

Tel. 1661-5117 www.smlab.co.kr

Report Date: 10 Oct 2025 1 of 17

Patient Name: 이규태 Gender: Sample ID: N25-230 **Primary Tumor Site:** 2025.08.13 **Collection Date:**

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	6
Relevant Therapy Summary	8

Report Highlights 3 Relevant Biomarkers 17 Therapies Available 205 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	None detected		NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	EGFR p.(L858	R) c.2573T>G	NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	None detected		ROS1	None detected
MET	None detected			
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	3.8 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L858R) c.2573T>G epidermal growth factor receptor Allele Frequency: 28.20% Locus: chr7:55259515 Transcript: NM_005228.5	afatinib 1,2/I,II+ amivantamab + lazertinib 1,2/I,II+ bevacizumab† + erlotinib 2/I,II+ dacomitinib 1,2/I,II+ erlotinib 2/I,III+ erlotinib + ramucirumab 1,2/I,II+ gefitinib 1,2/I,II+ osimertinib + chemotherapy 1,2/I amivantamab + chemotherapy 1,2/II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy I atezolizumab + bevacizumab + chemotherapy II+	None*	196

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/generics

Report Date: 10 Oct 2025 2 of 17

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CCNE1 amplification cyclin E1 Locus: chr19:30303647	None*	None*	9
IIC	MTOR amplification mechanistic target of rapamycin Locus: chr1:11168288	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🛕 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🧳 Breakthrough, 🔼 Fast Track

EGFR p.(L858R) c.2573T>G

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, NQO1 p.(P187S) c.559C>T, ZNF429 amplification, Tumor Mutational Burden

Variant Details

DNA	Sequence variar	its					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
EGFR	p.(L858R)	c.2573T>G	COSM6224	chr7:55259515	28.20%	NM_005228.5	missense
NQ01	p.(P187S)	c.559C>T		chr16:69745145	49.30%	NM_000903.3	missense
BRINP3	p.(R459C)	c.1375C>T		chr1:190068074	6.73%	NM_199051.3	missense
STT3A	p.(I323M)	c.969A>G		chr11:125479336	17.34%	NM_152713.5	missense
NOTCH3	p.(G1347R)	c.4039G>C		chr19:15288700	25.19%	NM_000435.3	missense
KDM6A	p.(N525H)	c.1573A>C		chrX:44922712	62.79%	NM_021140.3	missense

Copy Numbe	er Variations			
Gene	Locus	Copy Number	CNV Ratio	
CCNE1	chr19:30303647	5.32	1.68	
MTOR	chr1:11168288	5.07		
ZNF429	chr19:21688488	6.83	1.99	
SPEN	chr1:16174516	4.66	1.54	
EPHA2	chr1:16451707	4.8	1.58	
SDHB	chr1:17345303	4.95	1.61	
MUTYH	chr1:45794962	4.93	1.6	
NOTCH2	chr1:120457903	4.56	1.53	

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/generics

Report Date: 10 Oct 2025

Variant Details (continued)

Copy Number Variations (continued)					
Gene	Locus	Copy Number	CNV Ratio		
NBN	chr8:90947783	5.93	1.8		
CSMD3	chr8:113237020	4.8	1.57		

Biomarker Descriptions

EGFR p.(L858R) c.2573T>G

epidermal growth factor receptor

<u>Background</u>: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family¹. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4³9. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways⁴0. Activation of these pathways promotes cell proliferation, differentiation, and survival⁴1,⁴2.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{5,6,43,44}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 2145. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer⁴⁵. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{46,47,48,49}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations⁵⁰. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{45,51}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{5,6,44,51,52}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{53,54,55}. Alterations in EGFR are rare in pediatric cancers^{5,6}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)5,6. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)5,6.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib⁵⁶ (2004) and gefitinib⁵⁷ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations⁵⁸. Second-generation TKIs afatinib⁵⁹ (2013) and dacomitinib⁶⁰ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{61,62,63,64}. However, BDTX-189⁶⁵ was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)66 and sunvozertinib67, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance⁶⁸. The primary resistance mutation that emerges following treatment with firstgeneration TKI is T790M, accounting for 50-60% of resistant cases⁴⁵. Third generation TKIs were developed to maintain sensitivity in the presence of T790M⁶⁸. Osimertinib⁶⁹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases⁶⁸. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa⁷⁰. T790M and C797S can occur in either cis or trans allelic orientation⁷⁰. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs70. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{70,71}.

