


Tel. 1661-5117 www.smlab.co.kr



**Report Date**: 29 Oct 2025 1 of 34

Patient Name: 김아정 Gender: F Sample ID: N25-270 Primary Tumor Site: lung Collection Date: 2025.10.15

## Sample Cancer Type: Lung Cancer

| Table of Contents        | Page |
|--------------------------|------|
| Variant Details          | 2    |
| Biomarker Descriptions   | 4    |
| Alert Details            | 16   |
| Relevant Therapy Summary | 17   |

Report Highlights 8 Relevant Biomarkers 20 Therapies Available 211 Clinical Trials

## **Relevant Lung Cancer Findings**

| Gene        | Finding          |                     | Gene  | Finding       |
|-------------|------------------|---------------------|-------|---------------|
| ALK         | None detected    |                     | NTRK1 | None detected |
| BRAF        | None detected    |                     | NTRK2 | None detected |
| EGFR        | EGFR exon 19     | deletion            | NTRK3 | None detected |
| ERBB2       | None detected    |                     | RET   | None detected |
| KRAS        | None detected    |                     | ROS1  | None detected |
| MET         | None detected    |                     |       |               |
| Genomic Alt | eration          | Finding             |       |               |
| Tumor Mu    | ıtational Burden | 3.8 Mut/Mb measured |       |               |

### **Relevant Biomarkers**

| Tier | Genomic Alteration                                                                                                           | Relevant Therapies<br>(In this cancer type)                                                                                                                                                                                                                                                                                                                                        | Relevant Therapies<br>(In other cancer type) | Clinical Trials |
|------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|
| IA   | EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 32.61% Locus: chr7:55242469 Transcript: NM_005228.5 | afatinib 1,2/I,II+ amivantamab + lazertinib 1,2/I,II+ bevacizumab† + erlotinib 2/I,II+ dacomitinib 1,2/I,III+ erlotinib 2/I,III+ erlotinib + ramucirumab 1,2/I,III+ gefitinib 1,2/I,III+ osimertinib 1,2/I,III+ osimertinib + chemotherapy 1,2/I amivantamab + chemotherapy 1,2/II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy I atezolizumab + bevacizumab + chemotherapy II+ | None*                                        | 196             |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

<sup>†</sup> Includes biosimilars/generics

Report Date: 29 Oct 2025 2 of 34

## **Relevant Biomarkers (continued)**

| Tier | Genomic Alteration                                                          | Relevant Therapies<br>(In this cancer type) | Relevant Therapies<br>(In other cancer type)   | Clinical Trials |
|------|-----------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------|
| IIC  | BRCA2 deletion  BRCA2, DNA repair associated  Locus: chr13:32890491         | None*                                       | niraparib   +<br>olaparib   +<br>rucaparib   + | 2               |
| IIC  | MTAP deletion methylthioadenosine phosphorylase Locus: chr9:21802646        | None*                                       | None*                                          | 9               |
| IIC  | CDKN2A deletion  cyclin dependent kinase inhibitor 2A Locus: chr9:21968178  | None*                                       | None*                                          | 3               |
| IIC  | ATRX deletion  ATRX, chromatin remodeler  Locus: chrX:76763769              | None*                                       | None*                                          | 1               |
| IIC  | CDKN2B deletion  cyclin dependent kinase inhibitor 2B  Locus: chr9:22005728 | None*                                       | None*                                          | 1               |
| IIC  | LATS2 deletion large tumor suppressor kinase 2 Locus: chr13:21548922        | None*                                       | None*                                          | 1               |
| IIC  | RB1 deletion  RB transcriptional corepressor 1  Locus: chr13:48877953       | None*                                       | None*                                          | 1               |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.



🛕 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🧳 Breakthrough, 🔼 Fast Track

EGFR exon 19 deletion

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

### Prevalent cancer biomarkers without relevant evidence based on included data sources

ARID1B deletion, Microsatellite stable, PARP4 deletion, RAD52 deletion, RNASEH2B deletion, RPA1 deletion, HLA-B deletion, PRDM1 deletion, HDAC2 deletion, TNFAIP3 deletion, MAP3K4 deletion, SUFU deletion, ETV6 deletion, NCOR1 deletion, USP9X deletion, DDX3X deletion, RBM10 deletion, KDM5C deletion, AMER1 deletion, ZMYM3 deletion, PHF6 deletion, Tumor Mutational Burden

### **Variant Details**

| DNA Sequence Variants |                      |                                  |            |               |                     |             |                                        |
|-----------------------|----------------------|----------------------------------|------------|---------------|---------------------|-------------|----------------------------------------|
| Gene                  | Amino Acid Change    | Coding                           | Variant ID | Locus         | Allele<br>Frequency | Transcript  | Variant Effect                         |
| EGFR                  | p.(L747_A750delinsP) | c.2239_2248delTTAAG<br>AGAAGinsC | COSM12382  | chr7:55242469 | 32.61%              | NM_005228.5 | nonframeshift<br>Block<br>Substitution |
| FANCE                 | p.(S52R)             | c.154A>C                         |            | chr6:35420476 | 45.42%              | NM_021922.3 | missense                               |

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

<sup>†</sup> Includes biosimilars/generics

Line of therapy: I: First-line therapy, II+: Other line of therapy

# **Variant Details (continued)**

## **DNA Sequence Variants (continued)**

| Gene  | Amino Acid Change | Coding               | Variant ID | Locus           | Allele<br>Frequency | Transcript     | Variant Effect |
|-------|-------------------|----------------------|------------|-----------------|---------------------|----------------|----------------|
| CELF2 | p.(?)             | c.977-6_977-5insGTTT |            | chr10:11356096  | 93.90%              | NM_006561.3    | unknown        |
| KMT2A | p.(M3297T)        | c.9890T>C            |            | chr11:118376497 | 46.87%              | NM_001197104.2 | missense       |
| ZFHX3 | p.(T1288M)        | c.3863C>T            |            | chr16:72845477  | 9.15%               | NM_006885.4    | missense       |
| MAST3 | p.(E1067*)        | c.3199G>T            |            | chr19:18257814  | 30.71%              | NM_015016.2    | nonsense       |

| Copy Number Variations |                 |             |           |  |  |
|------------------------|-----------------|-------------|-----------|--|--|
| Gene                   | Locus           | Copy Number | CNV Ratio |  |  |
| BRCA2                  | chr13:32890491  | 1           | 0.65      |  |  |
| MTAP                   | chr9:21802646   | 0.1         | 0.34      |  |  |
| CDKN2A                 | chr9:21968178   | 0.0         | 0.31      |  |  |
| ATRX                   | chrX:76763769   | 1.09        | 0.69      |  |  |
| CDKN2B                 | chr9:22005728   | 0.04        | 0.33      |  |  |
| LATS2                  | chr13:21548922  | 0.93        | 0.63      |  |  |
| RB1                    | chr13:48877953  | 1.06        | 0.68      |  |  |
| ARID1B                 | chr6:157099057  | 1.04        | 0.67      |  |  |
| PARP4                  | chr13:25000551  | 0.96        | 0.64      |  |  |
| RAD52                  | chr12:1022494   | 0.94        | 0.63      |  |  |
| RNASEH2B               | chr13:51484145  | 0.94        | 0.64      |  |  |
| RPA1                   | chr17:1733385   | 1.07        | 0.68      |  |  |
| HLA-B                  | chr6:31322252   | 0.48        | 0.48      |  |  |
| PRDM1                  | chr6:106534408  | 1.06        | 0.68      |  |  |
| HDAC2                  | chr6:114262171  | 0.97        | 0.65      |  |  |
| TNFAIP3                | chr6:138192315  | 1.07        | 0.68      |  |  |
| MAP3K4                 | chr6:161412931  | 1.12        | 0.69      |  |  |
| SUFU                   | chr10:104263903 | 1.04        | 0.67      |  |  |
| ETV6                   | chr12:11803059  | 0.9         | 0.62      |  |  |
| NCOR1                  | chr17:15935586  | 1           | 0.65      |  |  |
| USP9X                  | chrX:40982869   | 1.09        | 0.68      |  |  |
| DDX3X                  | chrX:41193501   | 1.1         | 0.69      |  |  |
| RBM10                  | chrX:47006798   | 1.04        | 0.67      |  |  |
| KDM5C                  | chrX:53221892   | 1.06        | 0.67      |  |  |
| AMER1                  | chrX:63409727   | 1.06        | 0.68      |  |  |
| ZMYM3                  | chrX:70460753   | 0.97        | 0.65      |  |  |
| PHF6                   | chrX:133511628  | 1.09        | 0.68      |  |  |

## **Variant Details (continued)**

| Copy Number Variations (continued) |                |             |           |  |  |
|------------------------------------|----------------|-------------|-----------|--|--|
| Gene                               | Locus          | Copy Number | CNV Ratio |  |  |
| PRDM9                              | chr5:23509577  | 1.01        | 0.66      |  |  |
| FYN                                | chr6:111982890 | 0.93        | 0.63      |  |  |
| ESR1                               | chr6:152163831 | 0.97        | 0.64      |  |  |
| CD274                              | chr9:5456050   | 1.07        | 0.68      |  |  |
| FGF23                              | chr12:4479456  | 0.68        | 0.55      |  |  |
| CHD4                               | chr12:6692405  | 0.87        | 0.61      |  |  |
| FGF9                               | chr13:22245989 | 0.8         | 0.58      |  |  |
| FLT3                               | chr13:28578185 | 0.58        | 0.51      |  |  |
| AR                                 | chrX:66766015  | 0.94        | 0.64      |  |  |

## **Biomarker Descriptions**

#### EGFR exon 19 deletion

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family¹. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹¹¹٩. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways¹²⁰. Activation of these pathways promotes cell proliferation, differentiation, and survival¹²²¹.¹²².

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations<sup>4,5,123,124</sup>. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21125. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer<sup>125</sup>. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L8610, and short in-frame insertion mutations in exon 20126,127,128,129. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations 130. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma 125,131, Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma<sup>4,5,124,131,132</sup>. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma<sup>133,134,135</sup>. Alterations in EGFR are rare in pediatric cancers<sup>4,5</sup>. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)<sup>4,5</sup>. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)4,5.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib<sup>136</sup> (2004) and gefitinib<sup>137</sup> (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations<sup>138</sup>. Second-generation TKIs afatinib<sup>139</sup> (2013) and dacomitinib<sup>140</sup> (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763\_Y764insFQEA, confer resistance to the same therapies<sup>141,142,143,144</sup>. However, BDTX-189<sup>145</sup> was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR

## **Biomarker Descriptions (continued)**

inhibitors, CLN-081 (TPC-064)<sup>146</sup> and sunvozertinib<sup>147</sup>, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance<sup>148</sup>. The primary resistance mutation that emerges following treatment with firstgeneration TKI is T790M, accounting for 50-60% of resistant cases<sup>125</sup>. Third generation TKIs were developed to maintain sensitivity in the presence of T790M148. Osimertinib149 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases<sup>148</sup>. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa<sup>150</sup>. T790M and C797S can occur in either cis or trans allelic orientation<sup>150</sup>. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs<sup>150</sup>. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone<sup>150,151</sup>. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs<sup>150</sup>. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535<sup>152</sup> (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations<sup>153</sup>. The bispecific antibody, amivantamab<sup>154</sup> (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib<sup>155</sup> (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-801156 received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-42157, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301158 (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid<sup>159</sup> (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma<sup>160,161,162</sup>.

