 22% of lung squamous cell carcinoma, 21% of skin cutaneous melanoma, 17% of stomach adenocarcinoma, 15% of head and neck squamous cell carcinoma, and 14% of cervical squamous cell carcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for KMT2D aberrations.

ZRSR2 deletion

zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2

Background: The ZRSR2 gene encodes the zinc finger CCCH-type, RNA binding motif and serine/arginine-rich 2 protein, a component of the spliceosome. Specifically, ZRSR2 encodes a splicing factor that is involved in the recognition of the 3' intron splice site⁵³. ZRSR2 interacts with components of the pre-spliceosome assembly including SRSF2 and U2AF2/U2AF1 heterodimer^{53,54}. Mutations in ZRSR2 can lead to deregulated global and alternative mRNA splicing, nuclear-cytoplasm export, and unspliced mRNA degradation while concurrently altering the expression of multiple genes^{53,55}.

Alterations and prevalence: ZRSR2 alterations including nonsense and frameshift mutations are observed in 5-10% of myelodysplastic syndromes (MDS) and 4% of uterine cancer. ZRSR2 deletions are observed in 4% of diffuse large B-cell lymphoma (DLBCL), 3% of head and neck and esophageal cancers^{6,12}.

Potential relevance: Mutation of ZRSR2 is associated with poor prognosis in myelodysplastic syndromes as well as poor/adverse risk in acute myeloid leukemia (AML)^{12,22,23}.

USP9X deletion

ubiquitin specific peptidase 9 X-linked

Background: The USP9X gene encodes the ubiquitin specific peptidase 9 X-linked protein¹. USP9X is a deubiquitinating enzyme (DUB) and a member of the ubiquitin-specific protease (USP) subclass of cysteine proteases⁴⁵. DUBs catalyze the removal of ubiquitin from target proteins, thereby counter-regulating post-translational ubiquitin modifications within the cell^{45,46}. USP9X has many substrates and is commonly upregulated in several solid tumor types, supporting an oncogenic role for USP9X⁴⁶. Conversely, in some cancer types, USP9X has been observed to function as a tumor suppressor, suggesting its exact role in cancer may be dependent on its substrates⁴⁶. In breast cancer, USP9X has been shown to stabilize BRCA1 by inhibiting its ubiquitination, thereby influencing the regulation of homologous recombination and repair⁴⁶.

Alterations and prevalence: Somatic mutations are observed in 16% of uterine corpus endometrial carcinoma, 11% of skin cutaneous melanoma, 7% of colorectal adenocarcinoma, 6% of cholangiocarcinoma, and 5% of stomach adenocarcinoma, lung squamous cell carcinoma, diffuse large B-cell lymphoma (DLBCL), and head and neck squamous cell carcinoma^{5,6}. Biallelic deletion in USP9X is observed in 4% of esophageal adenocarcinoma, 3% of head and neck squamous cell carcinoma, and 2% of mesothelioma, uterine carcinosarcoma, and lung squamous cell carcinoma^{5,6}. Alterations in USP9X are also observed in the pediatric population⁶. Somatic mutations are observed in 2% of Hodgkin lymphoma (1 in 61 cases) and bone cancer (5 in 327 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (2 in 297 cases), and leukemia (1 in 311 cases)⁶. Biallelic deletion in USP9X is observed in less than 1% of leukemia (2 in 250 cases) and B-lymphoblastic leukemia/lymphoma (2 in 731 cases)⁶.

Potential relevance: Currently, no therapies are approved for USP9X aberrations.

Biomarker Descriptions (continued)

DDX3X deletion

DEAD-box helicase 3, X-linked

Background: The DDX3X gene encodes DEAD-box helicase 3 X-linked, a member of the DEAD-box protein family, which is part of the RNA helicase superfamily $II^{1,119}$. DEAD-box helicases contain twelve conserved motifs including a "DEAD" domain which is characterized by a conserved amino acid sequence of Asp-Glu-Ala-Asp (DEAD)^{119,120,121,122}. In DEAD-box proteins, the DEAD domain interacts with β- and γ-phosphates of ATP through Mg2+ and is required for ATP hydrolysis¹¹⁹. DDX3X is involved in several processes including the unwinding of double-stranded RNA, splicing of pre-mRNA, RNA export, transcription, and translation^{123,124,125,126,127,128,129,130}. Deregulation of DDX3X has been shown to impact cancer progression by modulating proliferation, metastasis, and drug resistance¹²³.