Report Date: 10 Oct 2025

Biomarker Descriptions (continued)

However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs⁷⁰. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-153572 (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations⁷³. The bispecific antibody, amivantamab⁷⁴ (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib⁷⁵ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-80176 received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-4277, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO30178 (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid⁷⁹ (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{80,81,82}.

CCNE1 amplification

cyclin E1

Background: The CCNE1 gene encodes the cyclin E1 protein, a member of the highly conserved E-cyclin family which also includes CCNE283. CCNE1 facilitates progression from G1 to the S phase of the cell cycle by binding to cyclin dependent kinase 2 (CDK2) which results in phosphorylation and inactivation of the retinoblastoma (RB1) protein83. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition resulting in cell cycle progression, a common event observed in tumorigenesis84,85,86. Additionally, CCNE1 is often deregulated in a variety of cancer types supporting an oncogenic role for CCNE183,87.

Alterations and prevalence: CCNE1 amplification is observed in about 40% of uterine carcinosarcoma, 20% of ovarian cancer, 11% of stomach cancer, 7-8% sarcoma, uterine, and esophageal cancers, 5-6%, adrenocortical carcinoma, squamous lung, and bladder cancers⁵. Additionally, CCNE1 overexpression has been observed in many different tumor types including in 70-80% of Hodgkin's lymphoma.^{83,87,88}.

Potential relevance: The FDA has granted fast track designation (2024) to the small molecule PKMYT1 inhibitor, lunresertib⁸⁹, in combination with camonsertib for the treatment of adult patients with CCNE1 amplified endometrial cancer and platinum resistant ovarian cancer. CCNE1 amplification and overexpression has been associated with poor prognosis in certain cancer types including lung and breast cancers^{90,91,92}.

MTOR amplification

mechanistic target of rapamycin

Background: The MTOR gene encodes the mechanistic target of rapamycin kinase (also known as, mammalian target of rapamycin), which is a member of the phosphatidylinositol 3-kinase (PI3K)-related kinases family of serine/threonine protein kinases. MTOR encodes the catalytic subunit of mTOR Complex 1 (mTORC1) and 2 (mTORC2)8. These complexes regulate cell growth by modulating protein synthesis, autophagy, and other metabolic pathways. The mTORC1 and mTORC2 complexes are downstream effectors of the PI3K/AKT/MTOR signaling pathway and facilitate integration of the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK signaling pathways^{9,10,11}.

Alterations and prevalence: Recurrent activating mutations differentially activate mTORC1 or mTORC2 leading to either S6K1/4EBP1 or AKT1 phosphorylation, respectively¹². Mutations in MTOR are observed at frequencies of 5-15% in lung adenocarcinoma, clear cell renal cell carcinoma, melanoma, colorectal, gastric, and uterine cancers⁵.

Potential relevance: Two first generation MTOR inhibitors termed rapalogs (analogues of rapamycin) have been approved by the FDA: temsirolimus¹³ (2007) for the treatment of renal cell carcinoma (RCC) and everolimus¹⁴ (2009) for the treatment of breast, pancreatic, gastrointestinal, and lung cancers, RCC, and subependymal giant cell astrocytomas. Mutations in the FRB domain of mTOR are a potential mechanism of acquired resistance to first generation rapalogs^{10,15}. While first-generation rapalogs form inhibitory complexes with FKBP-12, second generation mTOR inhibitors such as PF-04691502 and gedatolisib target the mTOR kinase domain directly¹⁶.

Microsatellite stable

<u>Background:</u> Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹⁷. Microsatellite instability (MSI) is defined as a change in the

Biomarker Descriptions (continued)

length of a microsatellite in a tumor as compared to normal tissue^{18,19}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2²⁰. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250²¹. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)²¹. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{22,23,24,25,26}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹⁹. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{18,19,23,27}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{18,19,28,29}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{28,29}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab³⁰ (2014) and nivolumab³¹ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab³⁰ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication³⁰. Dostarlimab³² (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{24,33}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab³⁴ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{24,35,36}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients³⁶. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{37,38}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{37,38}.

