

Tel. 1661-5117 www.smlab.co.kr

Report Date: 07 Nov 2025 1 of 20

Patient Name: 김재만 Gender: Sample ID: N25-284 **Primary Tumor Site:** Lung 2025.10.16 **Collection Date:**

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	9
Relevant Therapy Summary	14

Report Highlights 4 Relevant Biomarkers 5 Therapies Available 10 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding	
ALK	None detected		NTRK1	None detected	
BRAF	None detected		NTRK2	None detected	
EGFR	None detected		NTRK3	None detected	
ERBB2	None detected		RET	None detected	
KRAS	None detected		ROS1	None detected	
MET	None detected				
Genomic Alt	eration	Finding			
Tumor Mu	ıtational Burden	8.66 Mut/Mb measured			

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	NRAS p.(Q61L) c.182A>T NRAS proto-oncogene, GTPase Allele Frequency: 25.34% Locus: chr1:115256529 Transcript: NM_002524.5	None*	bevacizumab + chemotherapy binimetinib +	6
IIC	BRCA2 deletion BRCA2, DNA repair associated Locus: chr13:32890491	None*	niraparib ⁺ olaparib ⁺ rucaparib ⁺	2
IIC	RB1 deletion RB transcriptional corepressor 1 Locus: chr13:48877953	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO Line of therapy: I: First-line therapy, II+: Other line of therapy

Report Date: 07 Nov 2025 2 of 20

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	SMAD4 deletion	None*	None*	1
	SMAD family member 4			
	Locus: chr18:48573387			

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Prevalent cancer biomarkers without relevant evidence based on included data sources

CUL4A deletion, FANCA p.(W1174del) c.3520_3522delTGG, LATS2 deletion, Microsatellite stable, PARP4 deletion, TP53 p. (A159V) c.476C>T, ERAP2 deletion, HLA-B deletion, MGA p.(G1115Efs*18) c.3344delG, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

DINA	Sequence variar	113					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
NRAS	p.(Q61L)	c.182A>T	COSM583	chr1:115256529	25.34%	NM_002524.5	missense
FANCA	p.(W1174del)	c.3520_3522delTGG		chr16:89811470	47.79%	NM_000135.4	nonframeshift Deletion
TP53	p.(A159V)	c.476C>T	COSM11148	chr17:7578454	25.69%	NM_000546.6	missense
MGA	p.(G1115Efs*18)	c.3344delG		chr15:42005605	28.14%	NM_001164273.1	frameshift Deletion
CNTN6	p.(A816P)	c.2446G>C		chr3:1425021	29.03%	NM_014461.4	missense
HCN1	p.(?)	c.1783+1G>T		chr5:45267190	23.65%	NM_021072.4	unknown
MSH3	p.(A57_A62del)	c.162_179delTGCAGC GGCCGCAGCGGC		chr5:79950707	46.75%	NM_002439.5	nonframeshift Deletion
FNIP1	p.(G76Sfs*16)	c.226_227delGGinsTC GC		chr5:131066724	4.55%	NM_133372.3	frameshift Block Substitution
CSMD3	p.(P3179Q)	c.9536C>A		chr8:113277792	19.32%	NM_198123.2	missense
PTCH1	p.(G1296V)	c.3887G>T		chr9:98209651	32.81%	NM_000264.5	missense
RNF43	p.(P740H)	c.2219C>A		chr17:56434918	55.83%	NM_017763.6	missense
RBM10	p.(?)	c.1630+1G>T		chrX:47040801	27.96%	NM_001204468.1	unknown

Copy Number Variations				
Gene	Locus	Copy Number	CNV Ratio	
BRCA2	chr13:32890491	1	0.78	
RB1	chr13:48877953	0.96	0.64	
SMAD4	chr18:48573387	1.01	0.65	
CUL4A	chr13:113863977	1	0.65	
LATS2	chr13:21548922	1.1	0.69	

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variant Details (continued)

Copy Number Variations (continued)				
Gene	Locus	Copy Number	CNV Ratio	
PARP4	chr13:25000551	0.84	0.59	
ERAP2	chr5:96219500	0.21	0.37	
HLA-B	chr6:31322252	0.46	0.46	

