

Tel. 1661-5117 www.smlab.co.kr

삼광의료재단

Report Date: 10 Oct 2025 1 of 11

왕충실 **Patient Name:**

Gender: Sample ID:

N25-236

Primary Tumor Site:

2025.09.17 **Collection Date:**

Sample Cancer Type: Breast Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	7

Report Highlights 3 Relevant Biomarkers 3 Therapies Available 6 Clinical Trials

Relevant Breast Cancer Findings

Gene	Finding	
BRCA1	None detected	
ERBB2	None detected	
Genomic Alte	eration	Finding
Tumor Mu	tational Burden	5.71 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	PIK3CA p.(N345K) c.1035T>A phosphatidylinositol-4,5-bisphosphate 3- kinase catalytic subunit alpha Allele Frequency: 23.79% Locus: chr3:178921553 Transcript: NM_006218.4	inavolisib + palbociclib + hormone therapy 1/1 capivasertib + hormone therapy 1,2/1 +	None*	5
IA	ESR1 p.(D538G) c.1613A>G estrogen receptor 1 Allele Frequency: 26.92% Locus: chr6:152419926 Transcript: NM_001122740.2	elacestrant 1, 2 / I, II+	None*	0
IIC	SMAD4 deletion SMAD family member 4 Locus: chr18:48573387	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy
Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

GATA3 p.(P409Afs*99) c.1224_1225insG, MAP2K7 deletion, HLA-A p.(L180*) c.539T>A, NOTCH1 deletion, CBFB deletion, ACSF3 p.(E424Sfs*4) c.1270delG, Tumor Mutational Burden

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Report Date: 10 Oct 2025 2 of 11

Variant Details

DNA	DNA Sequence Variants							
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	
PIK3CA	p.(N345K)	c.1035T>A	COSM754	chr3:178921553	23.79%	NM_006218.4	missense	
ESR1	p.(D538G)	c.1613A>G	COSM94250	chr6:152419926	26.92%	NM_001122740.2	missense	
GATA3	p.(P409Afs*99)	c.1224_1225insG	COSM166059	chr10:8115874	23.94%	NM_001002295.2	frameshift Insertion	
HLA-A	p.(L180*)	c.539T>A		chr6:29911240	57.04%	NM_001242758.1	nonsense	
ACSF3	p.(E424Sfs*4)	c.1270delG		chr16:89199569	35.43%	NM_001127214.4	frameshift Deletion	
OR2T3	p.([V253A;L254=;L255: ;L256F])	= c.758_766delTGCTGCT GCinsCGCTGCTCT		chr1:248637409	62.63%	NM_001005495.1	missense, ref Allele, synonymous, missense	
OR2T3	p.([L255=;L256F])	c.765_766delGCinsCT		chr1:248637416	33.26%	NM_001005495.1	synonymous, missense	
RASA1	p.(K663E)	c.1987A>G		chr5:86670709	20.54%	NM_002890.3	missense	
FGFR2	p.(Q774*)	c.2320C>T		chr10:123239517	22.37%	NM_000141.5	nonsense	
DCDC1	p.(P44S)	c.130C>T		chr11:31349698	45.98%	NM_001367979.1	missense	
MAOA	p.(M308I)	c.924G>A		chrX:43591069	23.15%	NM_000240.4	missense	

Copy Number Variations						
Gene	Locus	Copy Number	CNV Ratio			
SMAD4	chr18:48573387	0.74	0.66			
MAP2K7	chr19:7968792	0.67	0.64			
NOTCH1	chr9:139390441	0.81	0.68			
CBFB	chr16:67063242	0.72	0.65			
FGFR3	chr4:1801456	0.74	0.66			
HRAS	chr11:532637	0.65	0.63			

Biomarker Descriptions

PIK3CA p.(N345K) c.1035T>A

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme⁶⁵. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{66,67}. The p110 catalytic subunits include p110 α , β , δ , γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively⁶⁶. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{68,69}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{68,69,70,71}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR

Report Date: 10 Oct 2025

Biomarker Descriptions (continued)

pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{72,73,74}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{8,9}. Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being untranslated)^{75,76}. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047) domains, each having distinct mechanisms of activation^{77,78,79}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{8,9}.