ZNF429 amplification

zinc finger protein 429

<u>Background:</u> ZNF429 encodes zinc finger protein 429^{1,2}. Zinc finger proteins function as transcriptional regulators through their ability to bind to DNA by means of their zinc finger domains and have been observed to influence response to targeted therapy, including imatinib³. Like other zinc finger proteins, ZNF429 is predicted to be involved in the regulation of transcription, although, its exact biological role is yet to be reported^{1,2,3,4}.

Alterations and prevalence: Somatic mutations in ZNF429 are observed in 7% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 3% of colorectal adenocarcinoma, and 2% of stomach adenocarcinoma, esophageal adenocarcinoma, lung squamous cell carcinoma, and bladder urothelial carcinoma^{5,6}. In a study evaluating 21 patients with thymic epithelial tumors, ZNF429 demonstrated the highest mutation frequency (36%)⁷. Amplification of ZNF429 is observed in 4% of ovarian serous cystadenocarcinoma, and 2% of esophageal adenocarcinoma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma^{5,6}.

Potential relevance: Currently, no therapies are approved for ZNF429 aberrations.

6 of 17 Report Date: 10 Oct 2025

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Fast Track

FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR L858R mutation or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

CCNE1 amplification

camonsertib + lunresertib

Cancer type: Endometrial Carcinoma, Ovarian Cancer

Variant class: CCNE1 amplification

Supporting Statement:

- The FDA has granted Fast Track designation to lunresertib in combination with camonsertib for the treatment of adult patients with CCNE1 amplified, or FBXW7 or PPP2R1A mutated platinum resistant ovarian cancer.
- The FDA has granted Fast Track designation to lunresertib in combination with camonsertib for the treatment of adult patients with CCNE1 amplified, or FBXW7 or PPP2R1A mutated endometrial cancer.

Reference:

https://ir.reparerx.com/news-releases/news-release-details/repare-therapeutics-announces-fast-track-designation-granted-fda

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

Report Date: 10 Oct 2025 7 of 17

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
osimertinib					(III)
afatinib					(II)
dacomitinib					(II)
gefitinib					(II)
erlotinib + ramucirumab					×
amivantamab + carboplatin + pemetrexed	•	•	•	×	×
amivantamab + lazertinib	•	•	•	×	×
osimertinib + chemotherapy + pemetrexed	•	×	•	×	×
bevacizumab + erlotinib	×	•		•	×
erlotinib	×	•			×
osimertinib + carboplatin + pemetrexed	×	•	×	×	×
osimertinib + cisplatin + pemetrexed	×	•	×	×	×
BAT1706 + erlotinib	×	×	•	×	×
bevacizumab (Allergan) + erlotinib	×	×	•	×	×
bevacizumab (Biocon) + erlotinib	×	×	•	×	×
bevacizumab (Celltrion) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
bevacizumab (Stada) + erlotinib	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
adebrelimab, bevacizumab, chemotherapy	×	×	×	×	(IV)
afatinib, bevacizumab, chemotherapy	×	×	×	×	(IV)
befotertinib	×	×	×	×	(IV)
bevacizumab, almonertinib, chemotherapy	×	×	×	×	(IV)
catequentinib, toripalimab	×	×	×	×	(IV)
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
					(IV

