

삼광의료재단 서울특별시 서초구 바우뫼로41길 ⁵⁸ (양재동, 선화빌딩) 검사기관 11365200

> Tel. 1661-5117 www.smlab.co.kr

Report Date: 07 Nov 2025 1 of 11

Patient Name: 배기현 Gender: M Sample ID: N25-288 Primary Tumor Site: Stomach Collection Date: 2025.03.13

Sample Cancer Type: Gastric Cancer

Table of Contents	Page
Variant Details	1
Biomarker Descriptions	2

Report Highlights

- 0 Relevant Biomarkers 0 Therapies Available
- 0 Clinical Trials

Relevant Gastric Cancer Findings

Gene	Finding	
BRAF	None detected	
ERBB2	None detected	
NTRK1	None detected	
NTRK2	None detected	
NTRK3	None detected	
RET	None detected	
Genomic Alte	eration	Finding
Tumor Mu	tational Burden	7.61 Mut/Mb measured

Relevant Biomarkers

No biomarkers associated with relevant evidence found in this sample

Prevalent cancer biomarkers without relevant evidence based on included data sources

AXIN1 deletion, MLH1 p.(V384D) c.1151T>A, Microsatellite stable, TP53 p.(W53*) c.159G>A, MECOM amplification, HLA-B deletion, NOTCH4 p.(L6Pfs*53) c.17_21delTGCTG, NOTCH4 p.(L6Pfs*54) c.17_18delTG, CSMD3 p.(C3233*) c.9699C>A, CDH1 deletion, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
MLH1	p.(V384D)	c.1151T>A		chr3:37067240	37.44%	NM_000249.4	missense
TP53	p.(W53*)	c.159G>A		chr17:7579528	47.57%	NM_000546.6	nonsense
NOTCH4	p.(L6Pfs*53)	c.17_21delTGCTG		chr6:32191684	3.65%	NM_004557.4	frameshift Deletion

2 of 11

Report Date: 07 Nov 2025

Variant Details (continued)

DNA Sequence Variants (continued)

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
NOTCH4	p.(L6Pfs*54)	c.17_18delTG		chr6:32191687	96.07%	NM_004557.4	frameshift Deletion
CSMD3	p.(C3233*)	c.9699C>A		chr8:113276031	55.13%	NM_198123.2	nonsense
NQ01	p.(P187S)	c.559C>T		chr16:69745145	62.98%	NM_000903.3	missense
CDH10	p.(D188Y)	c.562G>T		chr5:24535896	24.72%	NM_006727.5	missense
MSH3	p.(A57_A62del)	c.162_179delTGCAGC GGCCGCAGCGGC		chr5:79950707	62.60%	NM_002439.5	nonframeshift Deletion
RAD50	p.(Y1155C)	c.3464A>G		chr5:131972881	51.28%	NM_005732.4	missense
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT CA		chr6:31324208	100.00%	NM_005514.8	missense, missense
NOTCH4	p.(G1908del)	c.5721_5723delAGG		chr6:32163502	9.35%	NM_004557.4	nonframeshift Deletion
HDAC9	p.(S243N)	c.728G>A		chr7:18669036	21.27%	NM_178425.3	missense
WT1	p.(R64H)	c.191G>A		chr11:32456716	37.37%	NM_024426.6	missense
PPFIA2	p.(A553V)	c.1658C>T		chr12:81751976	47.81%	NM_003625.5	missense

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
AXIN1	chr16:338145	0	0.54		
MECOM	chr3:168802636	7.51	2.19		
HLA-B	chr6:31322252	0.23	0.62		
CDH1	chr16:68771249	0.26	0.62		
FGFR3	chr4:1801456	0.02	0.57		

Biomarker Descriptions

AXIN1 deletion

axin 1

Background: The AXIN1 gene encodes the axis inhibition protein 1, a cytoplasmic protein that contains a regulation of G-protein signaling (RGS) domain and a disheveled and axin (DIX) domain, which are responsible for a variety of protein-protein interactions and signaling regulation 1,71,72,73 . AXIN1 functions as a negative regulator of the WNT signaling pathway through facilitating β-catenin degradation 1,74,75,76 . The WNT signaling pathway is responsible for regulating several key components during embryogenesis and has been observed to be involved in tumorigenesis 77,78 . Consequently, the WNT signaling pathway is a target for therapeutic response in various cancer types 78 . AXIN1 has also been observed to function in complex with DAXX, HIPK2, and TP53 to regulate cell growth, apoptosis, and cellular development 79 .

