

삼광의료재단 서울특별시 서초구 바우뫼로41길 ⁵⁸ (양재동, 선화빌딩) 검사기관 11365200

Tel. 1661-5117 www.smlab.co.kr

Report Date: 22 Oct 2025 1 of 16

Patient Name: 이상희 Primary Tumor Site: Lung Gender: M Collection Date: 2025.09.22. Sample ID: N25-252

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Relevant Therapy Summary	10

Report Highlights 2 Relevant Biomarkers 0 Therapies Available 2 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	None detected		NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	None detected		NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	None detected		ROS1	None detected
MET	None detected			
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	7.63 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	ATRX deletion ATRX, chromatin remodeler Locus: chrX:76763769	None*	None*	1
IIC	MYCL amplification MYCL proto-oncogene, bHLH transcription factor Locus: chr1:40362966	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

BCL6 amplification, CDKN2A p.(R103Vfs*34) c.306_333delGCGGCTGGACGTGCGCGATGCCTGGGGC, KMT2D c.14382+1G>A, Microsatellite stable, NFE2L2 p.(R34G) c.100C>G, NOTCH2 p.(P6Rfs*27) c.17_18delCC, TP53 p.(Y236*) c.708C>G, YAP1 amplification, MPL amplification, MECOM amplification, IL7R amplification, AR amplification, ZMYM3 deletion, Tumor Mutational Burden

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

2 of 16

Report Date: 22 Oct 2025

Variant Details

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
CDKN2A	p.(R103Vfs*34)	c.306_333delGCGGCT GGACGTGCGCGATGC CTGGGGC		chr9:21971024	45.61%	NM_001195132.2	frameshift Deletion
KMT2D	p.(?)	c.14382+1G>A		chr12:49422610	61.65%	NM_003482.4	unknown
NFE2L2	p.(R34G)	c.100C>G	COSM132847	chr2:178098945	51.14%	NM_006164.5	missense
NOTCH2	p.(P6Rfs*27)	c.17_18delCC		chr1:120612002	21.82%	NM_024408.4	frameshift Deletion
TP53	p.(Y236*)	c.708C>G		chr17:7577573	49.37%	NM_000546.6	nonsense
SDHA	p.(S346F)	c.1037C>T		chr5:233733	19.25%	NM_004168.4	missense
CTNND2	p.(Q132K)	c.394C>A		chr5:11411693	24.40%	NM_001332.4	missense
RAC1	p.(D63N)	c.187G>A		chr7:6431634	20.58%	NM_018890.4	missense
OR5L2	p.(S160T)	c.478T>A		chr11:55595172	21.12%	NM_001004739.1	missense
SRC	p.(D238N)	c.712G>A		chr20:36026110	21.60%	NM_198291.3	missense
SMARCB1	p.(R162K)	c.485G>A		chr22:24143253	48.52%	NM_003073.5	missense
KLHL4	p.(V480D)	c.1439T>A		chrX:86887324	51.76%	NM_057162.3	missense

Copy Number Variations				
Gene	Locus	Copy Number	CNV Ratio	
ATRX	chrX:76763769	0.16	0.53	
MYCL	chr1:40362966	7.63	2.44	
BCL6	chr3:187440209	4.98	1.76	
YAP1	chr11:101981594	5.37	1.86	
MPL	chr1:43803495	5.35	1.85	
MECOM	chr3:168802636	5.24	1.83	
IL7R	chr5:35857035	5.47	1.88	
AR	chrX:66766015	7.92	2.51	
ZMYM3	chrX:70460753	0.1	0.51	
MUTYH	chr1:45794962	5.16	1.81	
ADAMTS12	chr5:33527235	5.47	1.88	
AMER1	chrX:63409727	5.37	1.86	

Biomarker Descriptions

ATRX deletion

ATRX, chromatin remodeler

<u>Background</u>: The ATRX gene encodes the ATRX chromatin remodeler and ATPase/helicase domain protein, which belongs to SWI/SNF family of chromatin remodeling proteins¹. The SWI/SNF proteins are a group of DNA translocases that use ATP hydrolysis to remodel chromatin structure and maintain genomic integrity by controlling transcriptional regulation, DNA repair, and chromosome stability through the regulation of telomere length^{9,10,11,12}. ATRX is a tumor suppressor that interacts with the MRE11-RAD50-NBN (MRN) complex, which is involved in double-stranded DNA (dsDNA) break repair^{13,14,15}.