#### **BRCA2** deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged DNA<sup>6,7</sup>. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and compromise genome integrity<sup>6,7</sup>. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast and ovarian cancer and in men for breast and prostate cancer<sup>8,9,10</sup>. For individuals diagnosed with inherited pathogenic or likely pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian cancer by 70 years was 20-48%<sup>8,11</sup>.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer, 5-10% of breast cancer, and 1-4% of prostate cancer<sup>12,13,14,15,16,17,18,19</sup>. Somatic alterations in BRCA2 are observed in 5-15% of uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, stomach adenocarcinoma, colorectal adenocarcinoma, lung squamous cell carcinoma, lung adenocarcinoma, and uterine carcinosarcoma, 3-4% of cervical squamous cell carcinoma, head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, cholangiocarcinoma, breast invasive carcinoma, renal papillary cell carcinoma, and 2% of renal clear cell carcinoma, hepatocellular carcinoma, thymoma, prostate adenocarcinoma, sarcoma, and glioblastoma multiforme<sup>4,5</sup>.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)<sup>20</sup>. Inhibitors targeting PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells<sup>21,22</sup>. Consequently, several PARP inhibitors have been FDA approved for BRCA1/2-mutated cancers. Olaparib<sup>23</sup> (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib<sup>23</sup> is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA2. Rucaparib<sup>24</sup> is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and

## **Biomarker Descriptions (continued)**

ovarian cancer. Talazoparib<sup>25</sup> (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Additionally, talazoparib<sup>25</sup> in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes BRCA2. Niraparib<sup>26</sup> (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib in combination with abiraterone acetate<sup>27</sup> received FDA approval (2023) for the treatment of deleterious or suspected deleterious BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported<sup>28</sup>. One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality<sup>29</sup>. In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex<sup>30</sup>, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and genomic instability. In 2024, the FDA granted fast track designation to TNG-348<sup>31</sup>, a USP1 inhibitor, for the treatment of BRCA1/2 mutated breast and ovarian cancer.

#### **MTAP** deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase<sup>1</sup>. Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate<sup>38,39</sup>. Loss of MTAP function is commonly observed in cancer due to deletion or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation<sup>39</sup>.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be codeleted with CDKN2A in numerous solid and hematological cancers<sup>39,40</sup>. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21% of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma<sup>4,5</sup>. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

#### **CDKN2A** deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)<sup>220</sup>. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb<sup>221,222,223</sup>. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions<sup>224</sup>. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation¹, 224, 225. CDKN2A aberrations commonly co-occur with CDKN2B<sup>220</sup>. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation<sup>226</sup>. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer<sup>227,228</sup>.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations<sup>229</sup>. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma<sup>4,5</sup>. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe<sup>4,5</sup>. Alterations in CDKN2A are also observed in pediatric cancers<sup>5</sup>. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of

## **Biomarker Descriptions (continued)**

embryonal tumors<sup>5</sup>. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)<sup>5</sup>.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors<sup>54,230,231</sup>. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma<sup>162</sup>. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib<sup>232,233,234</sup>. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme<sup>235</sup>. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer<sup>236,237,238,239</sup>.

#### **ATRX** deletion

ATRX, chromatin remodeler

Background: The ATRX gene encodes the ATRX chromatin remodeler and ATPase/helicase domain protein, which belongs to SWI/SNF family of chromatin remodeling proteins<sup>1</sup>. The SWI/SNF proteins are a group of DNA translocases that use ATP hydrolysis to remodel chromatin structure and maintain genomic integrity by controlling transcriptional regulation, DNA repair, and chromosome stability through the regulation of telomere length<sup>185,186,187,188</sup>. ATRX is a tumor suppressor that interacts with the MRE11-RAD50-NBN (MRN) complex, which is involved in double-stranded DNA (dsDNA) break repair<sup>189,190,191</sup>.

Alterations and prevalence: Somatic mutations of ATRX are observed in 38% of brain lower grade glioma, 15% of uterine corpus endometrial carcinoma, 14% of sarcoma, 9% of glioblastoma multiforme and skin cutaneous melanoma, 7% of colorectal adenocarcinoma, 6% of lung adenocarcinoma, stomach adenocarcinoma, and cervical squamous cell carcinoma, 5% of bladder urothelial carcinoma and lung squamous cell carcinoma, 4% of adrenocortical carcinoma, head and neck squamous cell carcinoma and uterine carcinosarcoma, and 2% of diffuse large B-cell lymphoma, ovarian serous cystadenocarcinoma, breast invasive carcinoma, pheochromocytoma and paraganglioma, kidney renal clear cell carcinoma, pancreatic adenocarcinoma, liver hepatocellular carcinoma and kidney chromophobe<sup>4,5</sup>. Biallelic deletion of ATRX is observed in 7% of sarcoma, 3% of kidney chromophobe, and 2% of brain lower grade glioma<sup>4,5</sup>. Although alterations of ATRX in pediatric populations are rare, somatic mutations are observed in 6% of gliomas, 4% of bone cancer, 3% of soft tissue sarcoma, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), embryonal tumor (3 in 332 cases), and leukemia (2 in 354 cases)<sup>5</sup>. Biallelic deletion of ATRX is observed in 1% of peripheral nervous system tumors (1 in 91 cases) in and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases)<sup>5</sup>.

Potential relevance: Currently, no therapies are approved for ATRX aberrations. Loss of ATRX protein expression correlates with the presence of ATRX mutations<sup>192,193</sup>. ATRX deficiency along with IDH mutation and TP53 mutation is diagnostic of astrocytoma IDH-mutant as defined by the World Health Organization (WHO)<sup>194,195</sup>.

#### **CDKN2B** deletion

cyclin dependent kinase inhibitor 2B

<u>Background</u>: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression<sup>1,220</sup>. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)<sup>220</sup>. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb<sup>221,222,223</sup>. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A<sup>220</sup>. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma<sup>1,240,241</sup>.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma, 11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma, breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe<sup>4,5</sup>. Somatic mutations in CDKN2B are observed in 2% of uterine carcinosarcoma<sup>4,5</sup>. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14% of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers<sup>4,5</sup>. Somatic mutations in CDKN2B are observed in less than 1% of bone cancer (1 in 327 cases)<sup>4,5</sup>.

<u>Potential relevance</u>: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular marker used in staging grade 4 pediatric IDH-mutant astrocytoma<sup>162</sup>.

## **Biomarker Descriptions (continued)**

#### **LATS2** deletion

large tumor suppressor kinase 2

<u>Background</u>: The LATS2 gene encodes the large tumor suppressor kinase 2<sup>1</sup>. LATS2 is a serine/threonine protein kinase and, along with LATS1, is a member of the AGC kinase family comprised of more than 60 members<sup>163,164</sup>. LATS1 and LATS2 are downstream phosphorylation targets of the Hippo pathway, and when activated, mediate the phosphorylation of transcriptional co-activators YAP and TAZ<sup>165</sup>. Phosphorylation of YAP and TAZ results in their cytoplasmic retention and inhibition of nuclear translocation, thereby inhibiting YAP and TAZ mediated transcription of target genes<sup>165</sup>. Mutations in LATS1 and LATS2 are suggested to result in kinase inactivation and loss of function, supporting a tumor suppressor role for LATS1<sup>166</sup>.

Alterations and prevalence: Somatic mutations in LATS2 are observed in 9% of mesothelioma, 8% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 4% stomach adenocarcinoma, and 3% of colorectal adenocarcinoma<sup>4,5</sup>. Biallelic deletion of LATS2 is observed in 2% of lung adenocarcinoma and uterine carcinosarcoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for LATS2 aberrations.

#### **RB1** deletion

RB transcriptional corepressor 1

Background: The RB1 gene encodes the retinoblastoma protein (pRB), and is an early molecular hallmark of cancer. RB1 belongs to the family of pocket proteins that also includes p107 and p130, which play a crucial role in the cell proliferation, apoptosis, and differentiation<sup>71,72</sup>. RB1 is well characterized as a tumor suppressor gene that restrains cell cycle progression from G1 phase to S phase<sup>73</sup>. Specifically, RB1 binds and represses the E2F family of transcription factors that regulate the expression of genes involved in the G1/S cell cycle regulation<sup>71,72,74</sup>. Germline mutations in RB1 are associated with retinoblastoma (a rare childhood tumor) as well as other cancer types such as osteosarcoma, soft tissue sarcoma, and melanoma<sup>75</sup>.

Alterations and prevalence: Recurrent somatic alterations in RB1, including mutations and biallelic loss, lead to the inactivation of the RB1 protein. RB1 mutations are observed in urothelial carcinoma (approximately 16%), endometrial cancer (approximately 12%), and sarcomas (approximately 9%)<sup>5</sup>. Similarly, biallelic loss of RB1 is observed in sarcomas (approximately 13%), urothelial carcinoma (approximately 6%), and endometrial cancer (approximately 1%)<sup>5</sup>. Biallelic loss of the RB1 gene is also linked to the activation of chemotherapy-induced acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)<sup>76,77,78</sup>.

Potential relevance: Currently, there are no therapies approved for RB1 aberrations.

#### ARID1B deletion

AT-rich interaction domain 1B

Background: The ARID1B gene encodes the AT-rich interaction domain 1B tumor suppressor protein<sup>1</sup>. ARID1B, also known as BAF250B, belongs to the ARID1 subfamily that also includes ARID1A<sup>1,242</sup>. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin remodeling complex<sup>242,243</sup>. The BAF complex is a multisubunit protein that consists of SMARCB1/IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B<sup>243</sup>. The BAF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression<sup>243,244</sup>. Recurrent inactivating mutations in BAF complex subunits, including ARID1B, lead to transcriptional dysfunction, suggesting ARID2B functions as a tumor suppressor<sup>242</sup>.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors<sup>244</sup>. Somatic mutations in ARID1B are observed in 9% of uterine corpus endometrial carcinoma, 8% of cholangiocarcinoma, 7% of skin cutaneous melanoma, and 6% of stomach adenocarcinoma, bladder urothelial carcinoma, and colorectal adenocarcinoma<sup>4,5</sup>. Biallelic loss of ARID1B is observed in 6% of uveal melanoma, 1% of bladder urothelial carcinoma, stomach adenocarcinoma, skin cutaneous melanoma, and colorectal adenocarcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for ARID1B aberrations. Mutations in chromatin modifying genes, including ARID1B, are considered to be characteristic genetic features of hepatosplenic T-cell lymphoma (HSTL), as they have been observed in up to 62% of cases<sup>245,246</sup>.