Alterations and prevalence: Somatic mutations in DDX3X are observed in 9% of skin cutaneous melanoma and uterine corpus endometrial carcinoma, 7% of diffuse large B-cell lymphoma, 4% of cervical squamous cell carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma, and 2% of lung squamous cell carcinoma and head and neck squamous cell carcinoma^{5,6}. Biallelic loss of DDX3X is observed in 4% of esophageal adenocarcinoma, 3% of head and neck squamous cell carcinoma, and 2% of mesothelioma and lung squamous cell carcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for DDX3X aberrations.

KDM6A deletion

lysine demethylase 6A

Background: The KDM6A gene encodes the lysine demethylase 6A protein¹. KDM6A is a histone demethylase that belongs to the KDM6 family of histone H3 lysine demethylases that also includes KDM6B and KDM6C⁵⁶. Methylation of histone lysine and arginine residues functions to regulate transcription and the DNA damage response, specifically in the recruitment of DNA repair proteins and transcriptional repression³². KDM6A removes methylation of di- and trimethylated histone 3 lysine 27 (H3K27)^{31,56}. KDM6A also interacts with various transcription factors as well as KMT2C, KMT2D, and CBP/p300 chromatin-modifying enzymes, and the SWI/SNF chromatin-remodeling complex to facilitate transcriptional regulation⁵⁶. Mutations in KDM6A lead to activation of the histone methyltransferase, EZH2, resulting in transcriptional repression⁵⁶. KDM6A is believed to function as a tumor suppressor by antagonizing EZH2-mediated transcriptional repression and promoting transcriptional regulation^{56,57}.

Alterations and prevalence: Somatic mutations in KDM6A are observed in 26% of bladder urothelial carcinoma, 7% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, lung squamous cell carcinoma, and 4% of esophageal adenocarcinoma, kidney renal papillary cell carcinoma, pancreatic adenocarcinoma, cervical squamous cell carcinoma, and head and neck squamous cell carcinoma^{5,6}. Biallelic loss of KDM6A is observed in 8% of esophageal adenocarcinoma, 4% of lung squamous cell carcinoma, 3% of head and neck squamous cell carcinoma, bladder urothelial carcinoma, and pancreatic adenocarcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for KDM6A aberrations. Pre-clinical data suggest that KDM6A loss of function or inactivating mutations may respond to EZH2 inhibitors⁵⁷.

RBM10 deletion

RNA binding motif protein 10

Background: RBM10 encodes RNA binding motif protein 10, a member of the RNA binding proteins (RBP) family^{1,27}. RBM10 regulates RNA splicing and post-transcriptional modification of mRNA^{27,28}. RBM10 is suggested to function as a tumor suppressor by promoting apoptosis and inhibiting cellular proliferation through regulation of the MDM2 and p53 feedback loops, as well as influencing BAX expression²⁷. RBM10 has been observed to promote transformation and proliferation in lung cancer, supporting an oncogenic role for RBM10^{29,30}.

Alterations and prevalence: Somatic mutations in RBM10 are observed in 7% of lung adenocarcinoma, 6% of uterine corpus endometrial carcinoma, 4% of bladder urothelial carcinoma, 3% of colorectal adenocarcinoma and skin cutaneous melanoma, and 2% of diffuse large B-cell lymphoma, pancreatic adenocarcinoma, adrenocortical carcinoma, cervical squamous cell carcinoma, esophageal adenocarcinoma, stomach adenocarcinoma, and kidney chromophobe^{5,6}. Biallelic loss of RBM10 is observed in 3% of esophageal adenocarcinoma and 2% of head and neck squamous cell carcinoma^{5,6}. Amplification of RBM10 is observed in 5% of ovarian serous cystadenocarcinoma, 4% of uterine carcinosarcoma, and 2% of sarcoma, uterine corpus endometrial carcinoma, adrenocortical carcinoma, and diffuse large B-cell lymphoma^{5,6}.

Potential relevance: Currently, no therapies are approved for RBM10 aberrations.