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
gefitinib, endostatin	×	×	×	×	(IV)
natural product, gefitinib, erlotinib, icotinib hydrochloride, osimertinib, almonertinib, furmonertinib	×	×	×	×	● (IV)
almonertinib, apatinib	×	×	×	×	(III)
almonertinib, chemotherapy	×	×	×	×	(III)
almonertinib, radiation therapy	×	×	×	×	(III)
almonertinib, radiation therapy, chemotherapy	×	×	×	×	(III)
befotertinib, icotinib hydrochloride	×	×	×	×	(III)
bevacizumab, osimertinib	×	×	×	×	(III)
BL-B01D1	×	×	×	×	(III)
BL-B01D1, osimertinib	×	×	×	×	(III)
CK-101, gefitinib	×	×	×	×	(III)
datopotamab deruxtecan, osimertinib	×	×	×	×	(III)
FHND9041, afatinib	×	×	×	×	(III)
furmonertinib	×	×	×	×	(III)
furmonertinib, osimertinib, chemotherapy	×	×	×	×	(III)
gefitinib, afatinib, erlotinib, metformin hydrochloride	×	×	×	×	(III)
icotinib hydrochloride, catequentinib	×	×	×	×	(III)
icotinib hydrochloride, chemotherapy	×	×	×	×	(III)
icotinib hydrochloride, radiation therapy	×	×	×	×	(III)
JMT-101, osimertinib	×	×	×	×	(III)
osimertinib, bevacizumab	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
osimertinib, datopotamab deruxtecan	×	×	×	×	(III)
sacituzumab tirumotecan	×	×	×	×	(III)
sacituzumab tirumotecan, osimertinib	×	×	×	×	(III)
savolitinib, osimertinib	×	×	×	×	(III)
SH-1028	×	×	×	×	(III)
targeted therapy	×	×	×	×	(III)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Oct 2025 10 of 17

Relevant Therapy Summary (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TY-9591, osimertinib	×	×	×	×	(III)
SCTB-14, chemotherapy	×	×	×	×	(II/III)
ABSK-043, furmonertinib	×	×	×	×	(II)
almonertinib	×	×	×	×	(II)
almonertinib, adebrelimab, chemotherapy	×	×	×	×	(II)
almonertinib, bevacizumab	×	×	×	×	(II)
almonertinib, chemoradiation therapy	×	×	×	×	(II)
almonertinib, dacomitinib	×	×	×	×	(II)
amivantamab, chemotherapy	×	×	×	×	(II)
amivantamab, lazertinib, chemotherapy	×	×	×	×	(II)
atezolizumab, bevacizumab, tiragolumab	×	×	×	×	(II)
befotertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
bevacizumab, afatinib	×	×	×	×	(II)
bevacizumab, furmonertinib	×	×	×	×	(II)
cadonilimab, chemotherapy, catequentinib	×	×	×	×	(II)
camrelizumab, apatinib	×	×	×	×	(II)
capmatinib, osimertinib, ramucirumab	×	×	×	×	(II)
catequentinib, almonertinib	×	×	×	×	(II)
chemotherapy, atezolizumab, bevacizumab	×	×	×	×	(II)
dacomitinib, osimertinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, osimertinib, chemotherapy	×	×	×	×	● (II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
erlotinib, chemotherapy	×	×	×	×	(II)
erlotinib, OBI-833	×	×	×	×	(II)
furmonertinib, bevacizumab	×	×	×	×	(II)
furmonertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
furmonertinib, catequentinib	×	×	×	×	(II)
furmonertinib, chemotherapy	×	×	×	×	(II)
furmonertinib, chemotherapy, bevacizumab	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Oct 2025