Alterations and prevalence: Somatic mutations of AXIN1 are observed in 7% of liver hepatocellular carcinoma, 6% of uterine corpus endometrial carcinoma, 4% of skin cutaneous melanoma, 3% of stomach adenocarcinoma and colorectal adenocarcinoma, and 2% of head and neck squamous cell carcinoma, kidney renal papillary cell carcinoma, pancreatic adenocarcinoma, and glioblastoma multiforme^{8,9}. Biallelic deletion of AXIN1 is observed in 4% of diffuse large B-cell lymphoma and uterine carcinosarcoma, 3% of esophageal adenocarcinoma, and 2% of bladder urothelial carcinoma^{8,9}.

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for AXIN1 aberrations.

MLH1 p.(V384D) c.1151T>A

mutL homolog 1

Background: The MLH1 gene encodes the mutL homolog 1 protein¹. MLH1 is a tumor suppressor gene that heterodimerizes with PMS2 to form the MutLα complex, PMS1 to form the MutLβ complex, and MLH3 to form the MutLγ complex²0. The MutLα complex functions as an endonuclease that is specifically involved in the mismatch repair (MMR) process and mutations in MLH1 result in the inactivation of MutLα and degradation of PMS2²0,²¹. Loss of MLH1 protein expression and MLH1 promoter hypermethylation correlates with mutations in these genes and are used to pre-screen colorectal cancer or endometrial hyperplasia²²²²³. MLH1, along with MSH6, MSH2, and PMS2 form the core components of the MMR pathway²0. The MMR pathway is critical to the repair of mismatch errors which typically occur during DNA replication²0. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression in these genes²⁴. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue²⁵,²6,²7. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in MMR genes²⁵,²²². LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer²6,²²²,²³³,³²,³³,³³. Specifically, MLH1 mutations are associated with an increased risk of ovarian and pancreatic cancer³1,³²,²³,³³,³³.

Alterations and prevalence: Somatic mutations in MLH1 are observed in 6% of uterine corpus endometrial carcinoma, 4% of colorectal adenocarcinoma, and 2-3% of bladder urothelial carcinoma, stomach adenocarcinoma, and melanoma^{8,9}. Alterations in MLH1 are observed in pediatric cancers^{8,9}. Somatic mutations are observed in 1% of bone cancer and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), embryonal tumor (2 in 332 cases), and leukemia (2 in 311 cases)^{8,9}.

Potential relevance: The PARP inhibitor, talazoparib³⁵ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes MLH1. Additionally, pembrolizumab (2014) is an anti-PD-1 immune checkpoint inhibitor that is approved for patients with MSI-H or dMMR solid tumors that have progressed on prior therapies³⁶. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone or in combination with the cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR colorectal cancer that have progressed on prior treatment^{37,38}. MLH1 mutations are consistent with high grade in pediatric diffuse gliomas^{39,40}.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁸⁰. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{26,28}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2²⁷. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁸¹. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁸¹. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{29,82,83,84,85}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes²⁸. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{26,28,29,30}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{26,28,86,87}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{86,87}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab³⁶ (2014) and nivolumab³⁷ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab³⁶ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication³⁶. Dostarlimab⁸⁸ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{83,89}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab³⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{83,90,91}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁹¹. The majority of patients with tumors

Biomarker Descriptions (continued)

classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{92,93}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{92,93}.

TP53 p.(W53*) c.159G>A

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁴¹. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential⁴². Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{43,44}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,45,46,47,48}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,⁹. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{49,50,51,52}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586⁵³ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{54,55}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁵⁶. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{57,58,59,60,61}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁶². Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁶³.

MECOM amplification

MDS1 and EVI1 complex locus

<u>Background:</u> The MECOM gene encodes the MDS1 and EVI1 complex locus (MECOM), a zinc-finger transcriptional factor that regulates hematopoietic cell differentiation⁹⁴. The MECOM locus encodes multiple alternative splice variants that result in MDS1-EVI1, MDS1, and EVI1 protein isoforms⁹⁵. The EVI1 isoform is the most abundant and oncogenic form of MECOM that is expressed in various cancers including acute myeloid leukemia (AML)^{95,96}. MECOM is a frequent target of chromosomal translocation which can lead to MECOM overexpression and leukemogenesis⁹⁷.