Biomarker Descriptions

NRAS p.(Q61L) c.182A>T

NRAS proto-oncogene, GTPase

<u>Background:</u> The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival 32,133,134.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. NRAS mutations are particularly common in melanomas (up to 25%) and are observed at frequencies of 5-10% in acute myeloid leukemia, colorectal, and thyroid cancers^{5,135}. The majority of NRAS mutations consist of point mutations at G12, G13, and Q61^{5,136}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{6,137}.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab¹³⁸ and panitumumab¹³⁹, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)¹³⁷. In 2022, the FDA has granted fast track designation to the pan-RAF inhibitor, KIN-2787¹⁴⁰, for the treatment of NRAS-mutant metastatic or unresectable melanoma. In 2023, the FDA has granted fast track designation to the pan-RAF inhibitor, naporafenib, in combination with trametinib¹⁴¹ for NRAS-mutated unresectable or metastatic melanoma. In 2024, the FDA has granted fast track designation to the MAPK pathway inhibitor, IMM-1-104¹⁴², for the treatment of NRAS-mutant metastatic or unresectable melanoma. NRAS mutations are associated with poor prognosis in patients with low-risk myelodysplastic syndrome¹⁰⁰ as well as melanoma¹⁴³. In a phase III clinical trial in patients with advanced NRAS-mutant melanoma, binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively¹⁴⁴.

BRCA2 deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged DNA^{16,17}. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and compromise genome integrity^{16,17}. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast and ovarian cancer and in men for breast and prostate cancer^{18,19,20}. For individuals diagnosed with inherited pathogenic or likely pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian cancer by 70 years was 20-48%^{18,21}.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer, 5-10% of breast cancer, and 1-4% of prostate cancer^{22,23,24,25,26,27,28,29}. Somatic alterations in BRCA2 are observed in 5-15% of uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, stomach adenocarcinoma, colorectal adenocarcinoma, lung squamous cell carcinoma, lung adenocarcinoma, and uterine carcinosarcoma, 3-4% of cervical squamous cell carcinoma, head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, cholangiocarcinoma, breast invasive carcinoma, renal papillary cell carcinoma, and 2% of renal clear cell carcinoma, hepatocellular carcinoma, thymoma, prostate adenocarcinoma, sarcoma, and glioblastoma multiforme^{5,6}.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)³⁰. Inhibitors targeting PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells^{31,32}. Consequently, several PARP inhibitors have been FDA approved for BRCA1/2-mutated cancers. Olaparib¹² (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary

Biomarker Descriptions (continued)

peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib¹² is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA2. Rucaparib¹³ is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and ovarian cancer. Talazoparib14 (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Additionally, talazoparib14 in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes BRCA2. Niraparib¹⁵ (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib in combination with abiraterone acetate³³ received FDA approval (2023) for the treatment of deleterious or suspected deleterious BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported34. One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality35. In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex36, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and genomic instability.

RB1 deletion

RB transcriptional corepressor 1

Background: The RB1 gene encodes the retinoblastoma protein (pRB), and is an early molecular hallmark of cancer. RB1 belongs to the family of pocket proteins that also includes p107 and p130, which play a crucial role in the cell proliferation, apoptosis, and differentiation^{53,54}. RB1 is well characterized as a tumor suppressor gene that restrains cell cycle progression from G1 phase to S phase⁵⁵. Specifically, RB1 binds and represses the E2F family of transcription factors that regulate the expression of genes involved in the G1/S cell cycle regulation^{53,54,56}. Germline mutations in RB1 are associated with retinoblastoma (a rare childhood tumor) as well as other cancer types such as osteosarcoma, soft tissue sarcoma, and melanoma⁵⁷.

Alterations and prevalence: Recurrent somatic alterations in RB1, including mutations and biallelic loss, lead to the inactivation of the RB1 protein. RB1 mutations are observed in urothelial carcinoma (approximately 16%), endometrial cancer (approximately 12%), and sarcomas (approximately 9%)⁶. Similarly, biallelic loss of RB1 is observed in sarcomas (approximately 13%), urothelial carcinoma (approximately 6%), and endometrial cancer (approximately 1%)⁶. Biallelic loss of the RB1 gene is also linked to the activation of chemotherapy-induced acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)^{58,59,60}.

<u>Potential relevance:</u> Currently, there are no therapies approved for RB1 aberrations.