#### Microsatellite stable

<u>Background:</u> Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome<sup>97</sup>. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue<sup>98,99</sup>. MSI is closely tied to the status of the mismatch repair (MMR)

## **Biomarker Descriptions (continued)**

genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2<sup>100</sup>. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250<sup>101</sup>. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)<sup>101</sup>. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS<sup>102,103,104,105,106</sup>. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes<sup>99</sup>. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer<sup>98,99,103,107</sup>.

<u>Alterations and prevalence:</u> The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma<sup>98,99,108,109</sup>. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers<sup>108,109</sup>.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab<sup>110</sup> (2014) and nivolumab<sup>111</sup> (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab<sup>110</sup> is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication<sup>110</sup>. Dostarlimab<sup>112</sup> (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer<sup>104,113</sup>. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab<sup>114</sup> (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location<sup>104,115,116</sup>. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients<sup>116</sup>. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors<sup>117,118</sup>. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers<sup>117,118</sup>.

#### **PARP4** deletion

poly(ADP-ribose) polymerase family member 4

Background: The PARP4 gene encodes the poly(ADP-ribose) polymerase 4 protein<sup>1</sup>. PARP4 belongs to the large PARP protein family that also includes PARP1, PARP2, and PARP3<sup>171</sup>. PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADP-ribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis, nucleic acid metabolism, and regulation of chromatin structure<sup>171,172</sup>. PARP enzymes are involved in several DNA repair pathways<sup>171,172</sup>. Although the functional role of PARP4 is not well understood, PARP4 has been predicted to function in base excision repair (BER) due to its BRCA1 C Terminus (BRCT) domain which is found in other DNA repair pathway proteins<sup>173</sup>.

Alterations and prevalence: Somatic mutations in PARP4 are observed in 9% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 5% of bladder urothelial carcinoma, 4% of stomach adenocarcinoma, and 3% of lung squamous cell carcinoma<sup>4,5</sup>. Biallelic deletions in PARP4 are observed in 2% of diffuse large B-cell lymphoma (DLBCL)<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for PARP4 aberrations. However, PARP inhibition is known to induce synthetic lethality in certain cancer types that are homologous recombination repair (HRR) deficient (HRD) due to mutations in the HRR pathway. This is achieved from PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently resulting in cell death<sup>174,175</sup>. Although not indicated for specific alterations in PARP4, several PARPis including olaparib, rucaparib, talazoparib, and niraparib have been approved in various cancer types with HRD. Olaparib<sup>23</sup> (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib<sup>23</sup> is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib<sup>24</sup> (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC. Talazoparib<sup>25</sup> (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Niraparib<sup>26</sup> (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

Report Date: 29 Oct 2025 10 of 34

## **Biomarker Descriptions (continued)**

#### **RAD52 deletion**

RAD52 homolog, DNA repair protein

<u>Background</u>: The RAD52 gene encodes the RAD52 homolog, DNA repair protein<sup>1</sup>. RAD52 binds to single- and double-stranded DNA and enables strand exchange for double-strand break (DSB) repair by binding to RAD51<sup>176</sup>. RAD52 also promotes DSB repair through homologous recombination repair (HRR) by recruiting BRCA1 to sites of DSBs, which leads to the removal of TP53BP1 and prevents DSB repair by non-homologous end joining (NHEJ)<sup>177</sup>.

Alterations and prevalence: Somatic mutations in RAD52 are observed in 2% of uterine corpus endometrial carcinoma, uterine carcinosarcoma, and skin cutaneous melanoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for RAD52 aberrations.

#### RNASEH2B deletion

ribonuclease H2 subunit B

Background: The RNASEH2B gene encodes the ribonuclease H2 subunit B protein<sup>1</sup>. RNASEH2B functions as an auxiliary subunit of RNase H2 holoenzyme along with RNASEH2C and the catalytic subunit RNASEH2A<sup>201,202</sup>. RNase H2 is responsible for the removal of ribonucleotides that have been misincorporated in DNA, and also degrades DNA:RNA hybrids formed during transcription<sup>201</sup>. Specifically, RNase H2 is observed to interact with BRCA1 for DNA:RNA hybrid resolution at double-strand breaks (DSBs) through homologous recombination repair (HRR)<sup>201</sup>.

Alterations and prevalence: Somatic mutations in RNASEH2B are observed in 3% of uterine corpus endometrial carcinoma, and 2% of skin cutaneous melanoma<sup>4,5</sup>. RNASEH2B biallelic deletions are observed in 10% of prostate adenocarcinoma, 7% sarcoma, 6% of bladder urothelial carcinoma, and 3% of ovarian serous cystadenocarcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for RNASEH2B aberrations.

#### **RPA1** deletion

replication protein A1

Background: The RPA1 gene encodes replication protein A1¹. Replication protein A (RPA) is a heterotrimeric complex composed of RPA1 (RPA70), RPA2 (RPA32), and RPA3 (RPA14)²0². RPA is involved in multiple DNA repair processes including base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination repair (HRR)²0². RPA is known to participate in DNA damage recognition by binding single stranded DNA (ssDNA) and interacting with several proteins involved in DNA repair processes including XPA, ERCC5, RAD52, RAD51, BRCA1, and BRCA2, thereby promoting DNA replication and repair²0².

Alterations and prevalence: Somatic mutations in RPA1 are observed in 3% of uterine corpus endometrial carcinoma, and 2% of colorectal adenocarcinoma, cervical squamous cell carcinoma, uterine carcinosarcoma, esophageal adenocarcinoma, and skin cutaneous melanoma<sup>4,5</sup>. Biallelic deletions in RPA1 are observed in 2% of adrenocortical carcinoma, liver hepatocellular carcinoma, diffuse large B-cell lymphoma (DLBCL), and lung adenocarcinoma<sup>4,5</sup>.

<u>Potential relevance:</u> Currently, no therapies are approved for RPA1 aberrations.

#### **HLA-B** deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells<sup>79</sup>. MHC class I molecules are heterodimers composed of two polypeptide chains,  $\alpha$  and B2M<sup>80</sup>. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the  $\alpha$  polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self<sup>81,82,83</sup>. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B<sup>84</sup>.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal

## **Biomarker Descriptions (continued)**

adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma<sup>4,5</sup>. Biallelic loss of HLA-B is observed in 5% of DLBCL<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

#### PRDM1 deletion

PR/SET domain 1

Background: The PRDM1 gene encodes the PR/SET domain 1 protein, also known as BLIMP1¹. PRDM1 is a transcriptional repressor that regulates B- and T-cell differentiation¹67,168,169. PRDM1 drives the differentiation of mature B-cells to antibody-secreting cells (ASCs) and is commonly expressed in ASCs¹70. PRDM1, along with other transcription factors, also regulates the expression of IL-2, IL-21, and IL-10 in effector T-cells, resulting in T-cell mediated immunosuppression through IL repression¹69. Dysregulation of B-cell terminal differentiation, as a result of PRDM1 mutations, has been observed to contribute to lymphoma development, supporting a tumor suppressor role for PRDM1¹70.

Alterations and prevalence: Somatic mutations in PRDM1 are observed in 7% of skin cutaneous melanoma, 6% of uterine corpus endometrial carcinoma, 5% diffuse large B-cell lymphoma (DLBCL), and 3% of cholangiocarcinoma<sup>4,5</sup>. Additionally, PRDM1 mutations have been reported in 25% of activated B-cell phenotype diffuse large B-cell lymphoma (ABC-DLBCL)<sup>170</sup>. PRDM1 biallelic deletions are observed in 10% of DLBCL, 9% of prostate adenocarcinoma, and 6% of uveal melanoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for PRDM1 aberrations.

#### **HDAC2** deletion

histone deacetylase 2

Background: The HDAC2 gene encodes the histone deacetylase 2 protein<sup>1</sup>. HDAC2 is part of the histone deacetylase (HDAC) family consisting of 18 different isoforms categorized into four classes (I-IV)<sup>209</sup>. Specifically, HDAC2 is a member of class I, along with HDAC1, HDAC3, and HDAC8<sup>209</sup>. HDACs, including HDAC2, function by removing acetyl groups on histone lysines resulting in chromatin condensation, transcriptional repression, and regulation of cell proliferation and differentiation<sup>209,210</sup>. HDAC2 negatively regulates antigen presentation by inhibiting CIITA, which regulates MHC class II genes<sup>209</sup>. Further, HDAC2 and HDAC1 are essential for B-cell proliferation during development and antigen stimulation in mature B-cells<sup>209</sup>. HDAC deregulation, including overexpression, is observed in a variety of tumor types, which is proposed to affect the expression of genes involved in cellular regulation and promote tumor development<sup>209,211</sup>.

Alterations and prevalence: Somatic mutations in HDAC2 are observed in 4% of uterine corpus endometrial carcinoma, 2% of diffuse large B-cell lymphoma (DLBCL) and colorectal adenocarcinoma<sup>4,5</sup>. Biallelic deletions in HDAC2 are observed in 8% of prostate adenocarcinoma and DLBCL, and 6% of uveal melanoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for HDAC2 aberrations. Although not approved for specific HDAC2 alterations, the pan-HDAC inhibitor vorinostat (2006) is approved for the treatment of progressive, persistent, or recurrent cutaneous T-cell lymphoma (CTCL) following treatment with two systemic therapies<sup>212</sup>. The pan-HDAC inhibitor, romidepsin (2009), is approved for the treatment of CTCL and peripheral T-cell lymphoma (PTCL) having received at least one prior systemic therapy<sup>213</sup>. The pan-HDAC inhibitor, belinostat (2014), is approved for the treatment of relapsed or refractory PTCL<sup>214</sup>. The pan-HDAC inhibitor, panobinostat (2015), is approved for the treatment of multiple myeloma in combination of bortezomib and dexamethasone having received at least 2 prior regimens<sup>215</sup>.

#### **TNFAIP3** deletion

TNF alpha induced protein 3

Background: The TNFAIP3 gene encodes the TNF alpha induced protein 3¹. TNFAIP3, also known as A20, is a ubiquitin modifying protein that possesses deubiquitination, E3 ligase, and ubiquitin binding activity²⁴₹. TNFAIP3 is known to negatively regulate the NF-κB pathway by means of its ubiquitin modifying ability, thus impacting inflammatory and immune responses²⁴₹,²⁴⁴8. Specifically, TNFAIP3 is known to function as a cysteine protease with deubiquitination (DUB) capability and possesses seven zinc finger motifs that mediate binding to K63- and M1- polyubiquitin chains, thereby altering protein degradation and other protein-protein interactions²⁴₹7. TNFAIP3 deficient cells are observed to promote aberrant NF-κB signaling, deregulation of which is proposed to contribute to lymphoma pathogenesis²⁴₹₹,²⁴⁴9.

