


Tel. 1661-5117 www.smlab.co.kr



Report Date: 15 Sep 2025 1 of 20

**Patient Name:** 백점남 Gender: N25-196 Sample ID:

**Primary Tumor Site:** Liver 2025.01.14 **Collection Date:** 

# Sample Cancer Type: Liver Cancer

| Table of Contents        | Page |
|--------------------------|------|
| Variant Details          | 2    |
| Biomarker Descriptions   | 3    |
| Alert Details            | 9    |
| Relevant Therapy Summary | 14   |

# Report Highlights 4 Relevant Biomarkers 1 Therapies Available 25 Clinical Trials

# **Relevant Liver Cancer Findings**

| Gene         | Finding         |                      |
|--------------|-----------------|----------------------|
| BRAF         | None detected   |                      |
| NTRK1        | None detected   |                      |
| NTRK2        | None detected   |                      |
| NTRK3        | None detected   |                      |
| RET          | None detected   |                      |
| Genomic Alte | eration         | Finding              |
| Tumor Mu     | tational Burden | 5.69 Mut/Mb measured |

## **Relevant Biomarkers**

| Tier | Genomic Alteration                                                                                                         | Relevant Therapies<br>(In this cancer type) | Relevant Therapies<br>(In other cancer type) | Clinical Trials |
|------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------|
| IIC  | KRAS p.(G12V) c.35G>T  KRAS proto-oncogene, GTPase Allele Frequency: 52.93% Locus: chr12:25398284  Transcript: NM_033360.4 | None*                                       | bevacizumab + chemotherapy                   | 14              |
| IIC  | MTAP deletion methylthioadenosine phosphorylase Locus: chr9:21802646                                                       | None*                                       | None*                                        | 9               |
| IIC  | CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178                                                  | None*                                       | None*                                        | 3               |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

**Report Date**: 15 Sep 2025 2 of 20

# **Relevant Biomarkers (continued)**

| Tier | Genomic Alteration                                           | Relevant Therapies<br>(In this cancer type) | Relevant Therapies<br>(In other cancer type) | Clinical Trials |
|------|--------------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------|
| IIC  | CDKN2B deletion                                              | None*                                       | None*                                        | 1               |
|      | cyclin dependent kinase inhibitor 2B<br>Locus: chr9:22005728 |                                             |                                              |                 |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

### Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, PPP2R2A deletion, RAD54L deletion, TP53 c.96+1G>T, DOCK3 deletion, HLA-A deletion, HLA-B deletion, TAP1 deletion, HDAC2 deletion, Tumor Mutational Burden

## **Variant Details**

| Gene    | Amino Acid Change | Coding                    | Variant ID | Locus          | Allele<br>Frequency | Transcript     | Variant Effect             |
|---------|-------------------|---------------------------|------------|----------------|---------------------|----------------|----------------------------|
| KRAS    | p.(G12V)          | c.35G>T                   | COSM520    | chr12:25398284 | 52.93%              | NM_033360.4    | missense                   |
| TP53    | p.(?)             | c.96+1G>T                 |            | chr17:7579699  | 39.59%              | NM_000546.6    | unknown                    |
| RPTN    | p.(L33M)          | c.97T>A                   |            | chr1:152130269 | 57.52%              | NM_001122965.1 | missense                   |
| INPP4B  | p.(V741M)         | c.2221G>A                 |            | chr4:143033750 | 48.12%              | NM_001101669.3 | missense                   |
| HLA-B   | p.([T118I;L119I]) | c.353_355delCCCinsT<br>CA |            | chr6:31324208  | 100.00%             | NM_005514.8    | missense,<br>missense      |
| FANCE   | p.(G10R)          | c.28G>A                   |            | chr6:35420350  | 5.98%               | NM_021922.3    | missense                   |
| MLIP    | p.(V159*)         | c.474_475delTGinsCTG<br>A | i.         | chr6:53989525  | 5.41%               | NM_138569.2    | nonsense                   |
| CREBBP  | p.(P1077S)        | c.3229C>T                 |            | chr16:3817742  | 48.45%              | NM_004380.3    | missense                   |
| SMARCA4 | p.(G243_P244dup)  | c.713_714insTGGCCC        |            | chr19:11097222 | 50.74%              | NM_001128849.3 | nonframeshift<br>Insertion |
| SMARCA4 | p.(S297G)         | c.889A>G                  |            | chr19:11098371 | 3.69%               | NM_001128849.3 | missense                   |
| STAG2   | p.(L464F)         | c.1392G>T                 |            | chrX:123191803 | 30.56%              | NM_001042749.2 | missense                   |