Biomarker Descriptions (continued)

KDM5C deletion

lysine demethylase 5C

<u>Background:</u> The KDM5C gene encodes the lysine demethylase 5C protein, a histone demethylase, also known as JARID1C^{1,31}. Methylation of histone lysine and arginine residues functions to regulate transcription and DNA damage response³². KDM5C removes methylation of di- and trimethylated histone H3 lysine 4 (H3K4) and is involved in the repression of transcription in response to DNA damage^{31,32}. KDM5C alterations result in aberrant H3K4 trimethylation at active replication origins which can lead to stalled DNA replication³³.

Alterations and prevalence: Somatic mutations in KDM5C are observed in 9% of uterine corpus endometrial carcinoma, 5% of kidney renal clear cell carcinoma, stomach adenocarcinoma, skin cutaneous melanoma, 4% of lung adenocarcinoma and uterine carcinosarcoma^{5,6}. Biallelic loss of KDM5C is observed in 3% of esophageal adenocarcinoma and 2% of head and neck squamous cell carcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for KDM5C aberrations.

SMC1A deletion

structural maintenance of chromosomes 1A

Background: SMC1A encodes the structural maintenance of chromosomes 1A and belongs to structural maintenance of chromosomes (SMCs) family, which consists of SMC1A, SMC1B, SMC2, SMC3, SMC4, SMC5, and SMC6^{1,64,65}. As a part of the cohesion-core complex, SMC1A plays a crucial role in chromosome segregation during mitosis and meiosis^{64,66}. SMC1A also plays a role in cell cycle regulation, DNA damage repair, gene transcription regulation, and genomic organization⁶⁴. SMC1A aberrations, including overexpression, have been observed in several cancer types and have been proposed to promote tumor formation and epithelial to mesenchymal transition^{65,67}.

Alterations and prevalence: Somatic mutations in SMC1A are observed in 11% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma and acute myeloid leukemia, 4% of colorectal adenocarcinoma and bladder urothelial carcinoma, 3% cervical squamous cell carcinoma and glioblastoma multiforme, 2% diffuse large B-Cell lymphoma, adrenocortical carcinoma, stomach adenocarcinoma, uterine carcinosarcoma, ovarian serous cystadenocarcinoma and lung adenocarcinoma^{5,6}. Amplification of SMC1A is found in 4% of diffuse large B-Cell lymphoma, 3% of sarcoma, and 2% of ovarian serous cystadenocarcinoma, adrenocortical carcinoma, and uterine carcinosarcoma^{5,6}. Biallelic loss of SMC1A is found in 3% of esophageal adenocarcinoma and 2% of head and neck squamous cell carcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for SMC1A aberrations.

AMER1 deletion

APC membrane recruitment protein 1

Background: The AMER1 gene encodes APC membrane recruitment protein 1¹. AMER1 works in complex with CTNNB1, APC, AXIN1, and AXIN2 to regulate the WNT pathway¹,69. The WNT signaling pathway is responsible for regulating several key components during embryogenesis and has been observed to be involved in tumorigenesis^{70,71}. Consequently, the WNT signaling pathway is a target for therapeutic response in various cancer types⁷¹. The AMER1 gene is located on the X chromosome and is commonly inactivated in Wilms tumor, a pediatric kidney cancer⁷². AMER1 has also been observed to influence cell proliferation, tumorigenesis, migration, invasion, and cell cycle arrest⁶⁹.

Alterations and prevalence: Somatic mutations of AMER1 are observed in 13% of colorectal adenocarcinoma, 10% of uterine corpus endometrial carcinoma, 8% of skin cutaneous melanoma, 7% of lung adenocarcinoma, 4% of stomach adenocarcinoma, and uterine carcinosarcoma, 3% of lung squamous cell carcinoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, and 2% of diffuse large B-cell lymphoma, liver hepatocellular carcinoma, head and neck squamous cell carcinoma, and breast invasive carcinoma^{5,6}. Biallelic deletion of AMER1 is observed in 2% of esophageal adenocarcinoma, diffuse large b-cell lymphoma, uterine carcinosarcoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma, and 1% of stomach adenocarcinoma, sarcoma, liver hepatocellular carcinoma, colorectal adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, and ovarian serous cystadenocarcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for AMER1 aberrations.