Report Date: 29 Oct 2025 12 of 34

## **Biomarker Descriptions (continued)**

Alterations and prevalence: Somatic mutations in TNFAIP3 are observed in 12% of diffuse large B-cell lymphoma (DLBCL), 4% of uterine corpus endometrial carcinoma, 3% of skin cutaneous melanoma, and 2% of colorectal adenocarcinoma and bladder urothelial carcinoma<sup>4,5</sup>. Biallelic loss of TNFAIP3 is observed in 30% of human B-cell lymphoma, 12% of DLBCL and 8% of uveal melanoma<sup>4,5,247</sup>.

Potential relevance: Currently, no therapies are approved for TNFAIP3 aberrations.

#### MAP3K4 deletion

mitogen-activated protein kinase kinase kinase 4

Background: The MAP3K4 gene encodes the mitogen-activated protein kinase kinase 4, also known as MEKK4¹. MAP3K4 is involved in the JNK signaling pathway along with MAP3K12, MAP2K4, MAP2K7, MAPK8, MAPK9, and MAPK10²¹6. Activation of MAPK proteins occurs through a kinase signaling cascade²¹6,²¹7,²¹8. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members²¹6,²¹7,²¹8. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation²¹6,²¹7,²¹8. In intrahepatic cholangiocarcinoma, mutations leading to lack of MAP3K4 activity result in vascular invasion and poor survival, supporting a tumor suppressor role for MAP3K4²¹9.

Alterations and prevalence: Somatic mutations in MAP3K4 are observed in 10% of uterine corpus endometrial carcinoma, 9% of skin cutaneous melanoma, 7% of uterine carcinosarcoma, and 6% of colorectal adenocarcinoma<sup>4,5</sup>. Biallelic deletions are observed in 6% of uveal melanoma, 3% of ovarian serous cystadenocarcinoma, and 2% of diffuse large B-cell lymphoma (DLBCL)<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for MAP3K4 aberrations.

#### **SUFU** deletion

SUFU negative regulator of hedgehog signaling

Background: SUFU encodes the SUFU negative regulator of hedgehog signaling protein, a protein integrally involved in inhibition of hedgehog pathway signaling<sup>1</sup>. During early human development, hedgehog pathway activation of the Gli/Ci family of zinc finger transcription factors is known to drive both cell proliferation and differentiation<sup>196</sup>. SUFU is capable of interacting and complexing with GLI1 and GLI2, thereby regulating transactivation of GLI1 and GLI2 target genes and inhibiting hedgehog pathway signaling<sup>197,198</sup>. Aberrant activation of the hedgehog signaling pathway has been implicated in several cancer types, supporting a tumor suppressor role for SUFU<sup>199</sup>. Germline mutations in SUFU confer a strong predisposition to medulloblastoma, particularly the desmoplastic/nodular subtype, and is observed almost exclusively in children less than 3 years of age<sup>200</sup>.

Alterations and prevalence: Somatic mutations are observed in 4% endometrial carcinoma, 2% esophageal adenocarcinoma, and stomach adenocarcinoma<sup>5</sup>. Biallelic deletion of SUFU is observed in 2% of mesothelioma, diffuse large cell B-cell lymphoma, and prostate adenocarcinoma<sup>5</sup>.

Potential relevance: Currently, no therapies are approved for SUFU aberrations.

#### ETV6 deletion

ETS variant 6

Background: The ETV6 gene encodes the E twenty-six (ETS) variant 1 transcription factor<sup>41</sup>. ETV6 contains an N-terminal pointed (PNT) domain responsible for protein-protein interactions and a C-terminal ETS domain involved in DNA binding<sup>41</sup>. ETV6 plays a critical role in embryonic development as well as hematopoiesis and is the target of chromosomal rearrangement and missense mutations in hematological malignancies and solid tumors<sup>42,43</sup>. Hereditary mutations in ETV6 are associated with a predisposition to hematological cancers, including acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and myelodysplastic syndromes (MDS)<sup>44,45,46,47,48</sup>.

Alterations and prevalence: ETV6 translocations are prevalent in hematological malignancies and have been observed with numerous fusion partners<sup>49</sup>. The most recurrent translocation is t(12;21)(p13;q22), which results in the ETV6::RUNX1 fusion and is observed in 20-25% of childhood acute lymphoblastic leukemia (ALL) and 2% of adult ALL<sup>49,50</sup>. The t(5;12)(q33;p13) translocation, which results in the ETV6::PDGFRB fusion, is recurrent in chronic myelomonocytic leukemia (CMML)<sup>49,51</sup>. Other ETV6 fusions, including ETV6::PDGFRA, ETV6::NTRK2, ETV6::NTRK3, and ETV6::ABL1, are reported in hematological malignancies and solid tumors<sup>43,49,52</sup>. ETV6 fusions involving a receptor tyrosine kinase (RTK) fusion partner retains the ETV6 PNT domains and the tyrosine kinase domain of the RTK, leading to constitutive kinase activation<sup>49,52</sup>. Mutations in ETV6 are primarily missense, nonsense, or frameshift and are observed in 5% of diffuse large B-cell lymphoma (DLBCL) and uterine corpus endometrial carcinoma, 4% of skin cutaneous melanoma, 3% of colorectal adenocarcinoma and stomach adenocarcinoma, and 2% of bladder urothelial carcinoma and uterine carcinosarcoma<sup>4,5,41,53</sup>. ETV6 mutations occur in the PNT and ETS domain of ETV6 and may impair ETV6 oligomerization or DNA-binding, respectively<sup>41</sup>. Biallelic

## **Biomarker Descriptions (continued)**

deletion of ETV6 is observed in 4% of DLBCL, 3% of prostate adenocarcinoma, and 2% of lung adenocarcinoma<sup>4,5</sup>. Alterations in ETV6, in addition to ETV6::RUNX1 fusion, are also observed in pediatric cancers<sup>49,52</sup>. ETV6 fusions occur in 12% of B-lymphoblastic leukemia/lymphoma and 1% of leukemia (1 in 107 cases)<sup>49,52</sup>. Somatic mutations in ETV6 are observed in 2% of B-lymphoblastic leukemia/lymphoma and less than 1% of leukemia (3 in 354 cases), embryonal tumors (1 in 332 cases), and bone cancer (1 in 327 cases)<sup>49,52</sup>. Biallelic deletion of ETV6 is observed in 11% of B-lymphoblastic leukemia/lymphoma and 4% of leukemia<sup>49,52</sup>.

Potential relevance: ETV6::NTRK3 fusion is useful as an ancillary diagnostic marker in congenital/infantile fibrosarcoma and inflammatory myofibroblastic tumors<sup>54,55</sup>. Nonsense or frameshift mutations in ETV6 are independently associated with poor prognosis in MDS<sup>56</sup>. However, ETV6::RUNX1 fusions are associated with standard risk in adults and favorable outcomes in children with ALL<sup>57,58,59</sup>. ETV6 fusions that partner with RTKs demonstrate response to various tyrosine kinase inhibitors such as imatinib, nilotinib, and entrectinib<sup>60</sup>. Specifically, individual case reports of an ETV6::PDGFRA fusion chronic eosinophilic leukemia patient and an ETV6::PDGFRB fusion CMML patient treated with imatinib demonstrated complete cytogenetic response (CCyR) and complete hematological responses, respectively<sup>61,62</sup>. Additionally, an ETV6::ABL1 fusion Ph-negative CML patient treated with nilotinib demonstrated CCyR and major molecular response (MMR) at 22 months from diagnosis<sup>63</sup>. In another case report, an ETV6::NTRK3 fusion mammary analogue secretory carcinoma (MASC) patient demonstrated partial response to entrectinib with an 89% reduction in tumor burden<sup>64</sup>.

#### NCOR1 deletion

nuclear receptor corepressor 1

Background: NCOR1 encodes nuclear receptor corepressor 1, which serves as a scaffold protein for large corepressor including transducin beta like 1 X-linked (TBL1X), TBL1X/Y related 1 (TBL1XR1), the G-protein-pathway suppressor 2 (GPS2), and protein deacetylases such as histone deacetylase 3 (HDAC3)<sup>1,203,204</sup>. NCOR1 plays a key role in several processes including embryonal development, metabolism, glucose homeostasis, inflammation, cell fate, chromatin structure and genomic stability<sup>203,204,205,206</sup>. NCOR1 has been shown exhibit a tumor suppressor role by inhibiting invasion and metastasis in various cancer models<sup>204</sup>. Inactivation of NCOR1 through mutation or deletion is observed in several cancer types including colorectal cancer, bladder cancer, hepatocellular carcinomas, lung cancer, and breast cancer<sup>204,207</sup>.

Alterations and prevalence: Somatic mutations in NCOR1 are observed in 13% of uterine corpus endometrial carcinoma, 11% of skin cutaneous melanoma, 8% of bladder urothelial carcinoma, 7% of stomach adenocarcinoma, 6% of colorectal adenocarcinoma, 5% of lung squamous cell carcinoma and breast invasive carcinoma, 4% of cervical squamous cell carcinoma and lung adenocarcinoma, 3% of mesothelioma, head and neck squamous cell carcinoma, cholangiocarcinoma, and kidney renal papillary cell carcinoma, and 2% of esophageal adenocarcinoma, glioblastoma multiforme, and ovarian serous cystadenocarcinoma<sup>4,5</sup>. Biallelic loss of NCOR1 are observed in 3% of liver hepatocellular carcinoma, and 2% of uterine carcinosarcoma, stomach adenocarcinoma, diffuse large B-cell lymphoma, and bladder urothelial carcinoma<sup>4,5</sup>. Structural variants of NCOR1 are observed in 3% of cholangiocarcinoma and 2% of uterine carcinosarcoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for NCOR1 aberrations.

#### **USP9X** deletion

ubiquitin specific peptidase 9 X-linked

Background: The USP9X gene encodes the ubiquitin specific peptidase 9 X-lined protein¹. USP9X is a deubiquitinating enzyme (DUB) and a member of the ubiquitin-specific protease (USP) subclass of cysteine proteases². DUBs are responsible for protein deubiquitination, thereby counter-regulating post-transcriptional ubiquitin modification of proteins within the cell².³. USP9X has many substrates and is commonly upregulated in several solid tumor types, supporting an oncogenic role for USP9X³. Conversely, in some cancer types, USP9X has been observed to function as a tumor suppressor, suggesting its exact role in cancer may be dependent on its subtrates³. In breast cancer, USP9X has been shown to stabilize BRCA1 by inhibiting its ubiquitination, thereby influencing the regulation of homologous recombination and repair³.

Alterations and prevalence: Somatic mutations are observed in 16% of uterine corpus endometrial carcinoma, 11% of skin cutaneous melanoma, 7% of colorectal adenocarcinoma, 6% of cholangiocarcinoma, 5% of stomach adenocarcinoma, lung squamous cell carcinoma, diffuse large B-cell lymphoma (DLBCL), and head and neck squamous cell carcinoma<sup>4,5</sup>. Biallelic deletions are observed in 4% of esophageal adenocarcinoma, 3% of head and neck squamous cell carcinoma, 2% of mesothelioma, uterine carcinosarcoma, and lung squamous cell carcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for USP9X aberrations.

