

Tel. 1661-5117 www.smlab.co.kr

Report Date: 22 Sep 2025 1 of 18

Patient Name: 송천우 Gender: M Sample ID: N25-207 Primary Tumor Site: bladder Collection Date: 2022.10.27

Sample Cancer Type: Bladder Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	7
Relevant Therapy Summary	13

Report Highlights
3 Relevant Biomarkers
1 Therapies Available
32 Clinical Trials

Relevant Bladder Cancer Findings

Gene	Finding		Gene	Finding
BRAF	None detected		NTRK1	None detected
ERBB2	None detected		NTRK2	None detected
FGFR2	None detected		NTRK3	None detected
FGFR3	None detected		RET	None detected
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	8.55 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	KRAS p.(G12D) c.35G>A KRAS proto-oncogene, GTPase Allele Frequency: 36.92% Locus: chr12:25398284 Transcript: NM_033360.4	None*	bevacizumab + chemotherapy	22
IIC	CCNE1 amplification cyclin E1 Locus: chr19:30303647	None*	None*	9
IIC	ARID1A p.(S1707Ifs*7) c.5120delG AT-rich interaction domain 1A Allele Frequency: 42.61% Locus: chr1:27102193 Transcript: NM_006015.6	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

 $KDM6A\ p.(Q218*)\ c.652C>T$, $Microsatellite\ stable$, $RB1\ p.(D527Efs*26)\ c.1581_1585delTTTTT$, $TP53\ p.(E198*)\ c.592G>T$, $NCOR1\ p.(R33C)\ c.97C>T$, $Tumor\ Mutational\ Burden$

Variant Details

DNA S	Sequence Variar	nts					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
KRAS	p.(G12D)	c.35G>A	COSM521	chr12:25398284	36.92%	NM_033360.4	missense
ARID1A	p.(S1707Ifs*7)	c.5120delG		chr1:27102193	42.61%	NM_006015.6	frameshift Deletion
KDM6A	p.(Q218*)	c.652C>T		chrX:44896932	4.21%	NM_021140.3	nonsense
RB1	p.(D527Efs*26)	c.1581_1585delTTTTT		chr13:48955464	79.55%	NM_000321.3	frameshift Deletion
TP53	p.(E198*)	c.592G>T		chr17:7578257	69.42%	NM_000546.6	nonsense
NCOR1	p.(R33C)	c.97C>T		chr17:16097787	3.00%	NM_006311.4	missense
RPL5	p.(A106T)	c.316G>A		chr1:93300462	35.41%	NM_000969.5	missense
CACNA1E	p.(?)	c.5787-6_5790delTTTC AGGAGT		chr1:181759573	17.66%	NM_001205293.3	unknown
ARID4B	p.([D501=;D502N])	c.1503_1504delTGinsC A		chr1:235383187	2.64%	NM_016374.6	synonymous, missense
NRXN1	p.(F1114L)	c.3340T>C		chr2:50692604	3.29%	NM_004801.5	missense
CUL3	p.(R354C)	c.1060C>T		chr2:225370819	3.04%	NM_003590.5	missense
PIK3R1	p.(F275L)	c.823T>C		chr5:67576544	84.17%	NM_181523.3	missense
APC	p.(R2204Q)	c.6611G>A		chr5:112177902	2.58%	NM_000038.6	missense
RIPOR2	p.(S879L)	c.2636C>T		chr6:24828457	47.72%	NM_014722.5	missense
CSMD3	p.(G1948A)	c.5843G>C		chr8:113402984	54.04%	NM_198123.2	missense
ARL2	p.(P167S)	c.499C>T		chr11:64789271	48.45%	NM_001667.4	missense
CREBBP	p.(W1472S)	c.4415G>C		chr16:3786796	59.83%	NM_004380.3	missense
NCOR1	p.(R1950H)	c.5849G>A		chr17:15964747	3.44%	NM_006311.4	missense
NCOR1	p.(V1935M)	c.5803G>A		chr17:15964793	3.43%	NM_006311.4	missense
PPM1D	p.(R243C)	c.727C>T		chr17:58711239	4.09%	NM_003620.4	missense
KMT2B	p.(V461F)	c.1381G>T		chr19:36211630	67.57%	NM_014727.3	missense
KMT2B	p.(E1576D)	c.4728G>C		chr19:36219926	30.33%	NM_014727.3	missense
TENM1	p.(E48K)	c.142G>A		chrX:124097461	2.99%	NM_001163278.1	missense