Potential relevance: The PI3K inhibitor, alpelisib⁸⁰, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer showed the clinical benefit rate, defined as lack of disease progression ≥ 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors⁸¹. Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations⁸¹. However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations⁸². The FDA also approved the kinase inhibitor, capivasertib (2023)⁸³ in combination with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib⁸⁴, is also FDA-approved (2024) in combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers^{85,86}.

ESR1 p.(D538G) c.1613A>G

estrogen receptor 1

Background: The ESR1 gene encodes estrogen receptor 1 (ERα), which is a member of the superfamily of nuclear receptors which convert extracellular signals into transcriptional responses. A related gene, ESR2, encodes the cognate ERβ protein. ERα is a ligand-activated transcription factor regulated by the hormone estrogen^{29,30}. Estrogen binding to ERα results in receptor dimerization, nuclear translocation, and target gene transcription. In addition, estrogen binding to the ERα results in the activation of the RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, cAMP/PKA and PLC/PKC signaling pathways and cell proliferation and survival³¹.

Alterations and prevalence: Approximately 70% of breast cancers express ER α and ER β positivity. Mutations in the ER α ligand binding domain, including S463P, Y537S, and D538G, result in endocrine-independent constitutive receptor activation, which is a common mechanism of endocrine resistance^{32,33,34,35}. ESR1 gene fusions and ESR1 copy number gains have also been observed and are associated with advanced endocrine resistant disease^{36,37,38,39,40}.

Potential relevance: The FDA has approved elacestrant⁴¹ (2023) for the treatment of postmenopausal women or adult men with ERpositive/ERBB2-negative, ESR1-mutated advanced or metastatic breast cancer⁴². The FDA has also granted fast track designations to the following therapies: AC699⁴³ (2024) and lasofoxifene⁴⁴ (2019) for ESR1-mutated, ER-positive/ERBB2-negative metastatic breast cancer, camizaestrant⁴⁵ for ESR1-mutated, HR-positive/ERBB2-negative metastatic breast cancer, and seviteronel⁴⁶ (2016) for ER-positive breast cancer. Anti-estrogen (endocrine) treatments such as tamoxifen⁴⁷ (1977), fulvestrant⁴⁸ (2002), letrozole⁴⁹ (1995), and exemestane⁵⁰ (2005) are FDA approved for ER-positive metastatic breast cancers^{51,52}. Although ERα and ERβ positivity predicts response to endocrine therapies, about a quarter of patients with primary breast cancer and almost all patients with metastatic disease will develop endocrine resistance^{53,54,55}.

SMAD4 deletion

SMAD family member 4

Background: The SMAD4 gene encodes the SMAD family member 4, a transcription factor that belongs to a family of 8 SMAD genes that can be divided into three main classes. SMAD4 (also known as DPC4) belongs to the common mediator SMAD (co-SMAD) class while SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 are part of the regulator SMAD (R-SMAD) class. The inhibitory SMAD (I-SMAD) class includes both SMAD6 and SMAD7 17,18 . SMAD4 is a tumor suppressor gene and functions as a mediator of the TGF-β and BMP signaling pathways that are implicated in cancer initiation and progression 18,19,20 . Loss of SMAD4 does not drive oncogenesis, but is associated with progression of cancers initiated by driver genes such as KRAS and APC 17,18

Alterations and prevalence: Inactivation of SMAD4 can occur due to mutations, allelic loss, homozygous deletions, and 18q loss of heterozygosity (LOH)¹⁷. Somatic mutations in SMAD4 occur in up to 20% of pancreatic, 12% of colorectal, and 8% of stomach cancers.

Report Date: 10 Oct 2025 4 of 11

Biomarker Descriptions (continued)

Recurrent hotspot mutations including R361 and P356 occur in the mad homology 2 (MH2) domain leading to the disruption of the TGF-β signaling^{9,20,21}. Copy number deletions occur in up to 12% of pancreatic, 10% of esophageal, and 13% of stomach cancers^{8,9,22}.