Report Date: 29 Oct 2025 14 of 34

## **Biomarker Descriptions (continued)**

#### **DDX3X deletion**

DEAD-box helicase 3, X-linked

Background: The DDX3X gene encodes DEAD-box helicase 3 X-linked, a member of the DEAD-box protein family, which is part of the RNA helicase superfamily II<sup>1,85</sup>. DEAD-box helicases contain twelve conserved motifs including a "DEAD" domain which is characterized by a conserved amino acid sequence of Asp-Glu-Ala-Asp (DEAD)<sup>85,86,87,88</sup>. In DEAD-box proteins, the DEAD domain interacts with β-and γ-phosphates of ATP through Mg2+ and is required for ATP hydrolysis<sup>85</sup>. DDX3X is involved in several processes including the unwinding of double-stranded RNA, splicing of pre-mRNA, RNA export, transcription, and translation<sup>89,90,91,92,93,94,95,96</sup>. Deregulation of DDX3X has been shown to impact cancer progression by modulating proliferation, metastasis, and drug resistance<sup>89</sup>.

Alterations and prevalence: Somatic mutations in DDX3X are observed in 9% of skin cutaneous melanoma and uterine corpus endometrial carcinoma, 7% of diffuse large B-cell lymphoma, 4% of cervical squamous cell carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma, and 2% of lung squamous cell carcinoma and head and neck squamous cell carcinoma<sup>4,5</sup>. Biallelic loss of DDX3X is observed in 4% of esophageal adenocarcinoma, 3% of head and neck squamous cell carcinoma, and 2% of mesothelioma and lung squamous cell carcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for DDX3X aberrations.

#### RBM10 deletion

RNA binding motif protein 10

Background: RBM10 encodes RNA binding motif protein 10, a member of the RNA binding proteins (RBP) family<sup>1,178</sup>. RBM10 regulates RNA splicing and post-transcriptional modification of mRNA<sup>178,179</sup>. RBM10 is suggested to function as a tumor suppressor by promoting apoptosis and inhibiting cellular proliferation through regulation of the MDM2 and p53 feedback loops, as well as influencing BAX expression<sup>178</sup>. RBM10 has been observed to promote transformation and proliferation in lung cancer, supporting an oncogenic role for RBM10<sup>180,181</sup>.

Alterations and prevalence: Somatic mutations in RBM10 are observed in 7% of lung adenocarcinoma, 6% of uterine corpus endometrial carcinoma, 4% of bladder urothelial carcinoma, 3% of colorectal adenocarcinoma and skin cutaneous melanoma, and 2% of diffuse large B-cell lymphoma, pancreatic adenocarcinoma, adrenocortical carcinoma, cervical squamous cell carcinoma, esophageal adenocarcinoma, stomach adenocarcinoma, and kidney chromophobe<sup>4,5</sup>. Biallelic loss of RBM10 is observed in 3% of esophageal adenocarcinoma and 2% of head and neck squamous cell carcinoma<sup>4,5</sup>. Amplification of RBM10 is observed in 5% of ovarian serous cystadenocarcinoma, 4% of uterine carcinosarcoma, and 2% of sarcoma, uterine corpus endometrial carcinoma, adrenocortical carcinoma, and diffuse large B-cell lymphoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for RBM10 aberrations.

#### **KDM5C** deletion

lysine demethylase 5C

Background: The KDM5C gene encodes the lysine demethylase 5C protein, a histone demethylase, also known as JARID1C1,182. Methylation of histone lysine and arginine residues functions to regulate transcription and DNA damage response183. KDM5C removes methylation of di- and trimethylated histone H3 lysine 4 (H3K4) and is involved in the repression of transcription in response to DNA damage182,183. KDM5C alterations result in aberrant H3K4 trimethylation at active replication origins which can lead to stalled DNA replication184.

Alterations and prevalence: Somatic mutations in KDM5C are observed in 9% of uterine corpus endometrial carcinoma, 5% of kidney renal clear cell carcinoma, stomach adenocarcinoma, skin cutaneous melanoma, 4% of lung adenocarcinoma and uterine carcinosarcoma<sup>4,5</sup>. Biallelic loss of KDM5C is observed in 3% of esophageal adenocarcinoma and 2% of head and neck squamous cell carcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for KDM5C aberrations.

#### AMER1 deletion

APC membrane recruitment protein 1

<u>Background:</u> The AMER1 gene encodes APC membrane recruitment protein 1<sup>1</sup>. AMER1 works in complex with CTNNB1, APC, AXIN1, and AXIN2 to regulate the WNT pathway<sup>1,65</sup>. The WNT signaling pathway is responsible for regulating several key components during embryogenesis and has been observed to be involved in tumorigenesis<sup>66,67</sup>. Consequently, the WNT signaling pathway is a target for

Report Date: 29 Oct 2025 15 of 34

## **Biomarker Descriptions (continued)**

therapeutic response in various cancer types<sup>67</sup>. The AMER1 gene is located on the X chromosome and is commonly inactivated in Wilms tumor, a pediatric kidney cancer<sup>68</sup>. AMER1 has also been observed to influence cell proliferation, tumorigenesis, migration, invasion, and cell cycle arrest<sup>65</sup>.

Alterations and prevalence: Somatic mutations of AMER1 are observed in 13% of colorectal adenocarcinoma, 10% of uterine corpus endometrial carcinoma, 8% of skin cutaneous melanoma, 7% of lung adenocarcinoma, 4% of stomach adenocarcinoma, and uterine carcinosarcoma, 3% of lung squamous cell carcinoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, and 2% of diffuse large B-cell lymphoma, liver hepatocellular carcinoma, head and neck squamous cell carcinoma, and breast invasive carcinoma<sup>4,5</sup>. Biallelic deletion of AMER1 is observed in 2% of esophageal adenocarcinoma, diffuse large b-cell lymphoma, uterine carcinosarcoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma, and 1% of stomach adenocarcinoma, sarcoma, liver hepatocellular carcinoma, colorectal adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, and ovarian serous cystadenocarcinoma<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for AMER1 aberrations.

#### ZMYM3 deletion

zinc finger MYM-type containing 3

Background: The ZMYM3 gene encodes the zinc finger MYM-type containing 3 protein<sup>1</sup>. While the function is not fully understood, ZMYM3 is capable of binding histones and DNA, and may facilitate the repair of double-strand breaks (DSBs)<sup>69</sup>.

Alterations and prevalence: Somatic mutations in ZMYM3 are observed in 12% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 4% of colorectal adenocarcinoma, 3% of lung adenocarcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, esophageal adenocarcinoma, and bladder urothelial carcinoma<sup>4,5</sup>. In prostate cancer, ZMYM3 mutations have been observed to be enriched in African American men compared to white men with one study demonstrating occurrence in 11.7% vs. 2.7% of patients, respectively<sup>70</sup>. Biallelic deletion of ZMYM3 is observed in 3% of cholangiocarcinoma and 2% of sarcoma and kidney chromophobe<sup>4,5</sup>.

Potential relevance: Currently, no therapies are approved for ZMYM3 aberrations.

#### PHF6 deletion

PHD finger protein 6

<u>Background:</u> The PHF6 gene encodes the plant homeodomain (PHD) finger protein 6 which contains four nuclear localization signals and two imperfect PHD zinc finger domains. PHF6 is a tumor suppressor that interacts with the nucleosome remodeling deacetylase (NuRD) complex, which regulates nucleosome positioning and transcription of genes involved in development and cell-cycle progression<sup>32,33</sup>.

Alterations and prevalence: The majority of PHF6 aberrations are nonsense, frameshift (70%), or missense (30%) mutations, which result in complete loss of protein expression<sup>32,34,35,36</sup>. Truncating or missense mutations in PHF6 are observed in 38% of adult and 16% of pediatric T-cell acute lymphoblastic leukemia (T-ALL), 20-25% of mixed phenotype acute leukemias (MPAL), and 3% of AML, and 2.6% of hepatocellular carcinoma (HCC)<sup>34,36</sup>. Missense mutations recurrently involve codon C215 and the second zinc finger domain of PHF6<sup>34</sup>. PHF6 mutations are frequently observed in hematologic malignancies from male patients<sup>32,34</sup>.

<u>Potential relevance</u>: Somatic mutations in PHF6 are associated with reduced overall survival in AML patients treated with high-dose induction chemotherapy<sup>37</sup>.

Report Date: 29 Oct 2025 16 of 34

## Alerts Informed By Public Data Sources

#### **Current FDA Information**

Contraindicated

Not recommended

Resistance



Breakthrough



FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

### EGFR exon 19 deletion

## patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion or EGFRi sensitizing mutation

#### **Supporting Statement:**

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

## **Genes Assayed**

### Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD. PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

### Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Report Date: 29 Oct 2025 17 of 34

## **Genes Assayed (continued)**

## Genes Assayed for the Detection of Copy Number Variations (continued)

TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

## Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

### Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FANCH, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

## **Relevant Therapy Summary**

| In this cancer type | O In other cancer type | In this cancer type and other cancer types | No evidence |
|---------------------|------------------------|--------------------------------------------|-------------|
|                     | O memor came a type    | and cancer type and cancer types           |             |

| Relevant Therapy                        | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|-----------------------------------------|-----|------|-----|------|------------------|
| osimertinib                             |     |      |     |      | <b>(III)</b>     |
| afatinib                                | •   | •    | •   | •    | <b>(II)</b>      |
| dacomitinib                             | •   | •    | •   | •    | <b>(II)</b>      |
| gefitinib                               | •   | •    | •   | •    | <b>(II)</b>      |
| erlotinib + ramucirumab                 | •   | •    | •   | •    | ×                |
| amivantamab + carboplatin + pemetrexed  | •   | •    | •   | ×    | ×                |
| amivantamab + lazertinib                | •   |      | •   | ×    | ×                |
| osimertinib + chemotherapy + pemetrexed |     | ×    |     | ×    | ×                |
| bevacizumab + erlotinib                 | ×   | •    | •   | •    | ×                |
| erlotinib                               | ×   | •    | •   | •    | ×                |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## **Relevant Therapy Summary (continued)**