Alterations and prevalence: Somatic mutations of ATRX are observed in 38% of brain lower grade glioma, 15% of uterine corpus endometrial carcinoma, 14% of sarcoma, 9% of glioblastoma multiforme and skin cutaneous melanoma, 7% of colorectal adenocarcinoma, 6% of lung adenocarcinoma, stomach adenocarcinoma, and cervical squamous cell carcinoma, 5% of bladder urothelial carcinoma and lung squamous cell carcinoma, 4% of adrenocortical carcinoma, head and neck squamous cell carcinoma and uterine carcinosarcoma, and 2% of diffuse large B-cell lymphoma, ovarian serous cystadenocarcinoma, breast invasive carcinoma, pheochromocytoma and paraganglioma, kidney renal clear cell carcinoma, pancreatic adenocarcinoma, liver hepatocellular carcinoma and kidney chromophobe^{6,7}. Biallelic deletion of ATRX is observed in 7% of sarcoma, 3% of kidney chromophobe, and 2% of brain lower grade glioma^{6,7}. Although alterations of ATRX in pediatric populations are rare, somatic mutations are observed in 6% of gliomas, 4% of bone cancer, 3% of soft tissue sarcoma, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), embryonal tumor (3 in 332 cases), and leukemia (2 in 354 cases)⁷. Biallelic deletion of ATRX is observed in 1% of peripheral nervous system tumors (1 in 91 cases) in and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases)⁷.

<u>Potential relevance:</u> Currently, no therapies are approved for ATRX aberrations. Loss of ATRX protein expression correlates with the presence of ATRX mutations^{16,17}. ATRX deficiency along with IDH mutation and TP53 mutation is diagnostic of astrocytoma IDH-mutant as defined by the World Health Organization (WHO)^{18,19}.

MYCL amplification

MYCL proto-oncogene, bHLH transcription factor

<u>Background</u>: The MYCL gene encodes MYCL proto-oncogene, a basic helix-loop-helix transcription factor¹. MYCL is a member of MYC oncogene family that includes related transcription factors, MYC and MYCN which regulate transcription in 10-15% of promoter regions^{1,87}. MYCL, along with MYC and MYCN, control cell proliferation, replication, evasion of growth suppression and cell death⁸⁸.

<u>Alterations and prevalence:</u> Amplification of MYCL was first discovered in small cell lung cancer (SCLC) cell lines and is observed in 8% of ovarian serous cystadenocarcinoma, 6% of bladder urothelial carcinoma and esophageal squamous cell carcinoma, as well as 3% uterine corpus endometrial carcinoma^{6,7,89}.

<u>Potential relevance:</u> Currently, no therapies are approved for MYCL aberrations.

BCL6 amplification

B-cell CLL/lymphoma 6

<u>Background</u>: The BCL6 gene encodes the B-cell lymphoma 6 (BCL6) transcription repressor, a protein that is responsible for inhibiting the expression of several genes including those involved in the DNA damage response, cell cycle checkpoints, and modulating BCL2 expression^{76,77,78}. BCL6 is most commonly expressed in germinal center B-cells and is required for germinal cell formation and affinity maturation during T-cell dependent antibody responses⁷⁷. BCL6 is observed to competitively bind DNA motifs recognized by the oncogenic transcription factor STAT6, thereby repressing STAT6 mediated gene transcription^{79,80}. Aberrations in BCL6 often lead to altered target gene transcription, including those involved in cell cycle arrest, differentiation, and apoptosis^{76,77}.

Alterations and prevalence: BCL6 rearrangement most commonly occurs with immunoglobulin H (IGH) partners and results in the truncation or removal the BCL6 promoter region and juxtaposition of BCL6 downstream of the partner gene promoter⁸¹. Replacement of the BCL6 promoter resulting from such translocations has been observed to lead to aberrant BCL6 expression⁸². BCL6 rearrangement is a common event in lymphoma and has been observed in up to 40% of diffuse large B-cell lymphoma (DLBCL) and 15% of follicle center lymphomas^{77,81}. Somatic mutations in BCL6 are observed in 7% of uterine corpus endometrial carcinoma, 4% of skin cutaneous melanoma, and 3% of stomach adenocarcinoma and colorectal adenocarcinoma, and 2% of uterine carcinosarcoma, lung adenocarcinoma, and sarcoma^{6,7}. Mutations in the 5' regulatory sequences of BCL6 are observed in 30-40% of germinal center B-cells and are believed to disrupt BCL6 negative autoregulation⁷⁷. Amplifications are observed in 31% of lung squamous cell carcinoma, 16% of esophageal adenocarcinoma and ovarian serous cystadenocarcinoma, and 14% of head and neck and cervical squamous cell carcinoma, 9% of uterine carcinosarcoma, 6% of uterine corpus endometrial carcinoma, and 2-4% of stomach adenocarcinoma, diffuse large B-cell lymphoma, bladder urothelial carcinoma, breast invasive carcinoma, testicular germ cell tumors, liver hepatocellular carcinoma, and pancreatic adenocarcinoma^{6,7}. Alterations in BCL6 are rare in pediatric cancers^{6,7}. Somatic mutations in BCL6 are

Biomarker Descriptions (continued)

observed in 3% of soft tissue sarcoma, and less than 1% of bone cancer (3 in 327 cases), embryonal tumors (2 in 332 cases), and glioma (1 in 297 cases)^{6,7}. Amplification of BCL6 is observed in 1% or less of Wilms tumor (2 in 136 cases) and B-lymphoblastic leukemia/lymphoma (1 in 731 cases)^{6,7}.