Potential relevance: Currently, no therapies are approved for SMAD4 aberrations. Clinical studies and meta-analyses have demonstrated that loss of SMAD4 expression confers poor prognosis and poor overall survival (OS) in colorectal and pancreatic cancers^{18,20,23,24,25}. Importantly, SMAD4 is a predictive biomarker to fluorouracil based chemotherapy^{26,27}. In a retrospective analysis of 241 colorectal cancer patients treated with fluorouracil, 21 patients with SMAD4 loss demonstrated significantly poor median OS when compared to SMAD4 positive patients (31 months vs 89 months)²⁷. In another clinical study of 173 newly diagnosed and recurrent head and neck squamous cell carcinoma (HNSCC) patients, SMAD4 loss is correlated with cetuximab resistance in HPV-negative HNSCC tumors²⁸.

GATA3 p.(P409Afs*99) c.1224_1225insG

GATA binding protein 3

Background: The GATA3 gene encodes GATA binding protein 3, a member of the GATA family of zinc-finger transcription factors, which also includes GATA1, GATA2, and GATA4-6^{1,56,57}. The GATA family regulates transcription of many genes by binding to the DNA consensus sequence T/A(GATA)A/G⁵⁷. GATA3 functions in the differentiation of immune cells and tissue development^{58,59}. As GATA3 also functions in luminal cell development and cell function, it is a common marker of the gene expression profile in luminal breast cancer⁵⁸.

Alterations and prevalence: Somatic mutations in GATA3 are observed in 12% of breast invasive carcinoma, 4% of uterine corpus endometrial carcinoma and stomach adenocarcinoma, and 3% of colorectal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of GATA3 is observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{8,9}. Alterations in GATA3 are also observed in the pediatric population⁹. Somatic mutations are observed in 6% of non-Hodgkin lymphoma (1 in 17 cases), 3% of soft tissue sarcoma (1 in 38 cases), 2% of T-lymphoblastic leukemia/lymphoma (1 in 41 cases) and Hodgkin lymphoma (1 in 61 cases), and less than 1% of bone cancer (3 in 327 cases), embryonal tumor (3 in 332 cases), and leukemia (1 in 311 cases)⁹. Biallelic deletion is observed in 1% of peripheral nervous system cancers (1 in 91 cases), less than 1% of leukemia (1 in 250 cases) and B-lymphoblastic leukemia/lymphoma (1 in 731 cases)⁹.

Potential relevance: Currently, no therapies are approved for GATA3 aberrations. Low GATA3 expression is associated with invasion and poor prognosis in breast cancer^{58,60}.

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7¹. MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10^{61,62,63}. Activation of MAPK proteins occurs through a kinase signaling cascade^{61,62,64}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{61,62,64}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{61,62,64}.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{8,9}. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma^{8,9}.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

HLA-A p.(L180*) c.539T>A

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A^1 . MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A⁷.

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{8,9}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

NOTCH1 deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling⁸⁷. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{88,89}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{90,91,92,93}.

<u>Alterations and prevalence:</u> Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma, melanoma, gastric, esophageal, lung, and uterine cancers^{8,9,94}. Activating mutations in either the heterodimerization or PEST domains of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia^{95,96}.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

CBFB deletion

core-binding factor beta subunit

Background: The CBFB gene encodes the core-binding factor subunit beta, a member of the PEBP2/CBF transcription factor family¹. CBFB is capable of heterodimerization with the RUNX protein family (RUNX1, RUNX2, and RUNX3) which results in the formation of the core binding factor (CFB) complex, a transcription factor complex responsible for the regulation of many critical functions in hematopoiesis and osteogenesis¹0,¹1,¹2. Although possessing no DNA-binding activity, CBFB has been observed to enhance stability and transcriptional activity of RUNX proteins, thereby exhibiting a critical role in RUNX mediated transcriptional regulation¹1,¹2. In cancer, mutations in CBFB have been implicated in decreased protein stability and loss of function, supporting a tumor suppressor role for CBFB¹2

Alterations and prevalence: Somatic mutations in CBFB are observed in 2% of diffuse large B-cell lymphoma, breast invasive carcinoma, and uterine corpus endometrial carcinoma⁸. Biallelic deletions in CBFB are found in 2% of ovarian serous cystadenocarcinoma, prostate adenocarcinoma, and breast invasive carcinoma⁸. Translocations including inv(16) and t(16;16) have been observed to be recurrent in de novo AML, occurring in 7-10% of patients, and have been associated with the AML M4 with bone barrow eosinophilia (M4Eo) subtype¹³. Translocations often result in CBFB::MYH11 fusion, which can exist as one of multiple transcripts, depending on the exons fused¹³.