Copy Number Variations						
Gene	Locus	Copy Number	CNV Ratio			
CCNE1	chr19:30303647	8.27	3.22			
FANCD2	chr3:10070306	4.62	1.93			

Variant Details (continued)

Copy Number Variations (continued)							
Gene	Locus	Copy Number	CNV Ratio				
VHL	chr3:10183418	6.15	2.48				
ARID5B	chr10:63661463	7.77	3.05				
KMT2B	chr19:36209128	6.94	2.75				

Biomarker Descriptions

KRAS p.(G12D) c.35G>A

KRAS proto-oncogene, GTPase

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁴. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{4,5,6}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{7,8}.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib⁹ (2021) and adagrasib¹⁰ (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma¹¹. The FDA has also granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036¹², for KRAS G12C-mutated non-small cell lung cancer. The SHP2 inhibitor, BBP-398¹³ was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC. The RAF/MEK clamp, avutometinib¹⁴ was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520¹⁵, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The KRAS G12C inhibitor, D3S-001¹⁶, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib¹⁷, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab¹⁸ and panitumumab¹⁹, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²⁰.

CCNE1 amplification

cyclin E1

Background: The CCNE1 gene encodes the cyclin E1 protein, a member of the highly conserved E-cyclin family which also includes CCNE285. CCNE1 facilitates progression from G1 to the S phase of the cell cycle by binding to cyclin dependent kinase 2 (CDK2) which results in phosphorylation and inactivation of the retinoblastoma (RB1) protein85. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition resulting in cell cycle progression, a common event observed in tumorigenesis86,87,88. Additionally, CCNE1 is often deregulated in a variety of cancer types supporting an oncogenic role for CCNE185,89.

Alterations and prevalence: CCNE1 amplification is observed in about 40% of uterine carcinosarcoma, 20% of ovarian cancer, 11% of stomach cancer, 7-8% sarcoma, uterine, and esophageal cancers, 5-6%, adrenocortical carcinoma, squamous lung, and bladder cancers⁴. Additionally, CCNE1 overexpression has been observed in many different tumor types including in 70-80% of Hodgkin's lymphoma.^{85,89,99}0.

<u>Potential relevance</u>: The FDA has granted fast track designation (2024) to the small molecule PKMYT1 inhibitor, lunresertib⁹¹, in combination with camonsertib for the treatment of adult patients with CCNE1 amplified endometrial cancer and platinum resistant ovarian cancer. CCNE1 amplification and overexpression has been associated with poor prognosis in certain cancer types including lung and breast cancers^{92,93,94}.

Biomarker Descriptions (continued)

ARID1A p.(S1707Ifs*7) c.5120delG

AT-rich interaction domain 1A

Background: The ARID1A gene encodes the AT-rich interaction domain 1A tumor suppressor protein²¹. ARID1A, also known as BAF250A, belongs to the ARID1 subfamily that also includes AR1D1B^{21,79}. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin-remodeling complex^{79,80}. The BAF complex is a multisubunit protein that consists of SMARCB1/IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B⁸⁰. The BAF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression^{80,81}. ARID1A binds to transcription factors and coactivator/corepressor complexes to alter transcription⁷⁹. Recurrent inactivating mutations in BAF complex subunits, including ARID1A, lead to transcriptional dysfunction thereby, altering its tumor suppressor function⁷⁹.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors⁸¹. The majority of ARID1A inactivating mutations are nonsense or frameshift mutations⁷⁹. Somatic mutations in ARID1A have been identified in 50% of ovarian clear cell carcinoma, 30% of endometrioid carcinoma, and 24-43% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma^{4,7,80}. In microsatellite stable (MSS) colorectal cancer, mutations in ARID1A have been observed to correlate with increased tumor mutational burden (TMB) and expression of genes involved in the immune response⁸².