SMAD4 deletion

SMAD family member 4

Background: The SMAD4 gene encodes the SMAD family member 4, a transcription factor that belongs to a family of 8 SMAD genes that can be divided into three main classes. SMAD4 (also known as DPC4) belongs to the common mediator SMAD (co-SMAD) class while SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 are part of the regulator SMAD (R-SMAD) class. The inhibitory SMAD (I-SMAD) class includes both SMAD6 and SMAD7 71,72 . SMAD4 is a tumor suppressor gene and functions as a mediator of the TGF-β and BMP signaling pathways that are implicated in cancer initiation and progression 72,73,74 . Loss of SMAD4 does not drive oncogenesis, but is associated with progression of cancers initiated by driver genes such as KRAS and APC 71,72

Alterations and prevalence: Inactivation of SMAD4 can occur due to mutations, allelic loss, homozygous deletions, and 18q loss of heterozygosity (LOH) 71 . Somatic mutations in SMAD4 occur in up to 20% of pancreatic, 12% of colorectal, and 8% of stomach cancers. Recurrent hotspot mutations including R361 and P356 occur in the mad homology 2 (MH2) domain leading to the disruption of the TGF- β signaling 6,74,75 . Copy number deletions occur in up to 12% of pancreatic, 10% of esophageal, and 13% of stomach cancers 5,6,76 .

Potential relevance: Currently, no therapies are approved for SMAD4 aberrations. Clinical studies and meta-analyses have demonstrated that loss of SMAD4 expression confers poor prognosis and poor overall survival (OS) in colorectal and pancreatic cancers^{72,74,77,78,79}. Importantly, SMAD4 is a predictive biomarker to fluorouracil based chemotherapy^{80,81}. In a retrospective analysis of 241 colorectal cancer patients treated with fluorouracil, 21 patients with SMAD4 loss demonstrated significantly poor median OS when compared to SMAD4 positive patients (31 months vs 89 months)⁸¹. In another clinical study of 173 newly diagnosed and recurrent head and neck squamous cell carcinoma (HNSCC) patients, SMAD4 loss is correlated with cetuximab resistance in HPV-negative HNSCC tumors⁸².

Biomarker Descriptions (continued)

CUL4A deletion

cullin 4A

Background: The CUL4A gene encodes cullin 4A, a member of the cullin family, which includes CUL1, CUL2, CUL3, CUL4b, CUL5, CUL7, and Parc1,2. CUL4A belongs to the CUL4 subfamily which also includes CUL4B³. CUL4A and CUL4B share greater than 80% sequence identity and functional redundancy3,4. Cullin proteins share a conserved cullin homology domain and act as molecular scaffolds for RING E3 ubiquitin ligases to assemble into cullin-RING ligase complexes (CRLs)2. CUL4A is part of the CRL4 complex which is responsible for ubiquitination and degradation of a variety of substrates where substrate specificity is dependent on the substrate recognition component of the CRL4 complex⁴. CRL4 substrates include oncoproteins, tumor suppressors, nucleotide excision repair proteins, cell cycle promoters, histone methylation proteins, and tumor-related signaling molecules, thereby impacting various processes critical to tumor development and progression and supporting a complex role of CUL4A in oncogenesis^{3,4}.

Alterations and prevalence: Somatic mutations in CUL4A are observed in 5% of uterine corpus endometrial carcinoma, 3% of skin cutaneous melanoma, and 2% of diffuse large B-cell lymphoma^{5,6}. Structural variants of CUL4A are observed in 3% of cholangiocarcinoma^{5,6}. Amplification of CUL4A is observed in 4% of sarcoma and uterine carcinosarcoma, 3% of colorectal adenocarcinoma, ovarian serous cystadenocarcinoma, liver hepatocellular carcinoma, and bladder urothelial carcinoma, and 2% of lung squamous cell carcinoma, esophageal adenocarcinoma, stomach adenocarcinoma, breast invasive carcinoma, and head and neck squamous cell carcinoma^{5,6}. Biallelic loss of CUL4A is observed in 2% of diffuse large B-cell lymphoma^{5,6}.

Potential relevance: Currently, no therapies are approved for CUL4A aberrations.