Alterations and prevalence: Somatic mutations MECOM are observed in up to 22% of malignant melanoma; 75% of these mutations are missense and the remaining 25% are truncating mutations^{8,9,98}. MECOM amplifications are observed in up to 35% of lung squamous cell carcinoma, 30% of ovarian serous cystadenocarcinoma, and 20% of esophageal adenocarcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{8,9}. MECOM rearrangements occur with various partner genes including ETV6, RUNX1, and H2AFY⁹⁹. The t(3;21)(q26;q22) translocation that results in the MECOM::RUNX1 fusion is most commonly observed in chronic myeloid leukemia (CML) in blast crisis. The t(3;3)(q21.3;q26.2)/ inv(3)(q21.3;q26.3) translocation, also referred to as inv(3)/t(3;3), results in a GATA2::MECOM fusion and is observed in AML, primary myelofibrosis (PMF), and myelodysplastic syndrome (MDS)^{58,59,100}. The inv(3)/t(3;3) translocation repositions the distal GATA enhancer element and activates MECOM expression while simultaneously causing GATA2 haploinsufficiency¹⁰¹.

Potential relevance: AML with MECOM rearrangement is considered a distinct molecular subtype of AML as defined by the World Health Organization (WHO)¹⁰². MECOM rearrangements, including GATA2::MECOM fusions, are associated with poor/adverse risk in AML^{57,100}. Inv(3) is associated with poor cytogenetic risk in MDS as defined by the revised international prognostic scoring system (IPSS-R) scoring system⁵⁸. In PMF, inv(3) is considered an unfavorable karyotype associated with intermediate risk as defined by the dynamic international prognostic scoring system (DIPSS)-Plus scoring system⁵⁹. MECOM overexpression is observed in 10% of

Biomarker Descriptions (continued)

de novo AML associated with poor prognosis, and is commonly found in MLL-rearranged cases^{103,104}. Amplification of MECOM is associated with favorable prognosis in ovarian cancer¹⁰⁵.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M3. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B7.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

NOTCH4 p.(L6Pfs*53) c.17_21delTGCTG, NOTCH4 p.(L6Pfs*54) c.17_18delTG

notch 4

Background: The NOTCH4 gene encodes the notch receptor 4 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH1, NOTCH2, and NOTCH3. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling⁶⁴. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{65,66}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{67,68,69,70}.

Alterations and prevalence: Somatic mutations observed in NOTCH4 are primarily missense or truncating and are found in about 16% of melanoma, 9% of lung adenocarcinoma and uterine cancer, as well as 3-6% of bladder colorectal, squamous lung and stomach cancers⁸.

Potential relevance: Currently, no therapies are approved for NOTCH4 aberrations.

CSMD3 p.(C3233*) c.9699C>A

CUB and Sushi multiple domains 3

Background: CSMD3 encodes the CUB and Sushi multiple domains 3 protein, a member of the CSMD family, which includes CSMD1 and CSMD2^{1,10}. Proteins containing CUB and Sushi domains are known to mediate protein-protein interactions between the transmembrane and extracellular proteins^{10,11}. CSMD family proteins have 14 CUB and 26–28 Sushi domains, which are reported to regulate dendrite growth, neuronal migration, and synapse formation^{10,11}. In cancer, mutation of CMSD3 has been associated with greater tumor mutational burden (TMB)^{10,12}.

Alterations and prevalence: Somatic mutations of CSMD3 are observed in 43% of lung squamous cell carcinoma, 40% of lung adenocarcinoma, 37% of skin cutaneous melanoma, 25% of stomach adenocarcinoma, 24% of uterine corpus endometrial carcinoma, 19% of esophageal adenocarcinoma and head and neck squamous cell carcinoma, 17% of colorectal adenocarcinoma, 14% of bladder urothelial carcinoma, 10% of diffuse large B-cell lymphoma, 8% of liver hepatocellular carcinoma and cervical squamous cell carcinoma, 7% of ovarian serous cystadenocarcinoma, 5% of uterine carcinosarcoma, and 4% of adrenocortical carcinoma, kidney renal clear cell carcinoma, breast invasive carcinoma, prostate adenocarcinoma and, uveal melanoma^{8,9}. Amplification of CSMD3 is observed in 20% of ovarian serous cystadenocarcinoma, 12% of breast invasive carcinoma, 11% of uterine carcinosarcoma, 10% of liver hepatocellular carcinoma, and esophageal adenocarcinoma, 8% of prostate adenocarcinoma, 7% of pancreatic adenocarcinoma, 6% of uveal melanoma and head and neck squamous cell carcinoma, and 5% of bladder urothelial carcinoma and stomach adenocarcinoma^{8,9}. Biallelic loss of CSMD3 is observed in 2% of mesothelioma and prostate adenocarcinoma^{8,9}.