Potential relevance: Currently, no therapies are approved for ARID1A aberrations. However, the FDA has granted fast track designation (2022) to HSF1 pathway inhibitor, NXP-80083, for the treatment of platinum resistant ARID1A-mutated ovarian carcinoma. Tulmimetostat84, dual inhibitor of EZH2 and EZH1, was also granted a fast track designation (2023) for the treatment of patients with advanced, recurrent or metastatic endometrial cancer harboring ARID1A mutations and who have progressed on at least one prior line of treatment.

KDM6A p.(Q218*) c.652C>T

lysine demethylase 6A

Background: The KDM6A gene encodes the lysine demethylase 6A protein²¹. KDM6A is a histone demethylase that belongs to the KDM6 family of histone H3 lysine demethylases that also includes KDM6B and KDM6C⁷⁵. Methylation of histone lysine and arginine residues functions to regulate transcription and the DNA damage response, specifically in the recruitment of DNA repair proteins and transcriptional repression⁷⁶. KDM6A removes methylation of di- and trimethylated histone 3 lysine 27 (H3K27)^{75,77}. KDM6A also interacts with various transcription factors as well as KMT2C, KMT2D, and CBP/p300 chromatin-modifying enzymes, and the SWI/SNF chromatin-remodeling complex to facilitate transcriptional regulation⁷⁵. Mutations in KDM6A lead to activation of the histone methyltransferase, EZH2, resulting in transcriptional repression⁷⁵. KDM6A is believed to function as a tumor suppressor by antagonizing EZH2-mediated transcriptional repression and promoting transcriptional regulation^{75,78}.

Alterations and prevalence: Somatic mutations in KDM6A are observed in 26% of bladder urothelial carcinoma, 7% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, lung squamous cell carcinoma, and 4% of esophageal adenocarcinoma, kidney renal papillary cell carcinoma, pancreatic adenocarcinoma, cervical squamous cell carcinoma, and head and neck squamous cell carcinoma^{4,7}. Biallelic loss of KDM6A is observed in 8% of esophageal adenocarcinoma, 4% of lung squamous cell carcinoma, 3% of head and neck squamous cell carcinoma, bladder urothelial carcinoma, and pancreatic adenocarcinoma^{4,7}.

<u>Potential relevance</u>: Currently, no therapies are approved for KDM6A aberrations. Pre-clinical data suggest that KDM6A loss of function or inactivating mutations may respond to EZH2 inhibitors⁷⁸.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁵³. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{54,55}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁵⁶. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁵⁷. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁵⁷. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{58,59,60,61,62}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁵⁵. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{54,55,59,63}.

Biomarker Descriptions (continued)

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{54,55,64,65}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{64,65}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁶⁶ (2014) and nivolumab⁶⁷ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁶⁶ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁶⁶. Dostarlimab⁶⁸ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{60,69}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁷⁰ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{60,71,72}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁷². The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{73,74}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{73,74}.

RB1 p.(D527Efs*26) c.1581_1585delTTTTT

RB transcriptional corepressor 1

Background: The RB1 gene encodes the retinoblastoma protein (pRB), and is an early molecular hallmark of cancer. RB1 belongs to the family of pocket proteins that also includes p107 and p130, which play a crucial role in the cell proliferation, apoptosis, and differentiation^{95,96}. RB1 is well characterized as a tumor suppressor gene that restrains cell cycle progression from G1 phase to S phase⁹⁷. Specifically, RB1 binds and represses the E2F family of transcription factors that regulate the expression of genes involved in the G1/S cell cycle regulation^{95,96,98}. Germline mutations in RB1 are associated with retinoblastoma (a rare childhood tumor) as well as other cancer types such as osteosarcoma, soft tissue sarcoma, and melanoma⁹⁹.

Alterations and prevalence: Recurrent somatic alterations in RB1, including mutations and biallelic loss, lead to the inactivation of the RB1 protein. RB1 mutations are observed in urothelial carcinoma (approximately 16%), endometrial cancer (approximately 12%), and sarcomas (approximately 9%)⁷. Similarly, biallelic loss of RB1 is observed in sarcomas (approximately 13%), urothelial carcinoma (approximately 6%), and endometrial cancer (approximately 1%)⁷. Biallelic loss of the RB1 gene is also linked to the activation of chemotherapy-induced acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)^{100,101,102}.