FANCA p.(W1174del) c.3520_3522delTGG

Fanconi anemia complementation group A

Background: The FANCA gene encodes the FA complementation group A protein, a member of the Fanconi Anemia (FA) family, which also includes FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (BRIP1), FANCL, FANCM, and FANCN (PALB2)¹. FA genes are tumor suppressors that are responsible for the maintenance of replication fork stability, DNA damage repair through the removal of interstrand cross-links (ICL), and subsequent initiation of the homologous recombination repair (HRR) pathway^{40,41}. In response to DNA damage, FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM assemble to form the FA core complex which is responsible for the monoubiquitination of the FANCI-FANCD2 (ID2) complex⁴⁰. Monoubiquitination of the ID2 complex promotes co-localization with BRCA1/2, which is critical in BRCA mediated DNA repair^{42,43}. Loss of function mutations in the FA family and HRR pathway, including FANCA, can result in the BRCAness phenotype, characterized by a defect in the HRR pathway, mimicking BRCA1 or BRCA2 loss^{44,45}. Germline mutations in FA genes lead to Fanconi Anemia, a condition characterized by chromosomal instability and congenital abnormalities, including bone marrow failure and cancer predisposition^{46,47}. Of those diagnosed with FA, mutations in FANCA are the most common and confer predisposition to myelodysplastic syndrome, acute myeloid leukemia, and solid tumors^{41,47,48,49,50}.

Alterations and prevalence: Somatic mutations in FANCA are observed in 4-8% of uterine, colorectal, and bladder cancers and about 6% of melanoma⁵. Biallelic loss is also reported in 2-5% of uveal melanoma, invasive breast carcinoma, ovarian cancer, and prostate cancer⁵.

Potential relevance: The PARP inhibitor, talazoparib¹⁴ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes FANCA. Consistent with other genes that contribute to the BRCAness phenotype, mutations in FANCA are shown to confer enhanced sensitivity in vitro to DNA damaging agents, including cisplatin, as well as PARP inhibitors such as olaparib^{51,52}. FANCA copy number loss along with reduced expression has also been associated with genetic instability in sporadic acute myeloid leukemia (AML)⁵⁰.

LATS2 deletion

large tumor suppressor kinase 2

Background: The LATS2 gene encodes the large tumor suppressor kinase 2¹. LATS2 is a serine/threonine protein kinase and, along with LATS1, is a member of the AGC kinase family comprised of more than 60 members^{128,129}. LATS1 and LATS2 are downstream phosphorylation targets of the Hippo pathway, and when activated, mediate the phosphorylation of transcriptional co-activators YAP and TAZ¹³⁰. Phosphorylation of YAP and TAZ results in their cytoplasmic retention and inhibition of nuclear translocation, thereby inhibiting YAP and TAZ mediated transcription of target genes¹³⁰. Mutations in LATS1 and LATS2 are suggested to result in kinase inactivation and loss of function, supporting a tumor suppressor role for LATS1¹³¹.

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in LATS2 are observed in 9% of mesothelioma, 8% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 4% stomach adenocarcinoma, and 3% of colorectal adenocarcinoma^{5,6}. Biallelic deletion of LATS2 is observed in 2% of lung adenocarcinoma and uterine carcinosarcoma^{5,6}.

Potential relevance: Currently, no therapies are approved for LATS2 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹⁰⁶. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{107,108}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2¹⁰⁹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹¹⁰. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹¹⁰. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{111,112,113,114,115}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹⁰⁸. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{107,108,112,116}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{107,108,117,118}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{117,118}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹¹⁹ (2014) and nivolumab¹²⁰ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹¹⁹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹¹⁹. Dostarlimab¹²¹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{113,122}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹²³ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{113,124,125}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹²⁵. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{126,127}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{126,127}.

PARP4 deletion

poly(ADP-ribose) polymerase family member 4

Background: The PARP4 gene encodes the poly(ADP-ribose) polymerase 4 protein¹. PARP4 belongs to the large PARP protein family that also includes PARP1, PARP2, and PARP3². PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADP-ribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis, nucleic acid metabolism, and regulation of chromatin structure²,8. PARP enzymes are involved in several DNA repair pathways²,8. Although the functional role of PARP4 is not well understood, PARP4 has been predicted to function in base excision repair (BER) due to its BRCA1 C Terminus (BRCT) domain which is found in other DNA repair pathway proteins².

Alterations and prevalence: Somatic mutations in PARP4 are observed in 9% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 5% of bladder urothelial carcinoma, 4% of stomach adenocarcinoma, and 3% of lung squamous cell carcinoma^{5,6}. Biallelic deletions in PARP4 are observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{5,6}.

Potential relevance: Currently, no therapies are approved for PARP4 aberrations. However, PARP inhibition is known to induce synthetic lethality in certain cancer types that are homologous recombination repair (HRR) deficient (HRD) due to mutations in the HRR pathway. This is achieved from PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently resulting in cell death^{10,11}. Although not indicated for specific alterations in PARP4, several PARPis including olaparib, rucaparib, talazoparib, and niraparib have been approved in various cancer types with HRD. Olaparib¹² (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the

Biomarker Descriptions (continued)

maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib¹² is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib¹³ (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC. Talazoparib¹⁴ (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Niraparib¹⁵ (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

TP53 p.(A159V) c.476C>T

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁸³. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential⁸⁴. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{85,86}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)5.6,87,88,89,90. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2825.6. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes91,92,93,94. Alterations in TP53 are also observed in pediatric cancers5.6. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)5.6. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)5.6.