| Copy Number Variations |               |             |           |  |  |
|------------------------|---------------|-------------|-----------|--|--|
| Gene                   | Locus         | Copy Number | CNV Ratio |  |  |
| MTAP                   | chr9:21802646 | 0.13        | 0.52      |  |  |
| CDKN2A                 | chr9:21968178 | 0.08        | 0.5       |  |  |
| CDKN2B                 | chr9:22005728 | 0.25        | 0.54      |  |  |
| PPP2R2A                | chr8:26149298 | 0.54        | 0.62      |  |  |
| RAD54L                 | chr1:46714017 | 1           | 0.87      |  |  |
| DOCK3                  | chr3:51101879 | 0.54        | 0.62      |  |  |
| HLA-A                  | chr6:29910229 | 0.67        | 0.66      |  |  |

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

# **Variant Details (continued)**

| Copy Number Variations (continued) |                |             |           |  |  |
|------------------------------------|----------------|-------------|-----------|--|--|
| Gene                               | Locus          | Copy Number | CNV Ratio |  |  |
| HLA-B                              | chr6:31322252  | 0           | 0.44      |  |  |
| TAP2                               | chr6:32796585  | 0.85        | 0.7       |  |  |
| TAP1                               | chr6:32814849  | 0.65        | 0.65      |  |  |
| HDAC2                              | chr6:114262171 | 0.67        | 0.66      |  |  |
| PRDM9                              | chr5:23509577  | 0.71        | 0.67      |  |  |
| ROS1                               | chr6:117622071 | 0.81        | 0.69      |  |  |
| ESR1                               | chr6:152163831 | 0.81        | 0.69      |  |  |

## **Biomarker Descriptions**

KRAS p.(G12V) c.35G>T

KRAS proto-oncogene, GTPase

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival<sup>1,2,3</sup>.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer<sup>4</sup>. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61<sup>4,5,6</sup>. Mutations at A59, K117, and A146 have also been observed but are less frequent<sup>7,8</sup>.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib<sup>9</sup> (2021) and adagrasib<sup>10</sup> (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma<sup>11</sup>. The FDA has also granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036<sup>12</sup>, for KRAS G12C-mutated non-small cell lung cancer. The SHP2 inhibitor, BBP-398<sup>13</sup> was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC. The RAF/MEK clamp, avutometinib<sup>14</sup> was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520<sup>15</sup>, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The KRAS G12C inhibitor, D3S-001<sup>16</sup>, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib<sup>17</sup>, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab<sup>18</sup> and panitumumab<sup>19</sup>, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)<sup>8</sup>. Additionally, KRAS mutations are associated with poor prognosis in NSCLC<sup>20</sup>.

#### MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase<sup>21</sup>. Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate<sup>42,43</sup>. Loss of MTAP function is commonly observed in cancer due to deletion or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation<sup>43</sup>.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be codeleted with CDKN2A in numerous solid and hematological cancers<sup>43,44</sup>. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21% of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell

# **Biomarker Descriptions (continued)**

lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma<sup>4,7</sup>. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

#### **CDKN2A** deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression<sup>21</sup>. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)<sup>45</sup>. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb<sup>46,47,48</sup>. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions<sup>49</sup>. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation<sup>21,49,50</sup>. CDKN2A aberrations commonly co-occur with CDKN2B<sup>45</sup>. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation<sup>51</sup>. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer<sup>52,53</sup>.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations<sup>54</sup>. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma<sup>47</sup>. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe<sup>4,7</sup>. Alterations in CDKN2A are also observed in pediatric cancers<sup>7</sup>. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors<sup>7</sup>. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)<sup>7</sup>.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors<sup>55,56,57</sup>. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma<sup>58</sup>. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib<sup>59,60,61</sup>. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme<sup>62</sup>. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer<sup>63,64,65,66</sup>.

#### **CDKN2B** deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression<sup>21,45</sup>. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)<sup>45</sup>. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb<sup>46,47,48</sup>. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A<sup>45</sup>. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma<sup>21,67,68</sup>.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma, 11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma, breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe<sup>4,7</sup>. Somatic mutations in CDKN2B are

# **Biomarker Descriptions (continued)**

observed in 2% of uterine carcinosarcoma<sup>4,7</sup>. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14% of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers<sup>4,7</sup>. Somatic mutations in CDKN2B are observed in less than 1% of bone cancer (1 in 327 cases)<sup>4,7</sup>.

<u>Potential relevance</u>: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular marker used in staging grade 4 pediatric IDH-mutant astrocytoma<sup>58</sup>.

#### Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome<sup>113</sup>. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue<sup>114,115</sup>. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2<sup>116</sup>. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250<sup>117</sup>. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)<sup>117</sup>. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS<sup>118,119,120,121,122</sup>. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes<sup>115</sup>. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer<sup>114,115,119,123</sup>.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma<sup>114,115,124,125</sup>. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers<sup>124,125</sup>.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab<sup>126</sup> (2014) and nivolumab<sup>127</sup> (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab<sup>126</sup> is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication<sup>126</sup>. Dostarlimab<sup>128</sup> (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer<sup>120,129</sup>. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab<sup>130</sup> (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location<sup>120,131,132</sup>. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients<sup>132</sup>. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors<sup>133,134</sup>. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers<sup>133,134</sup>.

## PPP2R2A deletion

protein phosphatase 2 regulatory subunit Balpha

Background: The PPP2R2A gene encodes the protein phosphatase 2 regulatory subunit B alpha, a member of a large heterotrimeric serine/threonine phosphatase 2A (PP2A) family. Proteins of the PP2A family includes 3 subunits—the structural A subunit (includes PPP2R1A and PPP2R1B), the regulatory B subunit (includes PPP2R2A, PPP2R3, and STRN), and the catalytic C subunit (PPPP2CA and PPP2CB)<sup>28,29</sup>. PPA2 proteins are essential tumor suppressor genes that regulate cell division and possess proapoptotic activity through negative regulation of the PI3K/AKT pathway<sup>30</sup>. Specifically, PPP2R2A modulates ATM phosphorylation which is critical in the regulation of the homologous recombination repair (HRR) pathway<sup>28</sup>.

Alterations and prevalence: Copy number loss and downregulation of PPP2R2A is commonly observed in solid tumors including breast and non-small cell lung cancer and define an aggressive subgroup of luminal-like breast cancer<sup>28,29,31,32</sup>. Biallelic loss of PPP2R2A is observed in 4-8% of breast invasive carcinoma, lung, colorectal, bladder, liver, and prostate cancers, as well as 4% of diffuse large B-cell lymphoma<sup>4</sup>.

<u>Potential relevance</u>: Currently no therapies are approved for PPP2R2A aberrations. However, in 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex<sup>33</sup>, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Loss of PPP2R2A in pre-clinical and xenograft models have been shown to inhibit

# **Biomarker Descriptions (continued)**

homologous recombination DNA directed repair and may predict sensitivity to PARP inhibitors such as veliparib<sup>28</sup>. Olaparib treatment in prostate cancer with PPP2R2A mutations is not recommended due to unfavorable risk benefit<sup>34</sup>.