Potential relevance: Currently, there are no therapies approved for RB1 aberrations.

TP53 p.(E198*) c.592G>T

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair²¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis²². Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential²³. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{24,25}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{4,7,26,27,28,29}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{4,7}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{30,31,32,33}. Alterations in TP53 are also observed in pediatric cancers^{4,7}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{4,7}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{4,7}.

 $\underline{ \text{Potential relevance:}} \text{ The small molecule p53 reactivator, PC14586}^{34} \text{ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation.} \text{ The FDA has granted fast track designation to the p53 reactivator, eprenetapopt}^{35}, (2019)$

Biomarker Descriptions (continued)

and breakthrough designation³⁶ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{37,38}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma³⁹. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{40,41,42,43,44,45}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁴⁶. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁴⁷.

NCOR1 p.(R33C) c.97C>T

nuclear receptor corepressor 1

Background: NCOR1 encodes nuclear receptor corepressor 1, which serves as a scaffold protein for large corepressor including transducin beta like 1 X-linked (TBL1X), TBL1X/Y related 1 (TBL1XR1), the G-protein-pathway suppressor 2 (GPS2), and protein deacetylases such as histone deacetylase 3 (HDAC3)^{21,48,49}. NCOR1 plays a key role in several processes including embryonal development, metabolism, glucose homeostasis, inflammation, cell fate, chromatin structure and genomic stability^{48,49,50,51}. NCOR1 has been shown exhibit a tumor suppressor role by inhibiting invasion and metastasis in various cancer models⁴⁹. Inactivation of NCOR1 through mutation or deletion is observed in several cancer types including colorectal cancer, bladder cancer, hepatocellular carcinomas, lung cancer, and breast cancer^{49,52}.

Alterations and prevalence: Somatic mutations in NCOR1 are observed in 13% of uterine corpus endometrial carcinoma, 11% of skin cutaneous melanoma, 8% of bladder urothelial carcinoma, 7% of stomach adenocarcinoma, 6% of colorectal adenocarcinoma, 5% of lung squamous cell carcinoma and breast invasive carcinoma, 4% of cervical squamous cell carcinoma and lung adenocarcinoma, 3% of mesothelioma, head and neck squamous cell carcinoma, cholangiocarcinoma, and kidney renal papillary cell carcinoma, and 2% of esophageal adenocarcinoma, glioblastoma multiforme, and ovarian serous cystadenocarcinoma^{4,7}. Biallelic loss of NCOR1 are observed in 3% of liver hepatocellular carcinoma, and 2% of uterine carcinosarcoma, stomach adenocarcinoma, diffuse large B-cell lymphoma, and bladder urothelial carcinoma^{4,7}. Structural variants of NCOR1 are observed in 3% of cholangiocarcinoma and 2% of uterine carcinosarcoma^{4,7}.

<u>Potential relevance:</u> Currently, no therapies are approved for NCOR1 aberrations.

Report Date: 22 Sep 2025 7 of 18

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

• in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

Report Date: 22 Sep 2025 8 of 18

Variant class: CCNE1 amplification

KRAS p.(G12D) c.35G>A (continued)

panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

■ In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

CCNE1 amplification

camonsertib + lunresertib

Cancer type: Endometrial Carcinoma, Ovarian Cancer

Supporting Statement:

- The FDA has granted Fast Track designation to lunresertib in combination with camonsertib for the treatment of adult patients with CCNE1 amplified, or FBXW7 or PPP2R1A mutated platinum resistant ovarian cancer.
- The FDA has granted Fast Track designation to lunresertib in combination with camonsertib for the treatment of adult patients with CCNE1 amplified, or FBXW7 or PPP2R1A mutated endometrial cancer.

Reference:

https://ir.reparerx.com/news-releases/news-release-details/repare-therapeutics-announces-fast-track-designation-granted-fda

Report Date: 22 Sep 2025 9 of 18

Current NCCN Information

Contraindicated

Not recommended

Breakthrough

A Fast Track

NCCN information is current as of 2025-05-01. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2025]

cetuximab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

panitumumab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2025]

Report Date: 22 Sep 2025 10 of 18

KRAS p.(G12D) c.35G>A (continued)

panitumumab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

Current EMA Information

EMA information is current as of 2025-05-14. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(G12D) c.35G>A

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Report Date: 22 Sep 2025 11 of 18

Current ESMO Information

Contraindicated

Not recommended

Resistance

Breakthrough

A Fast Track

ESMO information is current as of 2025-05-01. For the most up-to-date information, search www.esmo.org.