Potential relevance: The small molecule p53 reactivator, PC1458695 (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation of SHH-activated, TP53-mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma98. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)99,100,101,102,103. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant104. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system105.

ERAP2 deletion

endoplasmic reticulum aminopeptidase 2

Background: The ERAP2 gene encodes the endoplasmic reticulum aminopeptidase 2 protein. ERAP2, and structurally related ERAP1, are zinc metallopeptidases which play a role in antigen processing within the immune response pathway^{37,38}. Upon uptake by an immune cell, antigens are first processed by the proteasome and then transported into the endoplasmic reticulum where ERAP1 and ERAP2 excise peptide N-terminal extensions to generate mature antigen peptides for presentation on MHC class I molecules^{37,39}. The polymorphic variability in ERAP2 is hypothesized to affect the severity of cytotoxic responses to transformed cells and potentially influence their chances to gain mutations that evade the immune system and become tumorigenic³⁷.

Alterations and prevalence: Somatic mutations in ERAP2 are observed in 7% of uterine corpus endometrial carcinoma and skin cutaneous melanoma, and 2% of colorectal adenocarcinoma, uterine carcinosarcoma, head and neck squamous cell carcinoma, and stomach adenocarcinoma^{5,6}. Deletions are observed in 2% of ovarian serous cystadenocarcinoma, prostate adenocarcinoma, and 1% of colorectal adenocarcinoma, mesothelioma, esophageal adenocarcinoma, and lung squamous cell carcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for ERAP2 aberrations.

Report Date: 07 Nov 2025 8 of 20

Biomarker Descriptions (continued)

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁶¹. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M⁶². The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{63,64,65}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁶⁶.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{5,6}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{5,6}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

MGA p.(G1115Efs*18) c.3344delG

MGA, MAX dimerization protein

Background: The MGA gene encodes MAX dimerization protein MGA, a member of the basic helix-loop-helix leucine zipper (bHLHZ) transcription factor superfamily^{1,67}. Specifically, MGA belongs to group B of the bHLHZ superfamily, which also includes MYC, MAD, and MNT⁶⁸. MGA is capable of heterodimerization with the MAX bHLHZ transcription factor, which results in DNA recognition and transcriptional regulation of target genes involved in cell growth and proliferation⁶⁷. MGA suppresses MYC activity, potentially resulting in MYC target gene downregulation⁶⁹. Mutations in MGA have been observed to correlate with high TMB and deficiency in DNA repair⁷⁰.

Alterations and prevalence: Somatic mutations in MGA are predominantly missense or truncating and are observed in 16% of uterine corpus endometrial carcinoma, 13% of skin cutaneous melanoma, 8% of stomach adenocarcinoma and lung adenocarcinoma, and 6% of colorectal adenocarcinoma and bladder urothelial carcinoma^{5,6}. MGA biallelic deletion is observed in 6% of diffuse large B-cell lymphoma (DLBCL), 3% of mesothelioma, and 2% of ovarian serous cystadenocarcinoma, lung adenocarcinoma, and colorectal adenocarcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for MGA aberrations. However, MGA mutation has been observed to be enriched in non-small cell lung cancer (NSCLC) patients with higher objective response rates to immune checkpoint inhibitor (ICI) therapy⁷⁰.

Report Date: 07 Nov 2025 9 of 20

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

FDA information is current as of 2025-09-17. For the most up-to-date information, search www.fda.gov.

NRAS p.(Q61L) c.182A>T

cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: NRAS Q61 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

• in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

Report Date: 07 Nov 2025 10 of 20

NRAS p.(Q61L) c.182A>T (continued)

panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: NRAS Q61 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

■ In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

Current NCCN Information

Contraindicated

Not recommended

Breakthrough

A Fast Track

NCCN information is current as of 2025-09-02. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

NRAS p.(Q61L) c.182A>T

cetuximab

Cancer type: Colon Cancer Variant class: NRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]

Report Date: 07 Nov 2025 11 of 20

NRAS p.(Q61L) c.182A>T (continued)

cetuximab

Cancer type: Rectal Cancer Variant class: NRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]

panitumumab

Cancer type: Colon Cancer Variant class: NRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 4.2025]

panitumumab

Cancer type: Rectal Cancer Variant class: NRAS Q61 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 3.2025]

Current EMA Information

EMA information is current as of 2025-09-17. For the most up-to-date information, search www.ema.europa.eu.