Biomarker Descriptions (continued)

ZMYM3 deletion

zinc finger MYM-type containing 3

<u>Background</u>: The ZMYM3 gene encodes the zinc finger MYM-type containing 3 protein¹. While the function is not fully understood, <u>ZMYM3 is capable</u> of binding histones and DNA, and may facilitate the repair of double-strand breaks (DSBs)⁷³.

Alterations and prevalence: Somatic mutations in ZMYM3 are observed in 12% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 4% of colorectal adenocarcinoma, 3% of lung adenocarcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, esophageal adenocarcinoma, and bladder urothelial carcinoma^{5,6}. In prostate cancer, ZMYM3 mutations have been observed to be enriched in African American men compared to white men with one study demonstrating occurrence in 11.7% vs. 2.7% of patients, respectively⁷⁴. Biallelic deletion of ZMYM3 is observed in 3% of cholangiocarcinoma and 2% of sarcoma and kidney chromophobe^{5,6}.

Potential relevance: Currently, no therapies are approved for ZMYM3 aberrations.

STAG2 deletion

stromal antigen 2

Background: The STAG2 gene encodes the stromal antigen 2 protein, one of the core proteins in the cohesin complex, which regulates the separation of sister chromatids during cell division^{47,48}. Components of the cohesion complex include SMC1A, SMC3, and RAD21, which bind to STAG1/STAG2 paralogs^{49,50}. Inactivating mutations in STAG2 contribute to X-linked neurodevelopmental disorders, aneuploidy, and chromosomal instability in cancer^{49,51}.

Alterations and prevalence: Somatic mutations in STAG2 include nonsense, frameshift, and splice site variants¹². Somatic mutations in STAG2 are observed in 14% of bladder cancer, 10% of uterine cancer, 5% of glioblastoma multiforme, 4% of lung adenocarcinoma and skin cutaneous melanoma, 3% of acute myeloid leukemia, stomach adenocarcinoma, kidney renal papillary cell carcinoma, and lung squamous cell carcinoma, and 2% of cholangiocarcinoma, diffuse large B-cell lymphoma, colorectal adenocarcinoma, cervical squamous cell carcinoma, kidney renal clear cell carcinoma, uterine carcinosarcoma, breast invasive carcinoma, and esophageal adenocarcinoma⁶. Biallelic deletion of STAG2 is observed in 2% of uterine carcinosarcoma and 1% of sarcoma and acute myeloid leukemia⁶. Alterations in STAG2 are also observed in pediatric cancers⁶. Somatic mutations in STAG2 are observed in 10% of bone cancer (34 in 327 cases), 5% of soft tissue sarcoma (2 in 38 cases), 2% of embryonal tumors (5 in 332 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (1 in 252 cases) and peripheral nervous system cancers (1 in 1158 cases)⁶. Structural variants in STAG2 are observed in 2% of leukemia (1 in 64 cases) and less than 1% of bone cancer (1 in 150 cases)⁶. Biallelic deletion of STAG2 is observed in 1% of peripheral nervous system cancers (1 in 91 cases) and less than 1% of leukemia (1 in 250 cases)⁶.

Potential relevance: Mutations in STAG2 are associated with poor prognosis and adverse risk in MDS and acute myeloid leukemia^{12,23}. Truncating mutations in STAG2 lead to a loss of function in bladder cancer and are often identified as an early event associated with low grade and stage tumors⁵².

PHF6 deletion

PHD finger protein 6

<u>Background:</u> The PHF6 gene encodes the plant homeodomain (PHD) finger protein 6 which contains four nuclear localization signals and two imperfect PHD zinc finger domains. PHF6 is a tumor suppressor that interacts with the nucleosome remodeling deacetylase (NuRD) complex, which regulates nucleosome positioning and transcription of genes involved in development and cell-cycle progression^{58,59}.

Alterations and prevalence: The majority of PHF6 aberrations are nonsense, frameshift (70%), or missense (30%) mutations, which result in complete loss of protein expression^{58,60,61,62}. Truncating or missense mutations in PHF6 are observed in 38% of adult and 16% of pediatric T-cell acute lymphoblastic leukemia (T-ALL), 20-25% of mixed phenotype acute leukemias (MPAL), and 3% of AML, and 2.6% of hepatocellular carcinoma (HCC)^{60,62}. Missense mutations recurrently involve codon C215 and the second zinc finger domain of PHF6⁶⁰. PHF6 mutations are frequently observed in hematologic malignancies from male patients^{58,60}.