Potential relevance: Currently, no therapies are approved for CBFB aberrations. In AML, CBFB translocations, including inv(16) and $\overline{t(16;16)}$ which result in CBFB::MYH11 fusion, are associated with favorable prognosis and define a distinct molecular subtype of AML according to the World Health Organization (WHO)^{14,15,16}.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD,

Genes Assayed (continued)

Genes Assayed for the Detection of DNA Sequence Variants (continued)

PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRFI1, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Report Date: 10 Oct 2025 7 of 11

Relevant Therapy Summary

DIK2CA n (N245K) a 1025T \ A

ESR1 p.(D538G) c.1613A>G

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

PIK3CA μ.(N345K) C.10351>A					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
capivasertib + fulvestrant				×	×
inavolisib + palbociclib + fulvestrant	•		×	×	×
alpelisib, hormone therapy	×	×	×	×	(II)
alpelisib, hormone therapy, dapagliflozin	×	×	×	×	(II)
HTL-0039732, atezolizumab	×	×	×	×	(1/11)
JS-105	×	×	×	×	(I)
SNV-4818, hormone therapy	×	×	×	×	(l)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
elacestrant				×	×

SMAD4 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
regorafenib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most upto-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

Report Date: 10 Oct 2025

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 5. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Link et al. Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol. 2010 Jan;222(1):50-6. PMID: 19813271
- 11. Qin et al. Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res. 2015 Apr;30(4):706-14. PMID: 25262822
- 12. Malik et al. The transcription factor CBFB suppresses breast cancer through orchestrating translation and transcription. Nat Commun. 2019 May 6;10(1):2071. PMID: 31061501
- 13. Lesser et al. Tables of power for the F-test for comparing two exponential survival distributions. J Chronic Dis. 1981;34(11):533-44. PMID: 17287858
- 14. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 15. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 16. Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. PMID: 35732831
- 17. Ahmed et al. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. J Clin Med. 2017 Jan 5;6(1). PMID: 28067794
- 18. Zhao et al. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018;14(2):111-123. PMID: 29483830
- 19. Cicenas et al. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 Mutations in Pancreatic Cancer. Cancers (Basel). 2017 Apr 28;9(5). PMID: 28452926
- 20. Miyaki et al. Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 2003 Jul 11;306(4):799-804. PMID: 12821112
- 21. Mehrvarz et al. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS ONE. 2017;12(3):e0173345. PMID: 28267766
- 22. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 23. Yan et al. Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer. Clin. Cancer Res. 2016 Jun 15;22(12):3037-47. PMID: 26861460
- 24. Voorneveld et al. A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer. Transl Oncol. 2015 Feb;8(1):18-24. PMID: 25749173
- 25. Shugang et al. Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis. Transl Oncol. 2016 Feb;9(1):1-7. PMID: 26947875
- 26. Boulay et al. SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br. J. Cancer. 2002 Sep 9;87(6):630-4. PMID: 12237773
- 27. Kozak et al. Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer. J. Clin. Pathol. 2015 May;68(5):341-5. PMID: 25681512
- 28. Ozawa et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin. Cancer Res. 2017 Sep 1;23(17):5162-5175. PMID: 28522603

9 of 11

Report Date: 10 Oct 2025

References (continued)