Potential relevance: B-cell lymphoma with BCL6 translocations that co-occur with MYC are referred to as double-hit lymphoma (DHL), while co-occurrence with MYC and BCL2 rearrangements is referred to as triple-hit lymphoma⁸³. Such concomitant rearrangements are recognized by the World Health Organization (WHO) as diagnostic entity of diffuse large B-cell lymphoma/high grade B-cell lymphoma (HGBL) with MYC and BCL2 rearrangements⁸⁴. DHL expressing BCL6 rearrangements are most often aggressive with poor prognosis, involve extra nodal sites, and have a germinal center phenotype^{85,86}.

CDKN2A p.(R103Vfs*34) c.306_333delGCGGCTGGACGTGCGCGATGCCTGGGGC

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁴⁹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{50,51,52}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions⁵³. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation¹,53,54</sup>. CDKN2A aberrations commonly co-occur with CDKN2B⁴⁹. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation⁵⁵. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{56,57}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁵⁸. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma⁶⁷. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{6,7}. Alterations in CDKN2A are also observed in pediatric cancers⁷. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors⁷. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)⁷.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{8,59,60}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma⁶¹. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{62,63,64}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme⁶⁵. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{66,67,68,69}.

KMT2D c.14382+1G>A

lysine methyltransferase 2D

Background: The KMT2D gene encodes the lysine methyltransferase 2D protein, a transcriptional coactivator and histone H3 lysine 4 (H3K4) methyltransferase¹. KMT2D belongs to the SET domain protein methyltransferase superfamily⁷⁰. KMT2D is known to be involved in the regulation of cell differentiation, metabolism, and tumor suppression due to its methyltransferase activity⁷⁰. Mutations or deletions in the enzymatic SET domain of KMT2D are believed to result in loss of function and may contribute to defective enhancer regulation and altered gene expression⁷⁰.

Alterations and prevalence: Somatic mutations in KMT2D are predominantly missense or truncating and are observed in 29% of diffuse large B-cell lymphoma (DLBCL), 28% of bladder urothelial carcinoma, 27% of uterine corpus endometrial carcinoma, 22% of lung squamous cell carcinoma, 21% of skin cutaneous melanoma, 17% of stomach adenocarcinoma, 15% of head and neck squamous cell carcinoma, and 14% of cervical squamous cell carcinoma^{6,7}.

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for KMT2D aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹²⁸. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{129,130}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2¹³¹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹³². Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹³². Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{133,134,135,136,137}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹³⁰. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{129,130,134,138}.

<u>Alterations and prevalence:</u> The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{129,130,139,140}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{139,140}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹⁴¹ (2014) and nivolumab¹⁴² (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹⁴¹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹⁴¹. Dostarlimab¹⁴³ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{135,144}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹⁴⁵ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{135,146,147}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹⁴⁷. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{148,149}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{148,149}.

NFE2L2 p.(R34G) c.100C>G

nuclear factor, erythroid 2 like 2

<u>Background:</u> The NFE2L2 gene encodes the nuclear factor, erythroid 2 like 2 transcription factor, a member of the basic leucine zipper protein family¹. NFE2L2, also known as NRF2, is a proto-oncogene that activates transcription of genes with antioxidant response elements (ARE)¹²⁴. NFE2L2 targets include genes involved in antioxidant response, drug metabolism, DNA repair, autophagy, cell survival, and proliferation^{124,125}. NFE2L2 is negatively regulated by KEAP1, a Cul3 adaptor protein, that ubiquitinates NFE2L2¹²⁵.

Alterations and prevalence: Recurrent somatic mutations in NFE2L2 are observed in 14% of lung squamous cell carcinoma, 9% of esophageal adenocarcinoma, and 5% of head and neck squamous cell carcinoma^{6,7}. Deletion of NFE2L2 exon 2 or exon 2 and 3 result in an isoform leading to the lack of the KEAP1 interacting domain, NFE2L2 stabilization, and expression of NFE2L2 targets such as HMOX1, G6PD, PDGFC, FGF2, and NQO1^{124,126}.