Potential relevance: Somatic mutations in PHF6 are associated with reduced overall survival in AML patients treated with high-dose induction chemotherapy⁶³.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Report Date: 19 Nov 2025 11 of 16

Relevant Therapy Summary

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

ATRX deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	×	×	×	×	(II)

TP53 p.(R248Q) c.743G>A					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TP53-EphA-2-CAR-DC, anti-PD-1	×	×	×	×	(l)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	1.03%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Sarikas et al. The cullin protein family. Genome Biol. 2011;12(4):220. PMID: 21554755
- 3. Sang et al. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications. Oncotarget. 2015 Dec 15;6(40):42590-602. PMID: 26460955
- 4. Cheng et al. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):138-159. PMID: 30602127
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Gearhart et al. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol. 2006 Sep;26(18):6880-9. PMID: 16943429
- 8. Huynh et al. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000 Jul 15;14(14):1810-23. PMID: 10898795
- Kelly et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun. 2019 Mar 22;10(1):1347. PMID: 30902969
- 10. Cao et al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia. 2016 May;30(5):1155-65. PMID: 26847029
- 11. Yamamoto et al. Clarifying the impact of polycomb complex component disruption in human cancers. Mol. Cancer Res. 2014 Apr;12(4):479-84. PMID: 24515802
- 12. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 13. Damm et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013 Oct 31;122(18):3169-77. PMID: 24047651
- 14. Terada et al. Usefulness of BCOR gene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosomes Cancer. 2018 Aug;57(8):401-408. PMID: 29663558
- 15. Wong et al. Clear cell sarcomas of the kidney are characterised by BCOR gene abnormalities, including exon 15 internal tandem duplications and BCOR-CCNB3 gene fusion. Histopathology. 2018 Jan;72(2):320-329. PMID: 28833375
- 16. Cramer et al. Successful Treatment of Recurrent Primitive Myxoid Mesenchymal Tumor of Infancy With BCOR Internal Tandem Duplication. J Natl Compr Canc Netw. 2017 Jul;15(7):868-871. PMID: 28687574
- 17. Peters et al. BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod. Pathol. 2015 Apr;28(4):575-86. PMID: 25360585
- 18. Puls et al. BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am. J. Surg. Pathol. 2014 Oct;38(10):1307-18. PMID: 24805859
- Kao et al. BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am. J. Surg. Pathol. 2018 May;42(5):604-615. PMID: 29300189
- 20. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 1.2025]
- 21. NCCN Guidelines® NCCN-Bone Cancer [Version 2.2025]
- 22. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 23. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 24. Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. PMID: 35732831
- 25. Torre et al. Recurrent EP300-BCOR Fusions in Pediatric Gliomas With Distinct Clinicopathologic Features. J Neuropathol Exp Neurol. 2019 Apr 1;78(4):305-314. PMID: 30816933
- Wang et al. Clinical, pathological, and molecular features of central nervous system tumors with BCOR internal tandem duplication. Pathol Res Pract. 2024 Jul;259:155367. PMID: 38797130
- 27. Cao et al. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol. 2021;11:603932. PMID: 33718153
- 28. Zhang et al. RNA binding motif protein 10 suppresses lung cancer progression by controlling alternative splicing of eukaryotic translation initiation factor 4H. EBioMedicine. 2020 Nov:61:103067. PMID: 33130397
- 29. Sun et al. Functional role of RBM10 in lung adenocarcinoma proliferation. Int J Oncol. 2019 Feb;54(2):467-478. PMID: 30483773
- 30. Loiselle et al. RBM10 promotes transformation-associated processes in small cell lung cancer and is directly regulated by RBM5. PLoS One. 2017;12(6):e0180258. PMID: 28662214