In this cancer type

O In other cancer type

In this cancer type and other cancer types

× No evidence

| Relevant Therapy                                                                                              | FDA | NCCN | EMA | ESMO | Clinical Trials <sup>3</sup> |
|---------------------------------------------------------------------------------------------------------------|-----|------|-----|------|------------------------------|
| osimertinib + carboplatin + pemetrexed                                                                        | ×   | •    | ×   | ×    | ×                            |
| osimertinib + cisplatin + pemetrexed                                                                          | ×   | •    | ×   | ×    | ×                            |
| BAT1706 + erlotinib                                                                                           | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Allergan) + erlotinib                                                                            | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Biocon) + erlotinib                                                                              | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Celltrion) + erlotinib                                                                           | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Mabxience) + erlotinib                                                                           | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Pfizer) + erlotinib                                                                              | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Samsung Bioepis) + erlotinib                                                                     | ×   | ×    | •   | ×    | ×                            |
| bevacizumab (Stada) + erlotinib                                                                               | ×   | ×    | •   | ×    | ×                            |
| atezolizumab + bevacizumab + carboplatin +<br>paclitaxel                                                      | ×   | ×    | ×   | •    | ×                            |
| gefitinib + carboplatin + pemetrexed                                                                          | ×   | ×    | ×   | •    | ×                            |
| adebrelimab, bevacizumab, chemotherapy                                                                        | ×   | ×    | ×   | ×    | (IV)                         |
| afatinib, bevacizumab, chemotherapy                                                                           | ×   | ×    | ×   | ×    | (IV)                         |
| befotertinib                                                                                                  | ×   | ×    | ×   | ×    | (IV)                         |
| bevacizumab, almonertinib, chemotherapy                                                                       | ×   | ×    | ×   | ×    | (IV)                         |
| catequentinib, toripalimab                                                                                    | ×   | ×    | ×   | ×    | (IV)                         |
| EGFR tyrosine kinase inhibitor                                                                                | ×   | ×    | ×   | ×    | (IV)                         |
| gefitinib, chemotherapy                                                                                       | ×   | ×    | ×   | ×    | (IV)                         |
| gefitinib, endostatin                                                                                         | ×   | ×    | ×   | ×    | (IV)                         |
| natural product, gefitinib, erlotinib, icotinib<br>hydrochloride, osimertinib, almonertinib,<br>furmonertinib | ×   | ×    | ×   | ×    | <b>●</b> (IV)                |
| almonertinib, apatinib                                                                                        | ×   | ×    | ×   | ×    | <b>(III)</b>                 |
| almonertinib, chemotherapy                                                                                    | ×   | ×    | ×   | ×    | <b>(III)</b>                 |
| almonertinib, radiation therapy                                                                               | ×   | ×    | ×   | ×    | <b>(III)</b>                 |
| almonertinib, radiation therapy, chemotherapy                                                                 | ×   | ×    | ×   | ×    | <b>(III)</b>                 |
| befotertinib, icotinib hydrochloride                                                                          | ×   | ×    | ×   | ×    | <b>(III)</b>                 |
| bevacizumab, osimertinib                                                                                      | ×   | ×    | ×   | ×    | <b>(III)</b>                 |
| BL-B01D1                                                                                                      | ×   | ×    | ×   | ×    | <b>(III)</b>                 |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## **Relevant Therapy Summary (continued)**

| Relevant Therapy                                        | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|---------------------------------------------------------|-----|------|-----|------|------------------|
| BL-B01D1, osimertinib                                   | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| CK-101, gefitinib                                       | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| datopotamab deruxtecan, osimertinib                     | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| FHND9041, afatinib                                      | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| furmonertinib                                           | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| furmonertinib, osimertinib, chemotherapy                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| gefitinib, afatinib, erlotinib, metformin hydrochloride | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| icotinib hydrochloride, catequentinib                   | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| icotinib hydrochloride, chemotherapy                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| icotinib hydrochloride, radiation therapy               | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| JMT-101, osimertinib                                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, bevacizumab                                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, chemotherapy                               | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, datopotamab deruxtecan                     | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| sacituzumab tirumotecan                                 | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| sacituzumab tirumotecan, osimertinib                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| savolitinib, osimertinib                                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| SH-1028                                                 | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| targeted therapy                                        | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| TY-9591, osimertinib                                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| SCTB-14, chemotherapy                                   | ×   | ×    | ×   | ×    | <b>(</b>   /   ) |
| ABSK-043, furmonertinib                                 | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| almonertinib                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| almonertinib, adebrelimab, chemotherapy                 | ×   | ×    | ×   | ×    | <b>●</b> (II)    |
| almonertinib, bevacizumab                               | ×   | ×    | ×   | ×    | ● (II)           |
| almonertinib, chemoradiation therapy                    | ×   | ×    | ×   | ×    | (II)             |
| almonertinib, dacomitinib                               | ×   | ×    | ×   | ×    | (II)             |
| amivantamab, chemotherapy                               | ×   | ×    | ×   | ×    | <b>●</b> (II)    |
| amivantamab, lazertinib, chemotherapy                   | ×   | ×    | ×   | ×    | (II)             |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 29 Oct 2025 20 of 34

## **Relevant Therapy Summary (continued)**

| Relevant Therapy                                             | FDA | NCCN | EMA | ESMO | Clinical Trials |
|--------------------------------------------------------------|-----|------|-----|------|-----------------|
| atezolizumab, bevacizumab, tiragolumab                       | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| befotertinib, bevacizumab, chemotherapy                      | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| bevacizumab, afatinib                                        | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| bevacizumab, furmonertinib                                   | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| cadonilimab, chemotherapy, catequentinib                     | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| camrelizumab, apatinib                                       | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| capmatinib, osimertinib, ramucirumab                         | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| catequentinib, almonertinib                                  | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| chemotherapy, atezolizumab, bevacizumab                      | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| dacomitinib, osimertinib                                     | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| EGFR tyrosine kinase inhibitor, osimertinib,<br>chemotherapy | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| EGFR tyrosine kinase inhibitor, radiation therapy            | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| erlotinib, chemotherapy                                      | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| erlotinib, OBI-833                                           | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| furmonertinib, bevacizumab                                   | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| furmonertinib, bevacizumab, chemotherapy                     | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| furmonertinib, catequentinib                                 | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| furmonertinib, chemotherapy                                  | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| furmonertinib, chemotherapy, bevacizumab                     | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| furmonertinib, icotinib hydrochloride                        | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| gefitinib, bevacizumab, chemotherapy                         | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| gefitinib, icotinib hydrochloride                            | ×   | ×    | ×   | ×    | (II)            |
| gefitinib, thalidomide                                       | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| icotinib hydrochloride                                       | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| icotinib hydrochloride, autologous RAK cell                  | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| icotinib hydrochloride, osimertinib                          | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| ivonescimab, chemotherapy                                    | ×   | ×    | ×   | ×    | <b>(II)</b>     |
| lazertinib                                                   | ×   | ×    | ×   | ×    | (II)            |
| lazertinib, bevacizumab                                      | ×   | ×    | ×   | ×    | (II)            |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

**Report Date**: 29 Oct 2025 21 of 34

## **Relevant Therapy Summary (continued)**

| Relevant Therapy                                                 | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|------------------------------------------------------------------|-----|------|-----|------|------------------|
| lazertinib, chemotherapy                                         | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| lenvatinib, pembrolizumab                                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| osimertinib, chemoradiation therapy                              | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| osimertinib, radiation therapy                                   | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| PLB-1004, bozitinib, osimertinib                                 | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| ramucirumab, erlotinib                                           | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sacituzumab govitecan                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sacituzumab tirumotecan, chemotherapy, osimertinib               | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib                                                    | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib, catequentinib                                     | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib, golidocitinib                                     | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| tislelizumab, chemotherapy, bevacizumab                          | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| toripalimab                                                      | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| toripalimab, bevacizumab, Clostridium butyricum,<br>chemotherapy | ×   | ×    | ×   | ×    | <b>●</b> (II)    |
| toripalimab, chemotherapy                                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| TY-9591, chemotherapy                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| zorifertinib, pirotinib                                          | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| AFM-24_I, atezolizumab                                           | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| almonertinib, icotinib hydrochloride                             | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| benmelstobart, catequentinib                                     | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| BH-30643                                                         | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| bozitinib, osimertinib                                           | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| BPI-361175                                                       | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| cetrelimab, amivantamab                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| dacomitinib, catequentinib                                       | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| DAJH-1050766                                                     | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| DB-1310, osimertinib                                             | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| dositinib                                                        | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| FWD-1509                                                         | ×   | ×    | ×   | ×    | (I/II)           |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## **Relevant Therapy Summary (continued)**

| Relevant Therapy                                  | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|---------------------------------------------------|-----|------|-----|------|------------------|
| H-002                                             | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| ifebemtinib, furmonertinib                        | ×   | ×    | ×   | ×    | (I/II)           |
| MRTX0902                                          | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| necitumumab, osimertinib                          | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| quaratusugene ozeplasmid, osimertinib             | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| RC-108, furmonertinib, toripalimab                | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| sotiburafusp alfa, HB-0030                        | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| sunvozertinib, chemotherapy                       | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| TAS-3351                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| TQ-B3525, osimertinib                             | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| TRX-221                                           | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| WSD-0922                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| afatinib, chemotherapy                            | ×   | ×    | ×   | ×    | (I)              |
| alisertib, osimertinib                            | ×   | ×    | ×   | ×    | (I)              |
| almonertinib, midazolam                           | ×   | ×    | ×   | ×    | <b>(</b> 1)      |
| ASKC-202                                          | ×   | ×    | ×   | ×    | (I)              |
| AZD-9592                                          | ×   | ×    | ×   | ×    | <b>(</b> 1)      |
| BG-60366                                          | ×   | ×    | ×   | ×    | (I)              |
| BPI-1178, osimertinib                             | ×   | ×    | ×   | ×    | (I)              |
| catequentinib, gefitinib, metformin hydrochloride | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| DZD-6008                                          | ×   | ×    | ×   | ×    | (I)              |
| EGFR tyrosine kinase inhibitor, catequentinib     | ×   | ×    | ×   | ×    | (I)              |
| genolimzumab, fruquintinib                        | ×   | ×    | ×   | ×    | (I)              |
| IBI-318, lenvatinib                               | ×   | ×    | ×   | ×    | (I)              |
| KQB-198, osimertinib                              | ×   | ×    | ×   | ×    | (I)              |
| LAVA-1223                                         | ×   | ×    | ×   | ×    | (I)              |
| MRX-2843, osimertinib                             | ×   | ×    | ×   | ×    | (I)              |
| osimertinib, carotuximab                          | ×   | ×    | ×   | ×    | (I)              |
| osimertinib, Minnelide                            | ×   | ×    | ×   | ×    | (I)              |
|                                                   |     |      |     |      |                  |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 29 Oct 2025 23 of 34

## **Relevant Therapy Summary (continued)**

**MTAP** deletion

| EGFR exon 19 deletion (continued)                                      |     |      |     |      |                  |
|------------------------------------------------------------------------|-----|------|-----|------|------------------|
| Relevant Therapy                                                       | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| osimertinib, tegatrabetan                                              | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| patritumab deruxtecan                                                  | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| PB-101 (Precision Biotech Taiwan Corp), EGFR tyrosine kinase inhibitor | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| repotrectinib, osimertinib                                             | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| VIC-1911, osimertinib                                                  | ×   | ×    | ×   | ×    | <b>(</b> 1)      |
| WJ13404                                                                | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| WTS-004                                                                | ×   | ×    | ×   | ×    | <b>(</b> 1)      |
| YH-013                                                                 | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| YL-202                                                                 | ×   | ×    | ×   | ×    | <b>(</b> l)      |

| BRCA2 deletion          |     |      |     |      |                  |
|-------------------------|-----|------|-----|------|------------------|
| Relevant Therapy        | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| olaparib                | ×   | 0    | ×   | ×    | <b>(II)</b>      |
| niraparib               | ×   | 0    | ×   | ×    | ×                |
| rucaparib               | ×   | 0    | ×   | ×    | ×                |
| pamiparib, tislelizumab | ×   | ×    | ×   | ×    | <b>(II)</b>      |

| Relevant Therapy     | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|----------------------|-----|------|-----|------|------------------|
| AMG 193              | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| TNG-456, abemaciclib | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| TNG-462              | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| GTA-182              | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| ISM-3412             | ×   | ×    | ×   | ×    | (I)              |
| MRTX-1719            | ×   | ×    | ×   | ×    | (I)              |
| PH020-803            | ×   | ×    | ×   | ×    | (I)              |
| S-095035             | ×   | ×    | ×   | ×    | (I)              |
| SYH-2039             | ×   | ×    | ×   | ×    | <b>(</b> l)      |
|                      |     |      |     |      |                  |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 29 Oct 2025 24 of 34