NRAS p.(Q61L) c.182A>T

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: NRAS Q61 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: NRAS Q61 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Report Date: 07 Nov 2025 12 of 20

Current ESMO Information

Contraindicated

ndicated District Not recommended

Resistance

Breakthrough

Fast Track

ESMO information is current as of 2025-09-02. For the most up-to-date information, search www.esmo.org.

NRAS p.(Q61L) c.182A>T

cetuximab

Cancer type: Colorectal Cancer Variant class: NRAS Q61 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

panitumumab

Cancer type: Colorectal Cancer Variant class: NRAS Q61 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

NRAS p.(Q61L) c.182A>T					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
binimetinib	×	0	×	0	×
bevacizumab + CAPOX	×	×	×	0	×
bevacizumab + FOLFIRI	×	×	×	0	×
bevacizumab + FOLFOX	×	×	×	0	×
bevacizumab + FOLFOXIRI	×	×	×	0	×
daraxonrasib	×	×	×	×	(III)
ERAS-0015	×	×	×	×	(I/II)
JZP-815	×	×	×	×	(1)
Nest-1	×	×	×	×	(1)
ZEN-3694, binimetinib	×	×	×	×	(I)

BRCA2 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
olaparib	×	0	×	×	(II)
niraparib	×	0	×	×	×
rucaparib	×	0	×	×	×
pamiparib, tislelizumab	×	×	×	×	(II)

RB1 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ARTS-021	×	×	×	×	(I/II)

SMAD4 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
regorafenib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 07 Nov 2025 15 of 20

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	38.81%
BRCA2	CNV, CN:1.0
BRCA2	LOH, 13q13.1(32890491-32972932)x1
RAD51B	LOH, 14q24.1(68290164-69061406)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.10(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-09-17. NCCN information was sourced from www.nccn.org and is current as of 2025-09-02. EMA information was sourced from www.ema.europa.eu and is current as of 2025-09-17. ESMO information was sourced from www.esmo.org and is current as of 2025-09-02. Clinical Trials information is current as of 2025-09-02. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Sarikas et al. The cullin protein family. Genome Biol. 2011;12(4):220. PMID: 21554755
- 3. Sang et al. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications. Oncotarget. 2015 Dec 15;6(40):42590-602. PMID: 26460955
- 4. Cheng et al. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):138-159. PMID: 30602127
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Amé et al. The PARP superfamily. Bioessays. 2004 Aug;26(8):882-93. PMID: 15273990
- 8. Morales et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15-28. PMID: 24579667
- 9. Prawira et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res Treat. 2019 Aug;177(1):145-153. PMID: 31119570
- 10. Pilié et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res. 2019 Jul 1;25(13):3759-3771. PMID: 30760478
- 11. Lord et al. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017 Mar 17;355(6330):1152-1158. PMID: 28302823
- 12. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/208558s031lbl.pdf
- 13. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209115s013lbl.pdf
- 14. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/217439s003lbl.pdf
- 15. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/214876s003s004lbl.pdf
- 16. Liu et al. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Res. 2002;4(1):9-13. PMID: 11879553
- 17. Jasin. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene. 2002 Dec 16;21(58):8981-93. PMID: 12483514
- 18. Kuchenbaecker et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun 20;317(23):2402-2416. PMID: 28632866
- 19. Tai et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007 Dec 5;99(23):1811-4. PMID: 18042939
- 20. Levy-Lahad et al. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer. 2007 Jan 15;96(1):11-5. PMID: 17213823
- 21. Chen et al. Penetrance of Breast and Ovarian Cancer in Women Who Carry a BRCA1/2 Mutation and Do Not Use Risk-Reducing Salpingo-Oophorectomy: An Updated Meta-Analysis . JNCI Cancer Spectr. 2020 Aug;4(4):pkaa029. PMID: 32676552
- 22. Petrucelli et al. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews® [Internet]. PMID: 20301425
- 23. Pruthi et al. Identification and Management of Women With BRCA Mutations or Hereditary Predisposition for Breast and Ovarian Cancer. Mayo Clin. Proc. 2010 Dec;85(12):1111-20. PMID: 21123638
- 24. Walsh et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. U.S.A. 2011 Nov 1;108(44):18032-7. PMID: 22006311
- 25. Alsop et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012 Jul 20;30(21):2654-63. PMID: 22711857
- 26. Whittemore et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 2004 Dec;13(12):2078-83. PMID: 15598764
- 27. King et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003 Oct 24;302(5645):643-6. PMID: 14576434
- 28. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer. 2000 Nov;83(10):1301-8. PMID: 11044354
- 29. Shao et al. A comprehensive literature review and meta-analysis of the prevalence of pan-cancer BRCA mutations, homologous recombination repair gene mutations, and homologous recombination deficiencies. Environ Mol Mutagen. 2022 Jul;63(6):308-316. PMID: 36054589