#### **RAD54L deletion**

RAD54 like (S. cerevisiae)

Background: The RAD54L gene encodes the RAD54-like protein and is a member of the Snf2 family of Superfamily 2 (SF2) helicase-like proteins, which also includes its homolog RAD54B<sup>75</sup>. The Snf2 family are a group of DNA translocases that use ATP-hydrolysis to remodel chromatin structure and therefore regulate genome integrity by controlling transcriptional regulation, chromosome stability, and DNA repair<sup>75,76,77</sup>. Structurally, these proteins contain a common Snf2 domain that consists of two RecA-like folds with seven conserved sequence motifs for identifying helicases<sup>75,78</sup>. RAD54L specifically appears to stabilize the association of RAD51 DNA strand exchange activity and binds Holliday junctions to promote branch migration during homologous recombination<sup>79</sup>. RAD54L is a tumor suppressor gene and loss of function mutations in RAD54L are implicated in the BRCAness phenotype, which is characterized by a defect in homologous recombination repair (HRR) mimicking BRCA1 or BRCA2 loss<sup>80</sup>.

Alterations and prevalence: Somatic mutations in RAD54L are observed in up to 5% of uterine cancer<sup>4,7</sup>.

Potential relevance: The PARP inhibitor, olaparib<sup>81</sup> is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes RAD54L. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex<sup>33</sup>, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

#### TP53 c.96+1G>T

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair<sup>21</sup>. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis<sup>82</sup>. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential<sup>83</sup>. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers<sup>84,85</sup>.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)<sup>4,7,86,87,88,89</sup>. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282<sup>4,7</sup>. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes<sup>90,91,92,93</sup>. Alterations in TP53 are also observed in pediatric cancers<sup>4,7</sup>. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)<sup>4,7</sup>. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)<sup>4,7</sup>.

Potential relevance: The small molecule p53 reactivator, PC14586<sup>94</sup> (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt<sup>95</sup>, (2019) and breakthrough designation<sup>96</sup> (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation<sup>97,98</sup>. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma<sup>99</sup>. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)<sup>100,101,102,103,104,105</sup>. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant<sup>106</sup>. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system<sup>107</sup>.

Report Date: 15 Sep 2025

# **Biomarker Descriptions (continued)**

#### **DOCK3** deletion

dedicator of cytokinesis 3

Background: The DOCK3 gene encodes dedicator of cytokinesis 3, a member of the DOCK (dedicator of cytokinesis) family of guanine nucleotide exchange factors (GEFs)<sup>21</sup>. As a GEF, DOCK3 functions by catalyzing the exchange of GDP for GTP, and activates the G protein, Rac1, thereby facilitating RAC1 mediated signaling<sup>108</sup>. Consequently, DOCK3 has been observed to facilitate the regulation of several cellular processes including axonal outgrowth, cytoskeletal organization, and cell adhesion<sup>21,109,110</sup>. Unlike other GEFs found to be altered in cancer, DOCK3 has been shown to exhibit tumor suppressor like properties through inhibition of β-catenin/WNT signaling<sup>111,112</sup>. Additionally knockdown of DOCK3 has been observed to inhibit tumor cell adhesion, migration, and invasion in non-small cell lung cancer cell lines, further supporting a tumor suppressive role for DOCK3<sup>110</sup>.