13 of 16

Report Date: 19 Nov 2025

- 31. Iwase et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell. 2007 Mar 23;128(6):1077-88. PMID: 17320160
- 32. Gong et al. Histone methylation and the DNA damage response. Mutat Res. 2017 Sep 23;780:37-47. PMID: 31395347
- 33. Rondinelli et al. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res. 2015 Mar 11;43(5):2560-74. PMID: 25712104
- 34. Ryan et al. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol. 2011 Oct;15(5):649-56. PMID: 21862382
- 35. Heyer et al. Rad54: the Swiss Army knife of homologous recombination?. Nucleic Acids Res. 2006;34(15):4115-25. PMID: 16935872
- 36. Matsuda et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene. 1999 Jun 3;18(22):3427-30. PMID: 10362365
- 37. Abedalthagafi et al. The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Mod. Pathol. 2013 Nov;26(11):1425-32. PMID: 23765250
- 38. Clynes et al. ATRX dysfunction induces replication defects in primary mouse cells. PLoS ONE. 2014;9(3):e92915. PMID: 24651726
- 39. Tang et al. A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J. Biol. Chem. 2004 May 7;279(19):20369-77. PMID: 14990586
- 40. Xue et al. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc. Natl. Acad. Sci. U.S.A. 2003 Sep 16;100(19):10635-40. PMID: 12953102
- 41. Pisapia. The Updated World Health Organization Glioma Classification: Cellular and Molecular Origins of Adult Infiltrating Gliomas. Arch. Pathol. Lab. Med. 2017 Dec;141(12):1633-1645. PMID: 29189064
- 42. Jiao et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 2012 Jul;3(7):709-22. PMID: 22869205
- 43. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 44. NCCN Guidelines® NCCN-Central Nervous System Cancers [Version 2.2025]
- 45. Dufner et al. Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans. 2019 Dec 20;47(6):1867-1879. PMID: 31845722
- 46. Lu et al. USP9X stabilizes BRCA1 and confers resistance to DNA-damaging agents in human cancer cells. Cancer Med. 2019 Nov;8(15):6730-6740. PMID: 31512408
- 47. Mehta et al. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett. 2013 Aug 2;587(15):2299-312. PMID: 23831059
- 48. Aquila et al. The role of STAG2 in bladder cancer. Pharmacol. Res. 2018 May;131:143-149. PMID: 29501732
- 49. Mullegama et al. De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies. Am. J. Med. Genet. A. 2017 May;173(5):1319-1327. PMID: 28296084
- 50. van et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. Elife. 2017 Jul 10;6. PMID: 28691904
- 51. Solomon et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science. 2011 Aug 19;333(6045):1039-43. PMID: 21852505
- 52. Solomon et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat. Genet. 2013 Dec;45(12):1428-30. PMID: 24121789
- 53. Madan et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun. 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042. PMID: 25586593
- 54. Tronchère et al. A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA. Nature. 1997 Jul 24;388(6640):397-400. PMID: 9237760
- 55. Chesnais et al. Spliceosome mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia. Oncotarget. 2012 Nov;3(11):1284-93. PMID: 23327988
- 56. Tran et al. Lysine Demethylase KDM6A in Differentiation, Development, and Cancer. Mol Cell Biol. 2020 Sep 28;40(20). PMID: 32817139
- 57. Ler et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 2017 Feb 22;9(378). PMID: 28228601
- 58. Wendorff et al. Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL. Cancer Discov. 2019 Mar;9(3):436-451. PMID: 30567843