## **Relevant Therapy Summary (continued)**

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

| CDKNZA deletion          |     |      |     |      |                  |
|--------------------------|-----|------|-----|------|------------------|
| Relevant Therapy         | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| palbociclib              | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| palbociclib, abemaciclib | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| AMG 193                  | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |

| ATRX deletion    |     |      |     |      |                  |
|------------------|-----|------|-----|------|------------------|
|                  |     |      |     |      |                  |
| Relevant Therapy | FDA | NCCN | EMA | ESMO | Clinical Trials* |

| pamiparib, tislelizumab | × | × | × | × | (II) |
|-------------------------|---|---|---|---|------|
|                         |   |   |   |   |      |
| CDKN2B deletion         |   |   |   |   |      |

| Relevant Therapy         | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|--------------------------|-----|------|-----|------|------------------|
| palbociclib, abemaciclib | ×   | ×    | ×   | ×    | <b>(II)</b>      |

| LATS2 deletion   |     |      |     |      |                  |
|------------------|-----|------|-----|------|------------------|
| Relevant Therapy | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| IAG-933          | ×   | ×    | ×   | ×    | <b>(</b> l)      |

| RB1 deletion     |     |      |     |      |                  |
|------------------|-----|------|-----|------|------------------|
| Relevant Therapy | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| ARTS-021         | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

### **HRR Details**

| Gene/Genomic Alteration | Finding                           |
|-------------------------|-----------------------------------|
| LOH percentage          | 22.96%                            |
| BRCA2                   | CNV, CN:1.0                       |
| BRCA2                   | LOH, 13q13.1(32890491-32972932)x1 |

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

25 of 34

Report Date: 29 Oct 2025

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

#### References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Dufner et al. Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans. 2019 Dec 20;47(6):1867-1879. PMID: 31845722
- Lu et al. USP9X stabilizes BRCA1 and confers resistance to DNA-damaging agents in human cancer cells. Cancer Med. 2019 Nov;8(15):6730-6740. PMID: 31512408
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Liu et al. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Res. 2002;4(1):9-13. PMID: 11879553
- 7. Jasin. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene. 2002 Dec 16;21(58):8981-93. PMID: 12483514
- 8. Kuchenbaecker et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun 20;317(23):2402-2416. PMID: 28632866
- Tai et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007 Dec 5;99(23):1811-4.
   PMID: 18042939
- 10. Levy-Lahad et al. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer. 2007 Jan 15;96(1):11-5. PMID: 17213823
- 11. Chen et al. Penetrance of Breast and Ovarian Cancer in Women Who Carry a BRCA1/2 Mutation and Do Not Use Risk-Reducing Salpingo-Oophorectomy: An Updated Meta-Analysis . JNCI Cancer Spectr. 2020 Aug;4(4):pkaa029. PMID: 32676552
- 12. Petrucelli et al. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews® [Internet]. PMID: 20301425
- 13. Pruthi et al. Identification and Management of Women With BRCA Mutations or Hereditary Predisposition for Breast and Ovarian Cancer. Mayo Clin. Proc. 2010 Dec;85(12):1111-20. PMID: 21123638
- 14. Walsh et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. U.S.A. 2011 Nov 1;108(44):18032-7. PMID: 22006311
- 15. Alsop et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012 Jul 20;30(21):2654-63. PMID: 22711857
- 16. Whittemore et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 2004 Dec;13(12):2078-83. PMID: 15598764
- 17. King et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003 Oct 24;302(5645):643-6. PMID: 14576434
- 18. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer. 2000 Nov;83(10):1301-8. PMID: 11044354
- 19. Shao et al. A comprehensive literature review and meta-analysis of the prevalence of pan-cancer BRCA mutations, homologous recombination repair gene mutations, and homologous recombination deficiencies. Environ Mol Mutagen. 2022 Jul;63(6):308-316. PMID: 36054589
- 20. Hodgson et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer. 2018 Nov;119(11):1401-1409. PMID: 30353044
- 21. Bryant et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005 Apr 14;434(7035):913-7. PMID: 15829966
- 22. Farmer et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005 Apr 14;434(7035):917-21. PMID: 15829967
- 23. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/208558s028lbl.pdf
- 24. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2022/209115s013lbl.pdf
- 25. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/217439s000lbl.pdf
- 26. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/214876s000lbl.pdf
- 27. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/216793s000lbl.pdf
- 28. Barber et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 2013 Feb;229(3):422-9. PMID: 23165508
- 29. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst.). 2018 Nov;71:172-176. PMID: 30177437

27 of 34

Report Date: 29 Oct 2025

- 30. https://www.senhwabio.com//en/news/20220125
- 31. https://ir.tangotx.com//news-releases/news-release-details/tango-therapeutics-reports-third-quarter-2023-financial-results
- 32. Wendorff et al. Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL. Cancer Discov. 2019 Mar;9(3):436-451. PMID: 30567843
- 33. Lower et al. Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Nat. Genet. 2002 Dec;32(4):661-5. PMID: 12415272
- 34. Van et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 2010 Apr;42(4):338-42. PMID: 20228800
- 35. Van et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia. 2011 Jan;25(1):130-4. PMID: 21030981
- 36. Yoo et al. Somatic mutation of PHF6 gene in T-cell acute lymphoblatic leukemia, acute myelogenous leukemia and hepatocellular carcinoma. Acta Oncol. 2012 Jan;51(1):107-11. PMID: 21736506
- 37. Patel et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012 Mar 22;366(12):1079-89. PMID: 22417203
- 38. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia. 2002 Sep;16(9):1799-807. PMID: 12200696
- 39. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther. 2011 Apr 1;11(7):627-32. PMID: 21301207
- Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. 10.1146/annurevcancerbio-030419-033444
- 41. Wang et al. ETV6 mutation in a cohort of 970 patients with hematologic malignancies. Haematologica. 2014 Oct;99(10):e176-8. PMID: 24997145
- 42. Wang et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 1998 Aug 1;12(15):2392-402. PMID: 9694803
- 43. Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D920-4. PMID: 23161685
- 44. Feurstein et al. Germline ETV6 mutations and predisposition to hematological malignancies. Int. J. Hematol. 2017 Aug;106(2):189-195. PMID: 28555414
- 45. Melazzini et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica. 2016 Nov;101(11):1333-1342. PMID: 27365488
- 46. Zhang et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015 Feb;47(2):180-5. PMID: 25581430
- 47. Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. PMID: 35732831
- 48. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 49. De et al. ETV6 fusion genes in hematological malignancies: a review. Leuk. Res. 2012 Aug;36(8):945-61. PMID: 22578774
- 50. Pui et al. Acute lymphoblastic leukemia. N. Engl. J. Med. 2004 Apr 8;350(15):1535-48. PMID: 15071128
- 51. Golub et al. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994 Apr 22;77(2):307-16. PMID: 8168137
- 52. Taylor et al. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. J. Clin. Invest. 2018 Aug 31;128(9):3819-3825. PMID: 29920189
- 53. Bejar et al. Clinical effect of point mutations in myelodysplastic syndromes. N. Engl. J. Med. 2011 Jun 30;364(26):2496-506. PMID: 21714648
- 54. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- Yamamoto et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology. 2016 Jul;69(1):72-83. PMID: 26647767
- 56. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 57. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 58. NCCN Guidelines® NCCN-Pediatric Acute Lymphoblastic Leukemia [Version 3.2025]
- 59. Mattano et al. Favorable Trisomies and ETV6-RUNX1 Predict Cure in Low-Risk B-Cell Acute Lymphoblastic Leukemia: Results From Children's Oncology Group Trial AALL0331. J Clin Oncol. 2021 May 10;39(14):1540-1552. PMID: 33739852

28 of 34

Report Date: 29 Oct 2025

- 60. Mueller et al. t(4;12)(q12;p13) ETV6-rearranged AML without eosinophilia does not involve PDGFRA: relevance for imatinib insensitivity. Blood Adv. 2022 Jan 8;6(3):818-827. PMID: 34587239
- 61. Curtis et al. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Br. J. Haematol. 2007 Jul;138(1):77-81. PMID: 17555450
- 62. Curtis et al. A novel ETV6-PDGFRB fusion transcript missed by standard screening in a patient with an imatinib responsive chronic myeloproliferative disease. Leukemia. 2007 Aug;21(8):1839-41. Epub 2007 May 17. PMID: 17508004
- 63. Gancheva et al. Myeloproliferative neoplasm with ETV6-ABL1 fusion: a case report and literature review. Mol Cytogenet. 2013 Sep 20;6(1):39. doi: 10.1186/1755-8166-6-39. PMID: 24053143
- 64. Drilon et al. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann Oncol. 2016 May;27(5):920-6. doi: 10.1093/annonc/mdw042. Epub 2016 Feb 15. PMID: 26884591
- 65. Liu et al. Aging (Albany NY). 2020 May 4;12(9):8372-8396. PMID: 32365332
- 66. Komiya et al. Wnt signal transduction pathways. Organogenesis. 2008 Apr;4(2):68-75. PMID: 19279717
- 67. Zhang et al. J Hematol Oncol. 2020 Dec 4;13(1):165. PMID: 33276800
- 68. Rivera et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007 Feb 2;315(5812):642-5. PMID: 17204608
- 69. Leung et al. ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev. 2017 Feb 1;31(3):260-274. PMID: 28242625
- 70. Liu et al. Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Mol Cancer Res. 2020 Dec;18(12):1815-1824. PMID: 33115829
- 71. Korenjak et al. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev . 2005 Oct;15(5):520-7. doi: 10.1016/j.gde.2005.07.001. PMID: 16081278
- 72. Sachdeva et al. Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J. Clin. Invest. 2012 Feb;122(2):425-34. PMID: 22293180
- 73. Dyson. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016 Jul 1;30(13):1492-502. PMID: 27401552
- 74. Cobrinik. Pocket proteins and cell cycle control. Oncogene. 2005 Apr 18;24(17):2796-809. PMID: 15838516
- 75. Dommering et al. RB1 mutations and second primary malignancies after hereditary retinoblastoma. Fam. Cancer. 2012 Jun;11(2):225-33. PMID: 22205104
- 76. Anasua et al. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma. . Oman J Ophthalmol . May-Aug 2016;9(2):116-8. PMID: 27433042
- 77. Tanaka et al. Frequent allelic loss of the RB, D13S319 and D13S25 locus in myeloid malignancies with deletion/translocation at 13q14 of chromosome 13, but not in lymphoid malignancies. Leukemia. 1999 Sep;13(9):1367-73. PMID: 10482987
- 78. Gombos et al. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor?. Ophthalmology. 2007 Jul;114(7):1378-83. PMID: 17613328
- 79. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 80. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 81. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 82. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 83. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 84. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 85. Rocak et al. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol. 2004 Mar;5(3):232-41. PMID: 14991003
- 86. Fuller-Pace. The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochim Biophys Acta. 2013 Aug;1829(8):756-63. PMID: 23523990
- 87. Ali. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res. 2021 Apr 15;296:198352. PMID: 33640359