- 30. Hodgson et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer. 2018 Nov;119(11):1401-1409. PMID: 30353044
- 31. Bryant et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005 Apr 14;434(7035):913-7. PMID: 15829966
- 32. Farmer et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005 Apr 14;434(7035):917-21. PMID: 15829967
- 33. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216793s000lbl.pdf
- 34. Barber et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 2013 Feb;229(3):422-9. PMID: 23165508
- 35. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst.). 2018 Nov;71:172-176. PMID: 30177437
- 36. https://www.senhwabio.com//en/news/20220125
- Stratikos et al. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer predisposition. Front Oncol. 2014;4:363. PMID: 25566501
- 38. López. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front Immunol. 2018;9:2463. PMID: 30425713
- 39. Serwold et al. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature. 2002 Oct 3;419(6906):480-3. PMID: 12368856
- 40. Niraj et al. The Fanconi Anemia Pathway in Cancer. Annu Rev Cancer Biol. 2019 Mar;3:457-478. PMID: 30882047
- 41. Rodríguez et al. Fanconi anemia pathway. Curr Biol. 2017 Sep 25;27(18):R986-R988. PMID: 28950089
- 42. Garcia-Higuera et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell. 2001 Feb;7(2):249-62. PMID: 11239454
- 43. Hussain et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum. Mol. Genet. 2004 Jun 15;13(12):1241-8. PMID: 15115758
- 44. Lord et al. BRCAness revisited. Nat. Rev. Cancer. 2016 Feb;16(2):110-20. PMID: 26775620
- 45. Byrum et al. Defining and Modulating 'BRCAness'. Trends Cell Biol. 2019 Sep;29(9):740-751. PMID: 31362850
- 46. Michl et al. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 2016 May 2;35(9):909-23. PMID: 27037238
- 47. Abbasi et al. A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population. Mol Med Rep. 2017 Jun;15(6):3983-3988. PMID: 28440412
- 48. Levran et al. Sequence variation in the Fanconi anemia gene FAA. Proc. Natl. Acad. Sci. U.S.A. 1997 Nov 25;94(24):13051-6. PMID: 9371798
- 49. Antonio et al. A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network. J. Med. Genet. 2007 Apr;44(4):241-9. PMID: 17105750
- 50. Tischkowitz et al. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia. Leukemia. 2004 Mar;18(3):420-5. PMID: 14749703
- 51. McCabe et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006 Aug 15;66(16):8109-15. PMID: 16912188
- 52. Wilkes et al. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Cold Spring Harb Mol Case Stud. 2017 Sep;3(5). PMID: 28864460
- 53. Korenjak et al. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev . 2005 Oct;15(5):520-7. doi: 10.1016/j.gde.2005.07.001. PMID: 16081278
- 54. Sachdeva et al. Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J. Clin. Invest. 2012 Feb;122(2):425-34. PMID: 22293180
- 55. Dyson. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016 Jul 1;30(13):1492-502. PMID: 27401552
- 56. Cobrinik. Pocket proteins and cell cycle control. Oncogene. 2005 Apr 18;24(17):2796-809. PMID: 15838516
- 57. Dommering et al. RB1 mutations and second primary malignancies after hereditary retinoblastoma. Fam. Cancer. 2012 Jun;11(2):225-33. PMID: 22205104
- 58. Anasua et al. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma. . Oman J Ophthalmol . May-Aug 2016;9(2):116-8. PMID: 27433042
- 59. Tanaka et al. Frequent allelic loss of the RB, D13S319 and D13S25 locus in myeloid malignancies with deletion/translocation at 13q14 of chromosome 13, but not in lymphoid malignancies. Leukemia. 1999 Sep;13(9):1367-73. PMID: 10482987