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

In this cancer type and other cancer types

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials ³
furmonertinib, icotinib hydrochloride	×	×	×	×	(II)
gefitinib, bevacizumab, chemotherapy	×	×	×	×	(II)
gefitinib, icotinib hydrochloride	×	×	×	×	(II)
gefitinib, thalidomide	×	×	×	×	(II)
icotinib hydrochloride	×	×	×	×	(II)
icotinib hydrochloride, autologous RAK cell	×	×	×	×	(II)
icotinib hydrochloride, osimertinib	×	×	×	×	(II)
ivonescimab, chemotherapy	×	×	×	×	(II)
lazertinib	×	×	×	×	(II)
lazertinib, bevacizumab	×	×	×	×	(II)
lazertinib, chemotherapy	×	×	×	×	(II)
lenvatinib, pembrolizumab	×	×	×	×	(II)
osimertinib, chemoradiation therapy	×	×	×	×	● (II)
osimertinib, radiation therapy	×	×	×	×	(II)
PLB-1004, bozitinib, osimertinib	×	×	×	×	(II)
ramucirumab, erlotinib	×	×	×	×	(II)
sacituzumab govitecan	×	×	×	×	(II)
sacituzumab tirumotecan, chemotherapy, osimertinib	×	×	×	×	(II)
sunvozertinib	×	×	×	×	(II)
sunvozertinib, catequentinib	×	×	×	×	(II)
sunvozertinib, golidocitinib	×	×	×	×	● (II)
tislelizumab, chemotherapy, bevacizumab	×	×	×	×	(II)
toripalimab	×	×	×	×	(II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	×	×	×	×	(II)
toripalimab, chemotherapy	×	×	×	×	(II)
TY-9591, chemotherapy	×	×	×	×	(II)
zorifertinib, pirotinib	×	×	×	×	(II)
AFM-24_I, atezolizumab	×	×	×	×	(/)
almonertinib, icotinib hydrochloride	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
BDTX-1535	×	×	×	×	(I/II)
benmelstobart, catequentinib	×	×	×	×	(I/II)
BH-30643	×	×	×	×	(I/II)
bozitinib, osimertinib	×	×	×	×	(I/II)
BPI-361175	×	×	×	×	(I/II)
cetrelimab, amivantamab	×	×	×	×	(I/II)
dacomitinib, catequentinib	×	×	×	×	(1/11)
DAJH-1050766	×	×	×	×	(1/11)
DB-1310, osimertinib	×	×	×	×	(I/II)
dositinib	×	×	×	×	(I/II)
FWD-1509	×	×	×	×	(I/II)
H-002	×	×	×	×	(I/II)
ifebemtinib, furmonertinib	×	×	×	×	(I/II)
MRTX0902	×	×	×	×	(1/11)
necitumumab, osimertinib	×	×	×	×	(1/11)
quaratusugene ozeplasmid, osimertinib	×	×	×	×	(I/II)
RC-108, furmonertinib, toripalimab	×	×	×	×	(I/II)
sotiburafusp alfa, HB-0030	×	×	×	×	(I/II)
sunvozertinib, chemotherapy	×	×	×	×	(1/11)
TAS-3351	×	×	×	×	(1/11)
TQ-B3525, osimertinib	×	×	×	×	(I/II)
TRX-221	×	×	×	×	(I/II)
WSD-0922	×	×	×	×	(I/II)
afatinib, chemotherapy	×	×	×	×	(I)
alisertib, osimertinib	×	×	×	×	(I)
almonertinib, midazolam	×	×	×	×	(l)
ASKC-202	×	×	×	×	(I)
AZD-9592	×	×	×	×	(l)
BG-60366	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Oct 2025 13 of 17

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

• In this cancer type and other cancer types

X No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
BPI-1178, osimertinib	×	×	×	×	(l)
catequentinib, gefitinib, metformin hydrochloride	×	×	×	×	(l)
DZD-6008	×	×	×	×	(l)
EGFR tyrosine kinase inhibitor, catequentinib	×	×	×	×	(l)
genolimzumab, fruquintinib	×	×	×	×	(l)
IBI-318, lenvatinib	×	×	×	×	(l)
KQB-198, osimertinib	×	×	×	×	(l)
LAVA-1223	×	×	×	×	(l)
MRX-2843, osimertinib	×	×	×	×	(l)
osimertinib, carotuximab	×	×	×	×	(l)
osimertinib, Minnelide	×	×	×	×	(l)
osimertinib, tegatrabetan	×	×	×	×	(l)
patritumab deruxtecan	×	×	×	×	(l)
repotrectinib, osimertinib	×	×	×	×	(l)
VIC-1911, osimertinib	×	×	×	×	(l)
WJ13404	×	×	×	×	(l)
WTS-004	×	×	×	×	(l)
YH-013	×	×	×	×	(l)
YL-202	×	×	×	×	(I)

CCNE1 amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	×	×	×	×	(II)
APR-1051	×	×	×	×	(1/11)
ARTS-021	×	×	×	×	(I/II)
ECI-830, hormone therapy, ribociclib	×	×	×	×	(I/II)
INX-315, hormone therapy	×	×	×	×	(I/II)
WJB-001	×	×	×	×	(I/II)
lunresertib, camonsertib, Debio-0123	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Oct 2025 14 of 17

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

CCNE1 amplification (continued) **Clinical Trials*** Relevant Therapy **FDA NCCN EMA ESMO** nedisertib, tuvusertib × × × × (I) NKT-3964 × × × × (I)

MTOR amplification Relevant Therapy FDA NCCN EMA ESMO Clinical Trials* TQ-B3525, osimertinib X X X ■ (I/II)