- 88. Linder et al. Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta. 2013 Aug;1829(8):750-5. PMID: 23542735
- 89. Lin. DDX3X Multifunctionally Modulates Tumor Progression and Serves as a Prognostic Indicator to Predict Cancer Outcomes. Int J Mol Sci. 2019 Dec 31;21(1). PMID: 31906196
- 90. Song et al. The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X. Nat Commun. 2019 Jul 12;10(1):3085. PMID: 31300642
- 91. Zhou et al. Comprehensive proteomic analysis of the human spliceosome. Nature. 2002 Sep 12;419(6903):182-5. PMID: 12226669
- 92. Yedavalli et al. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 2004 Oct 29;119(3):381-92. PMID: 15507209
- 93. Chao et al. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 2006 Jul 1;66(13):6579-88. PMID: 16818630
- 94. Chuang et al. Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science. 1997 Mar 7;275(5305):1468-71. PMID: 9045610
- 95. Shih et al. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene. 2008 Jan 24;27(5):700-14. PMID: 17667941
- 96. Lee et al. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 2008 Aug;36(14):4708-18. PMID: 18628297
- 97. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 98. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 99. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 100. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 101. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 102. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 103. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 104. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 105. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 106. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 107. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 108. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 109. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- $110.\ https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125514s174lbl.pdf$
- 111. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125554s129lbl.pdf
- 112. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/761174s009lbl.pdf
- 113. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 114. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125377s133lbl.pdf
- 115. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 116. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 117. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522

- 118. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 119. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 120. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 121. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 122. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 123. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 124. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 125. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 126. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 127. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 128. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 129. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 130. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 131. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 132. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 133. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 134. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 135. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 136. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2016/021743s025lbl.pdf
- 137. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/206995s004lbl.pdf
- 138. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 139. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2022/201292s017lbl.pdf
- 140. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2020/211288s003lbl.pdf
- 141. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]
- 142. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 143. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 144. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 145. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 146. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 147. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html

Report Date: 29 Oct 2025 31 of 34

- 148. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 149. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/208065s033lbl.pdf
- 150. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 151. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 152. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and
- 153. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 154. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/761210s007lbl.pdf
- 155. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/219008s000lbledt.pdf
- 156. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 157. https://iis.aastocks.com/20231227/11015917-0.PDF
- 158. http://iis.aastocks.com/20230612/10770455-0.PDF
- 159. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 160. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 161. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 162. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 163. Furth et al. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 2017 Sep;24(9):1488-1501. PMID: 28644436
- 164. Leroux et al. AGC kinases, mechanisms of regulation #and innovative drug development. Semin Cancer Biol. 2018 Feb;48:1-17. PMID: 28591657
- 165. Meng et al. Mechanisms of Hippo pathway regulation. Genes Dev. 2016 Jan 1;30(1):1-17. PMID: 26728553
- 166. Yu et al. Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer. Protein Cell. 2015 Jan;6(1):6-11. PMID: 25482410
- 167. Martins et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol. 2006 May;7(5):457-65. PMID: 16565721
- 168. Nutt et al. BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol. 2007 Dec;7(12):923-7. PMID: 17965637
- 169. Fu et al. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J Biomed Sci. 2017 Jul 21;24(1):49. PMID: 28732506
- 170. Kallies et al. Terminal differentiation of lymphocytes depends on Blimp-1. Curr Opin Immunol. 2007 Apr;19(2):156-62. PMID: 17291741
- 171. Amé et al. The PARP superfamily. Bioessays. 2004 Aug;26(8):882-93. PMID: 15273990
- 172. Morales et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15-28. PMID: 24579667
- 173. Prawira et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res Treat. 2019 Aug;177(1):145-153. PMID: 31119570
- 174. Pilié et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res. 2019 Jul 1;25(13):3759-3771. PMID: 30760478
- 175. Lord et al. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017 Mar 17;355(6330):1152-1158. PMID: 28302823
- 176. Jalan et al. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel). 2019 Jul 23;11(7). PMID: 31340507
- 177. Yasuhara et al. Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell. 2018 Oct 4;175(2):558-570.e11. PMID: 30245011
- 178. Cao et al. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol. 2021;11:603932. PMID: 33718153

- 179. Zhang et al. RNA binding motif protein 10 suppresses lung cancer progression by controlling alternative splicing of eukaryotic translation initiation factor 4H. EBioMedicine. 2020 Nov;61:103067. PMID: 33130397
- 180. Sun et al. Functional role of RBM10 in lung adenocarcinoma proliferation. Int J Oncol. 2019 Feb;54(2):467-478. PMID: 30483773
- 181. Loiselle et al. RBM10 promotes transformation-associated processes in small cell lung cancer and is directly regulated by RBM5. PLoS One. 2017;12(6):e0180258. PMID: 28662214
- 182. Iwase et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell. 2007 Mar 23;128(6):1077-88. PMID: 17320160
- 183. Gong et al. Histone methylation and the DNA damage response. Mutat Res. 2017 Sep 23;780:37-47. PMID: 31395347
- 184. Rondinelli et al. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res. 2015 Mar 11;43(5):2560-74. PMID: 25712104
- 185. Ryan et al. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol. 2011 Oct;15(5):649-56. PMID: 21862382
- 186. Heyer et al. Rad54: the Swiss Army knife of homologous recombination?. Nucleic Acids Res. 2006;34(15):4115-25. PMID: 16935872
- 187. Matsuda et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene. 1999 Jun 3;18(22):3427-30. PMID: 10362365
- 188. Abedalthagafi et al. The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Mod. Pathol. 2013 Nov;26(11):1425-32. PMID: 23765250
- 189. Clynes et al. ATRX dysfunction induces replication defects in primary mouse cells. PLoS ONE. 2014;9(3):e92915. PMID: 24651726
- 190. Tang et al. A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J. Biol. Chem. 2004 May 7;279(19):20369-77. PMID: 14990586
- 191. Xue et al. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc. Natl. Acad. Sci. U.S.A. 2003 Sep 16;100(19):10635-40. PMID: 12953102
- 192. Pisapia. The Updated World Health Organization Glioma Classification: Cellular and Molecular Origins of Adult Infiltrating Gliomas. Arch. Pathol. Lab. Med. 2017 Dec;141(12):1633-1645. PMID: 29189064
- 193. Jiao et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 2012 Jul;3(7):709-22. PMID: 22869205
- 194. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 195. NCCN Guidelines® NCCN-Central Nervous System Cancers [Version 5.2024]
- 196. Merchant et al. Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol. 2004 Oct;24(19):8627-41. PMID: 15367681
- 197. Zhang et al. Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nat Commun. 2013;4:2608. PMID: 24217340
- 198. Cherry et al. Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2563-79. PMID: 24311597
- 199. Doheny et al. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells. 2020 Sep 17;9(9). PMID: 32957513
- 200. Guerrini-Rousseau et al. Germline SUFU mutation carriers and medulloblastoma: clinical characteristics, cancer risk, and prognosis. Neuro Oncol. 2018 Jul 5;20(8):1122-1132. PMID: 29186568
- 201. D'Alessandro et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat Commun. 2018 Dec 18;9(1):5376. PMID: 30560944
- 202. Aden et al. Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice. Gastroenterology. 2019 Jan;156(1):145-159.e19. PMID: 30273559
- 203. Geiger et al. Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Front Immunol. 2020;11:569358. PMID: 33117357
- 204. Martínez-Iglesias et al. Tumor suppressive actions of the nuclear receptor corepressor 1. Pharmacol Res. 2016 Jun;108:75-79. PMID: 27149915
- 205. Bhaskara et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010 Nov 16;18(5):436-47. PMID: 21075309

- 206. Mottis et al. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev. 2013 Apr 15;27(8):819-35. PMID: 23630073
- 207. Noblejas-López et al. Evaluation of transcriptionally regulated genes identifies NCOR1 in hormone receptor negative breast tumors and lung adenocarcinomas as a potential tumor suppressor gene. PLoS One. 2018;13(11):e0207776. PMID: 30485330
- 208. Binz et al. Replication Protein A phosphorylation and the cellular response to DNA damage. DNA Repair, 01 Aug 2004, 3(8-9):1015-1024. PMID: 15279788
- 209. Falkenberg et al. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014 Sep;13(9):673-91. PMID: 25131830
- 210. Li et al. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016 Dec:84:284-290. PMID: 27665474
- 211. Li et al. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10). PMID: 27599530
- $212.\ https://www.accessdata.fda.gov/drugsatfda\_docs/label/2018/021991s009lbl.pdf$
- 213. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/022393s017lbl.pdf
- 214. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/2062560rig1s006lbl.pdf
- 215. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2015/205353s000lbl.pdf
- 216. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 217. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- 218. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156
- 219. Yang et al. Mitogen-activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial-mesenchymal transition. Hepatology. 2015 Dec;62(6):1804-16. PMID: 26340507
- 220. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 221. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 222. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 223. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 224. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 225. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 226. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 227. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 228. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 229. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 230. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 231. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 232. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 233. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 234. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 235. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607

Report Date: 29 Oct 2025 34 of 34

- 236. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 237. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 238. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 239. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 240. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. . Cancer Discov.2015 Jul;5(7):723-9. PMID: 25873077
- 241. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018 Jan 4;37(1):128-138. PMID: 28892048
- 242. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013 Jan;3(1):35-43. PMID: 23208470
- 243. Wilson et al. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011 Jun 9;11(7):481-92. PMID: 21654818
- 244. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. Nat Commun. 8;14648. PMID: 28262751
- 245. NCCN Guidelines® NCCN-T-Cell Lymphomas [Version 1.2025]
- 246. McKinney et al. The Genetic Basis of Hepatosplenic T-cell Lymphoma. Cancer Discov. 2017 Apr;7(4):369-379. PMID: 28122867
- 247. Malynn et al. A20: A multifunctional tool for regulating immunity and preventing disease. Cell Immunol. 2019 Jun;340:103914. PMID: 31030956
- 248. Giordano et al. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11115-20. PMID: 25024217
- 249. Küppers. The biology of Hodgkin's lymphoma. Nat Rev Cancer. 2009 Jan;9(1):15-27. PMID: 19078975