KRAS p.(G12D) c.35G>A

cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
bevacizumab + CAPOX	×	×	×	0	×
bevacizumab + FOLFIRI	×	×	×	0	×
bevacizumab + FOLFOX	×	×	×	0	×
bevacizumab + FOLFOXIRI	×	×	×	0	×
regorafenib	×	×	×	×	(II)
DN-022150	×	×	×	×	(/)
ERAS-0015	×	×	×	×	(1/11)
GDC-7035	×	×	×	×	(/)
GFH-375	×	×	×	×	(/)
HRS-4642, adebrelimab, SHR-9839, chemotherapy	×	×	×	×	(1/11)
IMM-1-104	×	×	×	×	(/)
RNK-08954	×	×	×	×	(/)
TSN-1611	×	×	×	×	(I/II)
YL-15293	×	×	×	×	(/)
ASP-4396	×	×	×	×	(I)
AST-NS2101	×	×	×	×	(I)
HMPL-415	×	×	×	×	(I)
JAB-3312	×	×	×	×	● (I)
KRAS TCR, aldesleukin, SLATE 001, chemotherapy	×	×	×	×	(I)
KRAS-EphA-2-CAR-DC, anti-PD-1, ipilimumab	×	×	×	×	(I)
Nest-1	×	×	×	×	(I)
PT-0253	×	×	×	×	(I)
QLC-1101	×	×	×	×	(I)
RMC-6236	×	×	×	×	(I)
RMC-9805, RMC-6236	×	×	×	×	(I)
ZEN-3694, binimetinib	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 22 Sep 2025 14 of 18

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	×	×	×	×	(II)
APR-1051	×	×	×	×	(/)
ARTS-021	×	×	×	×	(I/II)
ECI-830, hormone therapy, ribociclib	×	×	×	×	(1/11)
INX-315, hormone therapy	×	×	×	×	(1/11)
WJB-001	×	×	×	×	(I/II)
lunresertib, camonsertib, Debio-0123	×	×	×	×	(I)
nedisertib, tuvusertib	×	×	×	×	(I)
NKT-3964	×	×	×	×	(I)

ARID1A p.(S1707Ifs*7) c.5120delG					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
talazoparib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	19.98%
BRCA2	LOH, 13q13.1(32890491-32972932)x2
BARD1	LOH, 2q35(215593375-215674382)x3

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/2146650rig1s009correctedlbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
- 11. NCCN Guidelines® NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
- 12. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 13. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 14. https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination
- 15. https://www.businesswire.com/news/home/20250109170439/en/
- 16. https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation
- 17. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation-_July_2021.pdf
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
- 20. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 21. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 22. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 23. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 24. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 25. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 26. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 27. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 28. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 29. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 30. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217

16 of 18

Report Date: 22 Sep 2025

References (continued)

- 31. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 32. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 33. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 34. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 35. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 36. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/ fonc.2015.00288. eCollection 2015. PMID: 26732534
- 38. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 39. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 40. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 41. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 42. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 43. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 44. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 45. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 46. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 47. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- Geiger et al. Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Front Immunol. 2020;11:569358. PMID: 33117357
- 49. Martínez-Iglesias et al. Tumor suppressive actions of the nuclear receptor corepressor 1. Pharmacol Res. 2016 Jun;108:75-79. PMID: 27149915
- 50. Bhaskara et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010 Nov 16;18(5):436-47. PMID: 21075309
- 51. Mottis et al. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev. 2013 Apr 15;27(8):819-35. PMID: 23630073
- 52. Noblejas-López et al. Evaluation of transcriptionally regulated genes identifies NCOR1 in hormone receptor negative breast tumors and lung adenocarcinomas as a potential tumor suppressor gene. PLoS One. 2018;13(11):e0207776. PMID: 30485330
- 53. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 54. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 55. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 56. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 57. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 58. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 59. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 60. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]