Potential relevance: Currently, no therapies are approved for NFE2L2 aberrations. The FDA has granted fast track designation (2022) to the mTORC 1/2 inhibitor, sapanisertib (CB-228)¹²⁷, for patients with NFE2L2 mutated, unresectable or metastatic squamous non-small cell lung cancer (NSCLC) who have received prior platinum-based chemotherapy and immune checkpoint inhibitor therapy.

NOTCH2 p.(P6Rfs*27) c.17_18delCC

notch 2

Background: The NOTCH2 gene encodes the notch receptor 2 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH1, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling²⁰. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several

Biomarker Descriptions (continued)

genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{21,22}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{23,24,25,26}.

Alterations and prevalence: Somatic mutations observed in NOTCH2 are primarily missense or truncating and are found in about 11% of uterine cancer, 6% of melanoma and stomach cancer, as well as 3-5% diffuse large B-cell lymphoma (DLBCL), lung, colorectal, bladder, cervical, and head and neck cancers⁶.

Potential relevance: Currently, no therapies are approved for NOTCH2 aberrations.

TP53 p.(Y236*) c.708C>G

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis¹⁰⁴. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹⁰⁵. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{106,107}

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{6,7,108,109,110,111}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{6,7}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{112,113,114,115}. Alterations in TP53 are also observed in pediatric cancers^{6,7}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{6,7}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{6,7}.

Potential relevance: The small molecule p53 reactivator, PC14586¹¹⁶ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt¹¹⁷, (2019) and breakthrough designation¹¹⁸ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{119,120}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma¹⁸. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{33,34,35,38,46,121}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant¹²². Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system¹²³.

YAP1 amplification

Yes associated protein 1

Background: The YAP1 gene encodes the Yes1 associated transcriptional regulator¹. YAP1 functions as a transcriptional coactivator for TEAD transcription factors and is an important effector of the Hippo signaling pathway². The Hippo pathway is considered a tumor suppressor pathway due to its involvement in various cellular processes including cell proliferation, apoptosis, stem cell expansion, and negative regulation of YAP1^{2,3}. Aberrations in YAP1, including upregulation, have been associated with tumorigenesis and shorter survival^{3,4}. Germline mutations, specifically R331W, have been associated with an increased risk for lung adenocarcinoma⁵.

Alterations and prevalence: Somatic mutations in YAP1 are observed in 3% of uterine corpus endometrial carcinoma, 2% of skin cutaneous melanoma, esophageal adenocarcinoma, kidney chromophobe, and 1% of uveal melanoma, kidney renal papillary cell carcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, and colorectal adenocarcinoma^{6,7}. Amplification of YAP1 is observed in 10% of cervical squamous cell carcinoma, 5% of head and neck squamous cell carcinoma and ovarian cystadenocarcinoma, and 3% of bladder urothelial carcinoma, sarcoma, and esophageal adenocarcinoma^{6,7}. YAP1 fusions are observed in 1% of sarcoma, esophageal adenocarcinoma, cervical squamous cell carcinoma, skin cutaneous melanoma, and head and neck squamous cell carcinoma^{6,7}.

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for YAP1 aberrations. YAP1::TFE3 fusion is considered an ancillary diagnostic marker for epithelioid hemangioendothelioma⁸. Overexpression of YAP1 is a poor prognostic marker in hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, and small cell lung cancer².

MPL amplification

MPL proto-oncogene, thrombopoietin receptor

<u>Background</u>: The MPL gene encodes the MPL proto-oncogene, a transmembrane thrombopoietin receptor. Binding of the cytokine thrombopoietin to MPL leads to JAK2 activation and subsequent signaling that regulates stem cell homeostasis, cell survival, and proliferation⁷¹. Mutations in MPL typically disrupt normal auto-inhibitory functions and result in subsequent ligand-independent thrombopoietin receptor activation⁷¹. Gain-of-function mutations in MPL are associated with myeloproliferative neoplasms (MPN) and hereditary thrombocytosis. Loss-of-function mutations are linked to bone marrow failure syndromes, due to the regulation of thrombopoiesis by thrombopoietin⁷².

Alterations and prevalence: Somatic mutations in MPL are present in 3-5% of primary myelofibrosis (PMF)^{71,73}. Specifically, MPL W515L/K mutations are reported in 5-8% of myelofibrosis (MF) and 1-4% of essential thrombocythemia (ET)³⁴. Other observed MPL mutations include V501A, Y252H, and S204P⁷¹.

Potential relevance: MPL W515K/L mutations confer intermediate prognosis in MPN³⁴.