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	27.0%
BRCA2	LOH, 13q13.1(32890491-32972932)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Oct 2025 15 of 17

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Kim et al. Genome-wide association study of acute post-surgical pain in humans. Pharmacogenomics. 2009 Feb;10(2):171-9. PMID: 19207018
- 3. Rink et al. ZNF-mediated resistance to imatinib mesylate in gastrointestinal stromal tumor. PLoS One. 2013;8(1):e54477. PMID: 23372733
- 4. Lee et al. Genome-wide enriched pathway analysis of acute post-radiotherapy pain in breast cancer patients: a prospective cohort study. Hum Genomics. 2019 Jun 13;13(1):28. PMID: 31196165
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Yang et al. Characteristics of genomic mutations and signaling pathway alterations in thymic epithelial tumors. Ann Transl Med. 2021 Nov;9(22):1659. PMID: 34988168
- Saxton et al. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. PMID: 28283069
- 9. Pópulo et al. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. PMID: 22408430
- 10. Faes et al. Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. Oxid Med Cell Longev. 2017;2017:1726078. Epub 2017 Feb 9. PMID: 28280521
- 11. Mendoza et al. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 2011 Jun;36(6):320-8. PMID: 21531565
- 12. Grabiner et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014 May;4(5):554-63. PMID: 24631838
- 13. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022088s021s023lbl.pdf
- 14. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/203985s023,022334s051lbl.pdf
- 15. Rodrik-Outmezguine et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016 Jun 9;534(7606):272-6. PMID: 27279227
- 16. Del et al. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol. Oncol. 2016 Jul;142(1):62-69. PMID: 27103175
- 17. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 18. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 19. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 20. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 21. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 22. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 23. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 24. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 25. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore).
 2015 Dec;94(50):e2260. PMID: 26683947
- 27. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 28. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 29. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 30. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf

Report Date: 10 Oct 2025 16 of 17

References (continued)

- 31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 32. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 33. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 34. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 35. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 36. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 37. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 38. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 39. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 40. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 41. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 42. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 43. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 44. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 45. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 46. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 47. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 48. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 49. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 50. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 51. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 52. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 53. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 54. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 55. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 56. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 57. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 58. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 59. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 60. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 61. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]

Report Date: 10 Oct 2025 17 of 17

References (continued)

- 62. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 63. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 64. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 65. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 66. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 67. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 68. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 69. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
- 70. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 71. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 72. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and
- 73. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 74. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s007lbl.pdf
- 75. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbledt.pdf
- 76. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 77. https://iis.aastocks.com/20231227/11015917-0.PDF
- 78. http://iis.aastocks.com/20230612/10770455-0.PDF
- 79. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 80. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 81. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 82. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 83. Hwang et al. Cyclin E in normal and neoplastic cell cycles. Oncogene. 2005 Apr 18;24(17):2776-86. PMID: 15838514
- 84. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 85. Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene. 2013 Aug 15;32(33):3840-5. PMID: 22964630
- 86. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001 Feb 16;490(3):117-22. PMID: 11223026
- 87. Schraml et al. Cyclin E overexpression and amplification in human tumours. J. Pathol. 2003 Jul;200(3):375-82. PMID: 12845634
- 88. Bai et al. Proliferation profile of classical Hodgkin's lymphomas. Increased expression of the protein cyclin D2 in Hodgkin's and Reed-Sternberg cells. Mod. Pathol. 2004 Nov;17(11):1338-45. PMID: 15354186
- 89. https://ir.reparerx.com/news-releases/news-release-details/repare-therapeutics-announces-fast-track-designation-granted-fda
- 90. Keyomarsi et al. Cyclin E and survival in patients with breast cancer. N. Engl. J. Med. 2002 Nov 14;347(20):1566-75. PMID: 12432043
- 91. Zhao et al. Prognostic Values of CCNE1 Amplification and Overexpression in Cancer Patients: A Systematic Review and Metaanalysis. J Cancer. 2018;9(13):2397-2407. PMID: 30026836
- 92. Huang et al. Meta-analysis for cyclin E in lung cancer survival. Clin. Chim. Acta. 2012 Apr 11;413(7-8):663-8. PMID: 22244930