Report Date: 22 Sep 2025 17 of 18

References (continued)

- 61. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 62. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 63. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 64. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 65. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 67. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 68. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 69. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 70. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 71. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 72. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 73. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 74. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 75. Tran et al. Lysine Demethylase KDM6A in Differentiation, Development, and Cancer. Mol Cell Biol. 2020 Sep 28;40(20). PMID: 32817139
- 76. Gong et al. Histone methylation and the DNA damage response. Mutat Res. 2017 Sep 23;780:37-47. PMID: 31395347
- 77. Iwase et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell. 2007 Mar 23;128(6):1077-88. PMID: 17320160
- 78. Ler et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 2017 Feb 22;9(378). PMID: 28228601
- 79. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013 Jan;3(1):35-43. PMID: 23208470
- 80. Wilson et al. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011 Jun 9;11(7):481-92. PMID: 21654818
- 81. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. Nat Commun. 8;14648. PMID: 28262751
- 82. Mehrvarz et al. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res. 2021 Mar 15;27(6):1663-1670. PMID: 33414133
- 83. https://nuvectis.com/press-release-view/?i=114174
- 84. https://www.morphosys.com/en/news/morphosys-receives-us-fda-fast-track-designation-tulmimetostat-endometrial-cancer
- 85. Hwang et al. Cyclin E in normal and neoplastic cell cycles. Oncogene. 2005 Apr 18;24(17):2776-86. PMID: 15838514
- 86. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 87. Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene. 2013 Aug 15;32(33):3840-5. PMID: 22964630
- 88. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001 Feb 16;490(3):117-22. PMID: 11223026
- 89. Schraml et al. Cyclin E overexpression and amplification in human tumours. J. Pathol. 2003 Jul;200(3):375-82. PMID: 12845634
- 90. Bai et al. Proliferation profile of classical Hodgkin's lymphomas. Increased expression of the protein cyclin D2 in Hodgkin's and Reed-Sternberg cells. Mod. Pathol. 2004 Nov;17(11):1338-45. PMID: 15354186
- $91. \ https://ir.reparerx.com/news-releases/news-release-details/repare-therapeutics-announces-fast-track-designation-granted-fda$
- 92. Keyomarsi et al. Cyclin E and survival in patients with breast cancer. N. Engl. J. Med. 2002 Nov 14;347(20):1566-75. PMID: 12432043

Report Date: 22 Sep 2025 18 of 18

References (continued)

- 93. Zhao et al. Prognostic Values of CCNE1 Amplification and Overexpression in Cancer Patients: A Systematic Review and Metaanalysis. J Cancer. 2018;9(13):2397-2407. PMID: 30026836
- 94. Huang et al. Meta-analysis for cyclin E in lung cancer survival. Clin. Chim. Acta. 2012 Apr 11;413(7-8):663-8. PMID: 22244930
- 95. Korenjak et al. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev . 2005 Oct;15(5):520-7. doi: 10.1016/j.gde.2005.07.001. PMID: 16081278
- 96. Sachdeva et al. Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J. Clin. Invest. 2012 Feb;122(2):425-34. PMID: 22293180
- 97. Dyson. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016 Jul 1;30(13):1492-502. PMID: 27401552
- 98. Cobrinik. Pocket proteins and cell cycle control. Oncogene. 2005 Apr 18;24(17):2796-809. PMID: 15838516
- 99. Dommering et al. RB1 mutations and second primary malignancies after hereditary retinoblastoma. Fam. Cancer. 2012 Jun;11(2):225-33. PMID: 22205104
- 100. Anasua et al. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma. . Oman J Ophthalmol . May-Aug 2016;9(2):116-8. PMID: 27433042
- 101. Tanaka et al. Frequent allelic loss of the RB, D13S319 and D13S25 locus in myeloid malignancies with deletion/translocation at 13q14 of chromosome 13, but not in lymphoid malignancies. Leukemia. 1999 Sep;13(9):1367-73. PMID: 10482987
- 102. Gombos et al. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor?. Ophthalmology. 2007 Jul;114(7):1378-83. PMID: 17613328