MECOM amplification

MDS1 and EVI1 complex locus

<u>Background</u>: The MECOM gene encodes the MDS1 and EVI1 complex locus (MECOM), a zinc-finger transcriptional factor that regulates hematopoietic cell differentiation²⁷. The MECOM locus encodes multiple alternative splice variants that result in MDS1-EVI1, MDS1, and EVI1 protein isoforms²⁸. The EVI1 isoform is the most abundant and oncogenic form of MECOM that is expressed in various cancers including acute myeloid leukemia (AML)^{28,29}. MECOM is a frequent target of chromosomal translocation which can lead to MECOM overexpression and leukemogenesis³⁰.

Alterations and prevalence: Somatic mutations MECOM are observed in up to 22% of malignant melanoma; 75% of these mutations are missense and the remaining 25% are truncating mutations^{6,7,31}. MECOM amplifications are observed in up to 35% of lung squamous cell carcinoma, 30% of ovarian serous cystadenocarcinoma, and 20% of esophageal adenocarcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{6,7}. MECOM rearrangements occur with various partner genes including ETV6, RUNX1, and H2AFY³². The t(3;21)(q26;q22) translocation that results in the MECOM::RUNX1 fusion is most commonly observed in chronic myeloid leukemia (CML) in blast crisis. The t(3;3)(q21.3;q26.2)/ inv(3)(q21.3;q26.3) translocation, also referred to as inv(3)/t(3;3), results in a GATA2::MECOM fusion and is observed in AML, primary myelofibrosis (PMF), and myelodysplastic syndrome (MDS)^{33,34,35}. The inv(3)/t(3;3) translocation repositions the distal GATA enhancer element and activates MECOM expression while simultaneously causing GATA2 haploinsufficiency³⁶.

Potential relevance: AML with MECOM rearrangement is considered a distinct molecular subtype of AML as defined by the World Health Organization (WHO)³⁷. MECOM rearrangements, including GATA2::MECOM fusions, are associated with poor/adverse risk in AML^{33,38}. Inv(3) is associated with poor cytogenetic risk in MDS as defined by the revised international prognostic scoring system (IPSS-R) scoring system³⁵. In PMF, inv(3) is considered an unfavorable karyotype associated with intermediate risk as defined by the dynamic international prognostic scoring system (DIPSS)-Plus scoring system³⁴. MECOM overexpression is observed in 10% of de novo AML associated with poor prognosis, and is commonly found in MLL-rearranged cases^{39,40}. Amplification of MECOM is associated with favorable prognosis in ovarian cancer⁴¹.

IL7R amplification

interleukin 7 receptor

Background: The IL7R gene encodes the interleukin 7 receptor¹. IL7R is commonly expressed in immune cells and plays a critical role in the development and homeostasis of the immune system, including the regulation of cell development, survival, and differentiation of T-cells^{42,43}. IL7R may also play a role in the development of B-cells by controlling downstream signaling pathways, including the JAK/PI3K/AKT pathways⁴³. Mutations and other aberrations in IL7R result in a gain-of-function, thereby supporting its oncogenic role⁴⁴.

Alterations and prevalence: Somatic mutations in IL7R are observed in 13% of skin cutaneous melanoma, 6% of lung squamous cell carcinoma, and 4% of uterine corpus endometrial carcinoma, lung adenocarcinoma, and stomach adenocarcinoma^{6,7}. Amplification of IL7R is observed in 10% of lung squamous cell carcinoma, 9% of lung adenocarcinoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of stomach adenocarcinoma, and 5% of cervical squamous cell carcinoma and ovarian serous cystadenocarcinoma^{6,7}. Alterations in IL7R are also observed in pediatric cancers^{6,7}. Somatic mutations are observed in 5% of T-

Biomarker Descriptions (continued)

lymphoblastic leukemia/lymphoma, 3% of soft tissue sarcoma (1 in 38 cases), 2% of B- lymphoblastic leukemia/lymphoma (4 in 252 cases), and less than 1% of embryonal tumor (3 in 332 cases), glioma (2 in 297 cases), leukemia (2 in 311 cases), bone cancer (2 in 327 cases), and peripheral nervous system cancers (1 in 1158 cases)^{6,7,45}. Amplification of IL7R is observed in about 5% of pediatric bone cancer^{6,7}.

Potential relevance: Currently, no therapies are approved for IL7R aberrations. The Philadelphia-chromosome-like (Ph-like) phenotype of acute lymphoblastic leukemia (ALL) is associated with mutations in tyrosine kinase pathway genes, including IL7R^{45,46,47}. Testing for these abnormalities at diagnosis may aid in risk stratification⁴⁶. Notably, mutations in IL7R are associated with unfavorable-risk features in pediatric acute lymphoblastic leukemia^{47,48}.