 $\underline{\hbox{Potential relevance:}} \ \hbox{Currently, no the rapies are approved for CSMD3 aberrations.}$

Biomarker Descriptions (continued)

CDH1 deletion

cadherin 1

Background: The CDH1 gene encodes epithelial cadherin or E-cadherin, a member of the cadherin superfamily that includes the classical cadherins: neural cadherin (N-cadherin), retinal cadherin (R-cadherin), and placental cadherin (P-cadherin)^{1,13}. E-cadherin proteins, composed of 5 extracellular cadherin repeats, a single transmembrane domain, and conserved cytoplasmic tail, are calcium-dependent transmembrane glycoproteins expressed in epithelial cells¹. Extracellular E-cadherin monomers form homodimers with those on adjacent cells to form adherens junctions. Adherens junctions are reinforced by intracellular complexes formed between the cytoplasmic tail of E-cadherin and catenins, proteins which directly anchor cadherins to actin filaments¹⁴. E-cadherin is a critical tumor suppressor and when lost, results in epithelial-mesenchymal transition (EMT), anchorage-independent cell growth, loss of cell polarity, and tumor metastasis^{15,16}. Germline mutations in CDH1 are enriched in a rare autosomal-dominant genetic malignancies such as hereditary diffuse gastric cancer, lobular breast cancer, and colorectal cancer¹⁷.

Alterations and prevalence: Mutations in CDH1 are predominantly missense or truncating and have been observed to result in loss of function^{8,9,18,19}. In cancer, somatic mutation of CDH1 is observed in 12% of invasive breast carcinoma, 10% of stomach adenocarcinoma, 7% of uterine corpus endometrial carcinoma, 4% of colorectal adenocarcinoma and skin cutaneous melanoma, 3% of bladder urothelial carcinomas, and 2% of lung squamous cell and liver hepatocelluar carcinomas^{8,9}. Biallelic deletion of CDH1 is observed in 3% of prostate adenocarcinoma and ovarian serous cystadenocarcinoma, and 2% of esophageal adenocarcinoma, diffuse large B-cell lymphoma, and breast invasive carcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for CDH1 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K1, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	18.43%
BRCA1	LOH, 17q21.31(41197602-41276231)x3
BRIP1	LOH, 17q23.2(59760627-59938976)x3
CDK12	LOH, 17q12(37618286-37687611)x3
PALB2	LOH, 16p12.2(23614759-23652528)x3
RAD51C	LOH, 17q22(56769933-56811619)x3
RAD51D	LOH, 17q12(33427950-33446720)x3

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 5. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 6. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Lu et al. CSMD3 is Associated with Tumor Mutation Burden and Immune Infiltration in Ovarian Cancer Patients. Int J Gen Med. 2021;14:7647-7657. PMID: 34764678
- 11. Lau et al. Identification of two new members of the CSMD gene family. Genomics. 2003 Sep;82(3):412-5. PMID: 12906867
- 12. Cai et al. Epigenetic alterations are associated with tumor mutation burden in non-small cell lung cancer. J Immunother Cancer. 2019 Jul 26;7(1):198. PMID: 31349879
- 13. Halbleib et al. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006 Dec 1;20(23):3199-214. PMID: 17158740
- 14. Pećina-Slaus. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 2003 Oct 14;3(1):17. PMID: 14613514
- 15. Hirohashi. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998 Aug;153(2):333-9. PMID: 9708792
- 16. Bruner et al. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol. 2018 Mar 1;10(3). PMID: 28507022
- 17. Adib et al. CDH1 germline variants are enriched in patients with colorectal cancer, gastric cancer, and breast cancer. Br J Cancer. 2022 Mar;126(5):797-803. PMID: 34949788
- 18. Al-Ahmadie et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat Genet. 2016 Apr;48(4):356-8. PMID: 26901067
- 19. Kim et al. Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis. Br J Cancer. 2016 Jan 19;114(2):199-206. PMID: 26742007
- 20. Li. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008 Jan;18(1):85-98. PMID: 18157157
- 21. Zhao et al. Mismatch Repair Deficiency/Microsatellite Instability-High as a Predictor for anti-PD-1/PD-L1 Immunotherapy Efficacy. J Hematol Oncol. 12(1),54. PMID: 31151482
- 22. Berends et al. MLH1 and MSH2 protein expression as a pre-screening marker in hereditary and non-hereditary endometrial hyperplasia and cancer. Int. J. Cancer. 2001 May 1;92(3):398-403. PMID: 11291077
- 23. Gausachs et al. MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur. J. Hum. Genet. 2012 Jul;20(7):762-8. PMID: 22274583
- 24. Martin et al. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010 Nov 1;16(21):5107-13. PMID: 20823149
- 25. Lynch et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009 Jul;76(1):1-18. PMID: 19659756
- 26. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 27. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 28. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854