14 of 16

Report Date: 19 Nov 2025

- 59. Lower et al. Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Nat. Genet. 2002 Dec;32(4):661-5. PMID: 12415272
- 60. Van et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 2010 Apr;42(4):338-42. PMID: 20228800
- 61. Van et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia. 2011 Jan;25(1):130-4. PMID: 21030981
- 62. Yoo et al. Somatic mutation of PHF6 gene in T-cell acute lymphoblatic leukemia, acute myelogenous leukemia and hepatocellular carcinoma. Acta Oncol. 2012 Jan;51(1):107-11. PMID: 21736506
- 63. Patel et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012 Mar 22;366(12):1079-89. PMID: 22417203
- 64. Musio. The multiple facets of the SMC1A gene. Gene. 2020 Jun 15;743:144612. PMID: 32222533
- Nie et al. Clinical Significance and Integrative Analysis of the SMC Family in Hepatocellular Carcinoma. Front Med (Lausanne). 2021;8:727965. PMID: 34527684
- 66. Yatskevich et al. Organization of Chromosomal DNA by SMC Complexes. Annu Rev Genet. 2019 Dec 3;53:445-482. PMID: 31577909
- 67. Yadav et al. SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelial-mesenchymal transition and cancer stem-like properties. Mol Carcinog. 2019 Jan;58(1):113-125. PMID: 30242889
- 68. Froimchuk et al. Histone H3 lysine 4 methyltransferase KMT2D. Gene. 2017 Sep 5;627:337-342. PMID: 28669924
- 69. Liu et al. Aging (Albany NY). 2020 May 4;12(9):8372-8396. PMID: 32365332
- 70. Komiya et al. Wnt signal transduction pathways. Organogenesis. 2008 Apr;4(2):68-75. PMID: 19279717
- 71. Zhang et al. J Hematol Oncol. 2020 Dec 4;13(1):165. PMID: 33276800
- 72. Rivera et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007 Feb 2;315(5812):642-5. PMID: 17204608
- 73. Leung et al. ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev. 2017 Feb 1;31(3):260-274. PMID: 28242625
- 74. Liu et al. Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Mol Cancer Res. 2020 Dec;18(12):1815-1824. PMID: 33115829
- 75. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 76. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 77. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 78. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 79. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 80. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 81. Li. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008 Jan;18(1):85-98. PMID: 18157157
- 82. Zhao et al. Mismatch Repair Deficiency/Microsatellite Instability-High as a Predictor for anti-PD-1/PD-L1 Immunotherapy Efficacy. J Hematol Oncol. 12(1),54. PMID: 31151482
- 83. Martin et al. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010 Nov 1;16(21):5107-13. PMID: 20823149
- 84. Lynch et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009 Jul;76(1):1-18. PMID: 19659756
- 85. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 86. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 87. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 88. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460

- 89. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 90. Bonadona et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011 Jun 8;305(22):2304-10. PMID: 21642682
- 91. Engel et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012 Dec 10;30(35):4409-15. PMID: 23091106
- 92. Grant et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015 Mar;148(3):556-64. PMID: 25479140
- 93. Hu et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA. 2018 Jun 19;319(23):2401-2409. PMID: 29922827
- 94. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
- 95. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
- 96. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
- 97. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 98. Friker et al. MSH2, MSH6, MLH1, and PMS2 immunohistochemistry as highly sensitive screening method for DNA mismatch repair deficiency syndromes in pediatric high-grade glioma. Acta Neuropathol. 2025 Feb 2;149(1):11. PMID: 39894875
- 99. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 100. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 101. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 102. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 103. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 104. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 105. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 106. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 107. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 108. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 109. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 110. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 111. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 112. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 113. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 114. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 2.2025]
- 115. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 116. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
- 117. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 3.2025]

- 118. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 119. Rocak et al. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol. 2004 Mar;5(3):232-41. PMID: 14991003
- 120. Fuller-Pace. The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochim Biophys Acta. 2013 Aug;1829(8):756-63. PMID: 23523990
- 121. Ali. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res. 2021 Apr 15;296:198352. PMID: 33640359
- 122. Linder et al. Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta. 2013 Aug;1829(8):750-5. PMID: 23542735
- 123. Lin. DDX3X Multifunctionally Modulates Tumor Progression and Serves as a Prognostic Indicator to Predict Cancer Outcomes. Int J Mol Sci. 2019 Dec 31;21(1). PMID: 31906196
- 124. Song et al. The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X. Nat Commun. 2019 Jul 12;10(1):3085. PMID: 31300642
- 125. Zhou et al. Comprehensive proteomic analysis of the human spliceosome. Nature. 2002 Sep 12;419(6903):182-5. PMID: 12226669
- 126. Yedavalli et al. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 2004 Oct 29;119(3):381-92. PMID: 15507209
- 127. Chao et al. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 2006 Jul 1;66(13):6579-88. PMID: 16818630
- 128. Chuang et al. Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science. 1997 Mar 7;275(5305):1468-71. PMID: 9045610
- 129. Shih et al. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene. 2008 Jan 24;27(5):700-14. PMID: 17667941
- 130. Lee et al. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 2008 Aug;36(14):4708-18. PMID: 18628297
- 131. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 132. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 133. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 134. NCCN Guidelines® NCCN-Colon Cancer [Version 4.2025]
- 135. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 136. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 137. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 138. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 139. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 140. NCCN Guidelines® NCCN-Rectal Cancer [Version 3.2025]
- 141. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 142. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 143. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 144. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031