AR amplification

androgen receptor

<u>Background:</u> The AR gene encodes the androgen receptor protein (AR), a ligand-activated transcription factor regulated by the binding of the hormones testosterone and dihydrotestosterone^{90,91}. Hormone binding to AR results in receptor dimerization, nuclear translocation, and target gene transcription, thus activating the RAS/RAF/MEK/ERK and PI3K/AKT/MTOR signaling pathways, which promote cell proliferation and survival^{91,92,93}.

Alterations and prevalence: Alterations in AR function can result from overexpression, gene amplification, or mutations. AR mutations, including L702H, W742C/L, H875Y, and T878A, are commonly observed in 10-30% of castration-resistant prostate cancer and result in decreased ligand specificity, allowing other nuclear hormones to activate AR94. Androgen receptor splice variants have been reported in castration resistant prostate cancer95,96. The androgen receptor splice variant 7 (AR-V7) is a result of aberrant mRNA splicing of AR exons 1-3 and a cryptic exon 3, resulting in the expression of a constitutively active protein96.

Potential relevance: The FDA has granted fast track designation (2022) to the selective androgen receptor targeting agonist, enobosarm, for the treatment of patients with androgen AR-positive, estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer⁹⁷. The FDA also granted fast track designation (2016) to the small-molecule CYP17 lyase-selective inhibitor, seviteronel, for AR-positive triple-negative breast cancer (TNBC) patients⁹⁸. Androgen deprivation therapy (ADT) such as abiraterone⁹⁹ (2011) and enzalutamide¹⁰⁰ (2011) are FDA approved for use in locally advanced and metastatic prostate cancers. Other ADT therapies including leuprolide and bicalutamide are specifically recommended in AR+ unresectable metastatic salivary gland tumors¹⁰¹. Although many men initially respond to ADT, most will develop hormone resistance. Resistance to ADT is also associated with other aberrations of the AR gene including mutations within the ligand binding domain and gene amplification^{94,102,103}. The androgen receptor splice variant, AR-V7, lacks the ligand binding domain, resulting in constitutive activation and is associated with resistance to androgen deprivation therapy (ADT) in advanced prostate cancer⁹⁵.

ZMYM3 deletion

zinc finger MYM-type containing 3

<u>Background:</u> The ZMYM3 gene encodes the zinc finger MYM-type containing 3 protein¹. While the function is not fully understood, ZMYM3 is capable of binding histones and DNA, and may facilitate the repair of double-strand breaks (DSBs)⁷⁴.

Alterations and prevalence: Somatic mutations in ZMYM3 are observed in 12% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 4% of colorectal adenocarcinoma, 3% of lung adenocarcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, esophageal adenocarcinoma, and bladder urothelial carcinoma^{6,7}. In prostate cancer, ZMYM3 mutations have been observed to be enriched in African American men compared to white men with one study demonstrating occurrence in 11.7% vs. 2.7% of patients, respectively⁷⁵. Biallelic deletion of ZMYM3 is observed in 3% of cholangiocarcinoma and 2% of sarcoma and kidney chromophobe^{6,7}.

Potential relevance: Currently, no therapies are approved for ZMYM3 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2,

Genes Assayed (continued)

Genes Assayed for the Detection of DNA Sequence Variants (continued)

DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Report Date: 22 Oct 2025 10 of 16

Relevant Therapy Summary

TDV dalatia

MVCL amplification

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

ATRX deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	×	×	×	×	(II)