- Gombos et al. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor?.
 Ophthalmology. 2007 Jul;114(7):1378-83. PMID: 17613328
- 61. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 62. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 63. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 64. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 65. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 66. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 67. Hurlin et al. The MAX-interacting transcription factor network. Semin. Cancer Biol. 2006 Aug;16(4):265-74. PMID: 16908182
- 68. Susan. An Overview of the Basic Helix-Loop-Helix Proteins. Genome Biol. 2004;5(6):226. PMID: 15186484
- 69. Llabata et al. Multi-Omics Analysis Identifies MGA as a Negative Regulator of the MYC Pathway in Lung Adenocarcinoma. Mol Cancer Res. 2020 Apr;18(4):574-584. PMID: 31862696
- 70. Sun et al. MGA Mutation as a Novel Biomarker for Immune Checkpoint Therapies in Non-Squamous Non-Small Cell Lung Cancer. Front Pharmacol. 2021;12:625593. PMID: 33927616
- 71. Ahmed et al. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. J Clin Med. 2017 Jan 5;6(1). PMID: 28067794
- 72. Zhao et al. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018;14(2):111-123. PMID: 29483830
- 73. Cicenas et al. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 Mutations in Pancreatic Cancer. Cancers (Basel). 2017 Apr 28;9(5). PMID: 28452926
- 74. Miyaki et al. Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 2003 Jul 11;306(4):799-804. PMID: 12821112
- 75. Mehrvarz et al. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS ONE. 2017;12(3):e0173345. PMID: 28267766
- 76. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 77. Yan et al. Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer. Clin. Cancer Res. 2016 Jun 15;22(12):3037-47. PMID: 26861460
- 78. Voorneveld et al. A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer. Transl Oncol. 2015 Feb;8(1):18-24. PMID: 25749173
- 79. Shugang et al. Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis. Transl Oncol. 2016 Feb;9(1):1-7. PMID: 26947875
- 80. Boulay et al. SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br. J. Cancer. 2002 Sep 9;87(6):630-4. PMID: 12237773
- 81. Kozak et al. Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer. J. Clin. Pathol. 2015 May;68(5):341-5. PMID: 25681512
- 82. Ozawa et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin. Cancer Res. 2017 Sep 1;23(17):5162-5175. PMID: 28522603
- 83. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 84. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 85. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 86. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 87. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745

- 88. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 89. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 90. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 91. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 92. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 93. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 94. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 95. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 96. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 97. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 98. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 99. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 100. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 101. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 2.2025]
- 102. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 103. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 2.2025]
- 104. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 3.2025]
- 105. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 106. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 107. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 108. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 109. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 110. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15:58(22):5248-57. PMID: 9823339
- 111. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 112. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 113. NCCN Guidelines® NCCN-Colon Cancer [Version 4.2025]
- 114. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 115. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec:94(50):e2260. PMID: 26683947
- 116. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427

- 117. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 118. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 119. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s178lbl.pdf
- 120. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s131lbl.pdf
- 121. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 122. NCCN Guidelines® NCCN-Rectal Cancer [Version 3.2025]
- 123. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s136lbl.pdf
- 124. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 125. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 126. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 127. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 128. Furth et al. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 2017 Sep;24(9):1488-1501. PMID: 28644436
- 129. Leroux et al. AGC kinases, mechanisms of regulation #and innovative drug development. Semin Cancer Biol. 2018 Feb;48:1-17. PMID: 28591657
- 130. Meng et al. Mechanisms of Hippo pathway regulation. Genes Dev. 2016 Jan 1;30(1):1-17. PMID: 26728553
- 131. Yu et al. Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer. Protein Cell. 2015 Jan;6(1):6-11. PMID: 25482410
- 132. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 133. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- 134. Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/PP0.00000000000187. PMID: 27341593
- 135. Janku et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769. PMID: 21829508
- 136. Ohashi et al. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 2013 May 1;19(9):2584-91. PMID: 23515407
- 137. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 138. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 139. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
- 140. https://investors.kinnate.com/news-releases/news-release-details/kinnate-biopharma-inc-receives-fast-track-designation-us-food
- 141. https://investors.erasca.com/node/7891/pdf
- 142. https://ir.immuneering.com/news-releases/news-release-details/immuneering-granted-fda-fast-track-designation-imm-1-104
- 143. Johnson et al. Treatment of NRAS-Mutant Melanoma. Curr Treat Options Oncol. 2015 Apr;16(4):15. doi: 10.1007/s11864-015-0330-z. PMID: 25796376
- 144. Dummer et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):435-445. PMID: 28284557