- 29. Paterni et al. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014 Nov;90:13-29. PMID: 24971815
- 30. Dahlman-Wright et al. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 2006 Dec;58(4):773-81. PMID: 17132854
- 31. Marino et al. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics. 2006;7(8):497-508. PMID: 18369406
- 32. Chang. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012 May;20(3):256-67. PMID: 24130921
- 33. Toy et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 2013 Dec;45(12):1439-45. PMID: 24185512
- 34. Jeselsohn et al. Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor-Positive Breast Cancer. Clin. Cancer Res. 2014 Apr 1;20(7):1757-1767. PMID: 24398047
- 35. Robinson et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013 Dec;45(12):1446-51. doi: 10.1038/ng.2823. Epub 2013 Nov 3. PMID: 24185510
- 36. Hartmaier et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann. Oncol. 2018 Apr 1;29(4):872-880. PMID: 29360925
- 37. Matissek et al. Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor-Positive Breast Cancer. Cancer Discov. 2018 Mar;8(3):336-353. PMID: 29242214
- 38. Lei et al. ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer. Mol Cell Oncol. 2018;5(6):e1526005. PMID: 30525098
- 39. Lei et al. Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Rep. 2018 Aug 7;24(6):1434-1444.e7. PMID: 30089255
- 40. Basudan et al. Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Mol. Cancer Res. 2019 Feb;17(2):457-468. PMID: 30355675
- 41. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/2176390rig1s001lbl.pdf
- 42. NCCN Guidelines® NCCN-Breast Cancer [Version 4.2025]
- 43. https://www.accutarbio.com/accutar-biotechnology-receives-fda-fast-track-designation-for-ac699-in-er-her2-breast-cancer/
- 44. https://sermonixpharma.com/sermonix-receives-fda-fast-track-designation-for-investigational-drug-lasofoxifene/
- 45. https://www.astrazeneca.com/content/dam/az/PDF/2022/h1-2022/H1-2022-results-announcement.pdf
- 46. https://www.businesswire.com/news/home/20160106006206/en/Innocrin-Pharmaceuticals-Granted-Fast-Track-Designation-FDA
- 47. https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/17970s37s44s49lbl.pdf
- 48. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021344s044lbl.pdf
- 49. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/020726s043lbl.pdf
- 50. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/020753s025lbl.pdf
- 51. Tamoxifen--an update on current data and where it can now be used. Breast Cancer Res. Treat. 2002 Oct;75 Suppl 1:S7-12; discussion S33-5. PMID: 12353826
- 52. Kim et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer. J. Clin. Oncol. 2011 Nov 1;29(31):4160-7. PMID: 21947828
- 53. Jeselsohn et al. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015 Oct;12(10):573-83. PMID: 26122181
- 54. Angus et al. ESR1 mutations: Moving towards guiding treatment decision-making in metastatic breast cancer patients. Cancer Treat. Rev. 2017 Jan;52:33-40. PMID: 27886589
- 55. Reinert et al. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer. . Front Oncol. 2017 Mar 15;7:26. PMID: 28361033
- 56. Katsumura et al. The GATA factor revolution in hematology. Blood. 2017 Apr 13;129(15):2092-2102. PMID: 28179282
- 57. Orkin. GATA-binding transcription factors in hematopoietic cells. Blood. 1992 Aug 1;80(3):575-81. PMID: 1638017
- 58. Takaku et al. GATA3 in Breast Cancer: Tumor Suppressor or Oncogene?. Gene Expr. 2015;16(4):163-8. PMID: 26637396
- 59. Chou et al. GATA3 in development and cancer differentiation: cells GATA have it!. J Cell Physiol. 2010 Jan;222(1):42-9. PMID: 19798694

10 of 11

Report Date: 10 Oct 2025

References (continued)

- 60. Mehra et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005 Dec 15;65(24):11259-64. PMID: 16357129
- 61. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 62. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156
- 63. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. PMID: 21372320
- 64. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- 65. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 66. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 67. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 68. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 69. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 70. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 71. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 72. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 73. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 74. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 75. Brito et al. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. Clin Med Insights Oncol. 2022;16:11795549211068804. PMID: 35023985
- 76. Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D920-4. PMID: 23161685
- 77. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 78. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 79. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 80. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212526s009lbl.pdf
- 81. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 82. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 83. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/218197s002lbl.pdf
- 84. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219249s000lbl.pdf
- 85. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 86. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929
- 87. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 88. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209
- 89. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID: 19379690

Report Date: 10 Oct 2025 11 of 11

References (continued)

90. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802

- 91. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 92. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338
- 93. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 94. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 95. Weng et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004 Oct 8;306(5694):269-71. PMID: 15472075
- 96. Breit et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006 Aug 15;108(4):1151-7. PMID: 16614245