WI OL amplification					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
MRT-2359	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/II, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	52.15%
BRCA2	LOH, 13q13.1(32890491-32972932)x2
BARD1	LOH, 2q35(215593375-215674382)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Shibata et al. A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer. 2018 Nov 1;143(9):2133-2144. PMID: 29696628
- Fernandez-L et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehogdriven neural precursor proliferation. Genes Dev. 2009 Dec 1;23(23):2729-41. PMID: 19952108
- 4. Liu et al. Clinical significance of yes-associated protein overexpression in cervical carcinoma: the differential effects based on histotypes. Int J Gynecol Cancer. 2013 May;23(4):735-42. PMID: 23502453
- 5. Chen et al. R331W Missense Mutation of Oncogene YAP1 Is a Germline Risk Allele for Lung Adenocarcinoma With Medical Actionability. J Clin Oncol. 2015 Jul 10;33(20):2303-10. PMID: 26056182
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- Ryan et al. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol. 2011 Oct;15(5):649-56. PMID: 21862382
- 10. Heyer et al. Rad54: the Swiss Army knife of homologous recombination?. Nucleic Acids Res. 2006;34(15):4115-25. PMID: 16935872
- 11. Matsuda et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene. 1999 Jun 3;18(22):3427-30. PMID: 10362365
- 12. Abedalthagafi et al. The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Mod. Pathol. 2013 Nov;26(11):1425-32. PMID: 23765250
- 13. Clynes et al. ATRX dysfunction induces replication defects in primary mouse cells. PLoS ONE. 2014;9(3):e92915. PMID: 24651726
- 14. Tang et al. A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J. Biol. Chem. 2004 May 7;279(19):20369-77. PMID: 14990586
- 15. Xue et al. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc. Natl. Acad. Sci. U.S.A. 2003 Sep 16;100(19):10635-40. PMID: 12953102
- 16. Pisapia. The Updated World Health Organization Glioma Classification: Cellular and Molecular Origins of Adult Infiltrating Gliomas. Arch. Pathol. Lab. Med. 2017 Dec;141(12):1633-1645. PMID: 29189064
- 17. Jiao et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 2012 Jul;3(7):709-22. PMID: 22869205
- 18. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 19. NCCN Guidelines® NCCN-Central Nervous System Cancers [Version 5.2024]
- 20. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 21. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209
- 22. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID:
- 23. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802
- 24. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 25. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338
- 26. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 27. Hinai et al. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br. J. Haematol. 2016 Mar;172(6):870-8. PMID: 26729571
- 28. Bard-Chapeau et al. EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2013 Jul 30;110(31):E2885-94. PMID: 23858473

12 of 16

Report Date: 22 Oct 2025

- 29. Ogawa et al. Abnormal expression of Evi-1 gene in human leukemias. Hum. Cell. 1996 Dec;9(4):323-32. PMID: 9183665
- 30. Choi et al. Intratumoral Heterogeneity of Frameshift Mutations in MECOM Gene is Frequent in Colorectal Cancers with High Microsatellite Instability. Pathol. Oncol. Res. 2017 Jan;23(1):145-149. PMID: 27620344
- 31. Lee et al. Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatmentnaïve patient melanomas. 2015 Jun 9;7:59. PMID: 26221190
- 32. Han et al. H2AFY is a novel fusion partner of MECOM in acute myeloid leukemia. Cancer Genet. 2018 Apr;222-223:9-12. PMID: 29666008
- 33. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 34. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 35. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 36. Gröschel et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014 Apr 10;157(2):369-381. PMID: 24703711
- 37. Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. PMID: 35732831
- 38. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 39. Barjesteh et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003 Feb 1;101(3):837-45. PMID: 12393383
- 40. Stevens et al. EVI1 expression in childhood acute lymphoblastic leukaemia is not restricted to MLL and BCR/ABL rearrangements and is influenced by age. Blood Cancer J. 2014 Jan 24;4:e179. PMID: 24464103
- 41. Nanjundan et al. Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res. 2007 Apr 1;67(7):3074-84. PMID: 17409414
- 42. Peschon et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994 Nov 1;180(5):1955-60. PMID: 7964471
- 43. Kim et al. Oncogenic IL7R is downregulated by histone deacetylase inhibitor in esophageal squamous cell carcinoma via modulation of acetylated FOXO1. Int J Oncol. 2018 Jul;53(1):395-403. PMID: 29749437
- 44. Campos et al. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel). 2019 Dec 5;11(12). PMID: 31817502
- 45. Harvey et al. Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv. 2020 Jan 14;4(1):218-228. PMID: 31935290
- 46. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 47. NCCN Guidelines® NCCN-Pediatric Acute Lymphoblastic Leukemia [Version 3.2025]
- 48. Roberts et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014 Sep 20;32(27):3012-20. PMID: 25049327
- 49. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 50. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 51. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 52. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 53. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 54. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 55. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 56. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 57. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 58. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 59. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]