References (continued)

- 29. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 30. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 31. Bonadona et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011 Jun 8;305(22):2304-10. PMID: 21642682
- 32. Engel et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012 Dec 10;30(35):4409-15. PMID: 23091106
- 33. Grant et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015 Mar;148(3):556-64. PMID: 25479140
- 34. Hu et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA. 2018 Jun 19;319(23):2401-2409. PMID: 29922827
- 35. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/217439s003lbl.pdf
- 36. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
- 37. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
- 38. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
- 39. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 40. Friker et al. MSH2, MSH6, MLH1, and PMS2 immunohistochemistry as highly sensitive screening method for DNA mismatch repair deficiency syndromes in pediatric high-grade glioma. Acta Neuropathol. 2025 Feb 2;149(1):11. PMID: 39894875
- 41. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 42. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 43. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 44. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 45. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 46. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 47. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 48. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 49. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 50. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 51. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 52. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 53. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 54. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 55. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 56. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076

10 of 11

Report Date: 07 Nov 2025

References (continued)

- 57. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 58. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 59. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 2.2025]
- 60. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 61. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
- 62. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 3.2025]
- 63. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 64. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 65. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209
- 66. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID: 19379690
- 67. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802
- 68. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 69. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338
- 70. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 71. Qiao et al. Hepatology. 2019 Dec;70(6):2003-2017. PMID: 30737831
- 72. Tuteja. Signaling through G protein coupled receptors. Plant Signal Behav. 2009 Oct;4(10):942-7. PMID: 19826234
- 73. Kishida et al. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol. 1999 Jun;19(6):4414-22. PMID: 10330181
- 74. Kusano et al. I-mfa domain proteins interact with Axin and affect its regulation of the Wnt and c-Jun N-terminal kinase signaling pathways. Mol Cell Biol. 2002 Sep;22(18):6393-405. PMID: 12192039
- 75. Goto et al. WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway. FEBS Lett. 2016 May;590(9):1291-303. PMID: 27098453
- 76. Lu et al. Cell Res. 2017 Dec;27(12):1422-1440. PMID: 28829046
- 77. Komiya et al. Wnt signal transduction pathways. Organogenesis. 2008 Apr;4(2):68-75. PMID: 19279717
- 78. Zhang et al. J Hematol Oncol. 2020 Dec 4;13(1):165. PMID: 33276800
- 79. Li et al. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007 Jan 1;67(1):66-74. PMID: 17210684
- 80. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 81. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 82. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 83. NCCN Guidelines® NCCN-Colon Cancer [Version 4.2025]
- 84. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 85. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 86. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 87. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 88. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 89. NCCN Guidelines® NCCN-Rectal Cancer [Version 3.2025]

Report Date: 07 Nov 2025 11 of 11

References (continued)

- 90. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 91. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 92. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 93. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 94. Hinai et al. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br. J. Haematol. 2016 Mar;172(6):870-8. PMID: 26729571
- 95. Bard-Chapeau et al. EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2013 Jul 30;110(31):E2885-94. PMID: 23858473
- 96. Ogawa et al. Abnormal expression of Evi-1 gene in human leukemias. Hum. Cell. 1996 Dec;9(4):323-32. PMID: 9183665
- 97. Choi et al. Intratumoral Heterogeneity of Frameshift Mutations in MECOM Gene is Frequent in Colorectal Cancers with High Microsatellite Instability. Pathol. Oncol. Res. 2017 Jan;23(1):145-149. PMID: 27620344
- 98. Lee et al. Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatmentnaïve patient melanomas. 2015 Jun 9;7:59. PMID: 26221190
- 99. Han et al. H2AFY is a novel fusion partner of MECOM in acute myeloid leukemia. Cancer Genet. 2018 Apr;222-223:9-12. PMID: 29666008
- 100. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 101. Gröschel et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014 Apr 10;157(2):369-381. PMID: 24703711
- 102. Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. PMID: 35732831
- 103. Barjesteh et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003 Feb 1;101(3):837-45. PMID: 12393383
- 104. Stevens et al. EVI1 expression in childhood acute lymphoblastic leukaemia is not restricted to MLL and BCR/ABL rearrangements and is influenced by age. Blood Cancer J. 2014 Jan 24;4:e179. PMID: 24464103
- 105. Nanjundan et al. Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res. 2007 Apr 1;67(7):3074-84. PMID: 17409414