- 60. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 61. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 62. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 63. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 64. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 65. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 66. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 67. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 68. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 69. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 70. Froimchuk et al. Histone H3 lysine 4 methyltransferase KMT2D. Gene. 2017 Sep 5;627:337-342. PMID: 28669924
- 71. Kim et al. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Am. J. Clin. Pathol. 2015 May;143(5):635-44. PMID: 25873496
- 72. Cleyrat et al. Gene editing rescue of a novel MPL mutant associated with congenital amegakaryocytic thrombocytopenia. Blood Adv. 2017 Sep 26;1(21):1815-1826. PMID: 29296828
- 73. Rozovski et al. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica. 2017 Jan;102(1):79-84. PMID: 27686378
- 74. Leung et al. ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev. 2017 Feb 1;31(3):260-274. PMID: 28242625
- 75. Liu et al. Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Mol Cancer Res. 2020 Dec;18(12):1815-1824. PMID: 33115829
- 76. Cardenas et al. The Expanding Role of the BCL6 Oncoprotein as a Cancer Therapeutic Target. Clin Cancer Res. 2017 Feb 15;23(4):885-893. PMID: 27881582
- 77. Pasqualucci et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood. 2003 Apr 15;101(8):2914-23. PMID: 12515714
- 78. Liongue et al. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci. 2024 Oct 11;25(20). PMID: 39456751
- 79. Harris et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol Cell Biol. 1999 Oct;19(10):7264-75. PMID: 10490661
- 80. Delgado-Ramirez et al. Signal transducer and activator of transcription 6 as a target in colon cancer therapy. Oncol Lett. 2020 Jul;20(1):455-464. PMID: 32565970
- 81. Lossos et al. The BCL6 gene in B-cell lymphomas with 3q27 translocations is expressed mainly from the rearranged allele irrespective of the partner gene. Leukemia. 2003 Jul;17(7):1390-7. PMID: 12835729
- 82. Ye et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J. 1995 Dec 15;14(24):6209-17. PMID: 8557040
- 83. Beham-Schmid. Aggressive lymphoma 2016: revision of the WHO classification. Memo. 2017;10(4):248-254. PMID: 29250206
- 84. Alaggio et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022 Jul;36(7):1720-1748. PMID: 35732829
- 85. Raju et al. Double-hit B-cell lymphomas with BCL6 and MYC translocations are aggressive, frequently extranodal lymphomas distinct from BCL2 double-hit B-cell lymphomas. Am J Sure Pathol. 2013 Mar;37(3):323-32. PMID: 23348205

- 86. Li et al. MYC/BCL6 double-hit lymphoma (DHL): a tumour associated with an aggressive clinical course and poor prognosis. Histopathology. 2016 Jun;68(7):1090-8. PMID: 26426741
- 87. Dang et al. The c-Myc target gene network. Semin. Cancer Biol. 2006 Aug;16(4):253-64. PMID: 16904903
- 88. Bachmann et al. J. Biol. Chem. 2018 Nov 30;293(48):18757-18769. PMID: 30404920
- 89. Nau et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 1985 Nov 7-13;318(6041):69-73. PMID: 2997622
- 90. Lu et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev. 2006 Dec;58(4):782-97. PMID: 17132855
- 91. Davey et al. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev. 2016 Feb;37(1):3-15. PMID: 27057074
- 92. Crumbaker et al. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers (Basel). 2017 Apr 15;9(4). PMID: 28420128
- 93. Leung et al. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. . Front Endocrinol (Lausanne). 2017 Jan 17;8:2. . PMID: 28144231
- 94. Waltering et al. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol. Cell. Endocrinol. 2012 Sep 5;360(1-2):38-43. PMID: 22245783
- 95. Antonarakis et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014 Sep 11;371(11):1028-38. PMID: 25184630
- 96. Zhu et al. Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2018 May;73(5):727-735. PMID: 28866255
- 97. https://www.cancernetwork.com/view/fda-grants-fast-track-designation-to-enobosarm-in-ar-er-her2--metastatic-breast-cancer
- 98. https://www.businesswire.com/news/home/20160106006206/en/Innocrin-Pharmaceuticals-Granted-Fast-Track-Designation-FDA
- 99. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202379s035lbl.pdf
- 100. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/203415s024,213674s012lbl.pdf
- 101. NCCN Guidelines® NCCN-Head and Neck Cancers [Version 2.2025]
- 102. Lallous et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 2016 Jan 26;17:10. PMID: 26813233
- 103. Robinson et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015 May 21;161(5):1215-1228. PMID: 26000489
- 104. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 105. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 106. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 107. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 108. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 109. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 110. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 111. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 112. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 113. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 114. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424

15 of 16

Report Date: 22 Oct 2025

- 115. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 116. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 117. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 118. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 119. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 120. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 121. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 122. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 123. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 124. Rojo et al. NRF2 and the Hallmarks of Cancer. Cancer Cell. 2018 Jul 9;34(1):21-43. PMID: 29731393
- 125. Suzuki et al. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 2013 Jun;34(6):340-6. PMID: 23664668
- 126. Goldstein et al. Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. Cell Rep. 2016 Sep 6;16(10):2605-2617. PMID: 27568559
- 127. https://ir.calithera.com//news-releases/news-release-details/calithera-receives-fda-fast-track-designation-sapanisertib
- 128. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 129. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 130. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 131. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 132. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 133. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 134. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 135. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 136. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 137. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 138. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 139. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 140. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 141. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 142. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 143. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 144. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 145. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 146. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608

Report Date: 22 Oct 2025 16 of 16

- 147. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 148. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 149. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031