Alterations and prevalence: Somatic mutations in DOCK3 are observed in 21% of skin cutaneous melanoma, 16% of uterine corpus endometrial carcinoma, 12% of stomach adenocarcinoma, 9% of colorectal adenocarcinoma, 6% of esophageal adenocarcinoma, 4% of sarcoma, and lung adenocarcinoma, 3% of bladder urothelial carcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, and 2% of diffuse large B-cell lymphoma, pancreatic adenocarcinoma, head and neck squamous cell carcinoma, kidney renal papillary cell carcinoma, ovarian serous cystadenocarcinoma, liver hepatocellular carcinoma, and kidney chromophobe<sup>4,7</sup>. Biallelic loss of DOCK3 is observed in 4% of diffuse large B-cell lymphoma, 3% of esophageal adenocarcinoma and kidney renal clear cell carcinoma, and 2% of sarcoma<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for DOCK3 aberrations.

#### **HLA-A** deletion

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I,  $A^{21}$ . MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells<sup>69</sup>. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M<sup>70</sup>. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self<sup>71,72,73</sup>. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A<sup>74</sup>.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma<sup>4,7</sup>. Biallelic loss of HLA-A is observed in 4% of DLBCL<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

### **HLA-B** deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B<sup>21</sup>. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells<sup>69</sup>. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M<sup>70</sup>. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self<sup>71,72,73</sup>. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B<sup>74</sup>.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma<sup>4,7</sup>. Biallelic loss of HLA-B is observed in 5% of DLBCL<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

#### **TAP2** deletion

transporter 2, ATP binding cassette subfamily B member

<u>Background:</u> The TAP2 gene encodes the transporter 2, ATP binding cassette subfamily B member protein<sup>21</sup>. Along with TAP1, TAP2 is a member of the superfamily of ATP-binding cassette (ABC) transporters<sup>21</sup>. Together, TAP1 and TAP2 are capable of ATP controlled

# **Biomarker Descriptions (continued)**

dimerization and make up the ABC transporter associated with antigen processing (TAP), which plays a role in adaptive immunity by transporting peptides across the ER membrane for the loading of major histocompatibility (MHC) class I molecules<sup>22,23</sup>. TAP2 deregulation, including altered expression, has been observed in several tumor types, which may impact tumor progression<sup>26,27</sup>.

Alterations and prevalence: Somatic mutations in TAP2 are predominantly missense or truncating and have been observed in 4% of skin cutaneous melanoma, 3% of uterine corpus endometrial carcinoma, colorectal adenocarcinoma, and stomach adenocarcinoma, and 2% of lung adenocarcinoma<sup>4,7</sup>. Biallelic deletion of TAP2 is observed in 6% of diffuse large B-cell lymphoma (DLBCL)<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for TAP2 aberrations.

#### **TAP1** deletion

transporter 1, ATP binding cassette subfamily B member

Background: The TAP1 gene encodes the transporter 1, ATP binding cassette subfamily B member protein<sup>21</sup>. Along with TAP2 TAP1 is a member of the superfamily of ATP-binding cassette (ABC) transporters<sup>21</sup>. Together, TAP1 and TAP2 are capable of ATP-controlled dimerization and make up the ABC transporter associated with antigen processing (TAP), which plays a role in adaptive immunity by transporting peptides across the ER membrane for the loading of major histocompatibility (MHC) class I molecules<sup>22,23</sup>. TAP1 deregulation, including altered expression, has been observed in several tumor types, which may impact tumor progression and survival<sup>24,25,26</sup>

Alterations and prevalence: Somatic mutations in TAP1 are predominantly missense or truncating and have been observed in 6% of uterine corpus endometrial carcinoma, 3% of skin cutaneous melanoma and cholangiocarcinoma, and 2% of colorectal adenocarcinoma and thymoma<sup>4,7</sup>. Biallelic deletion of TAP1 is observed in 6% of diffuse large B-cell lymphoma (DLBCL)<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for TAP1 aberrations.

#### **HDAC2** deletion

histone deacetylase 2

Background: The HDAC2 gene encodes the histone deacetylase 2 protein<sup>21</sup>. HDAC2 is part of the histone deacetylase (HDAC) family consisting of 18 different isoforms categorized into four classes (I-IV)<sup>35</sup>. Specifically, HDAC2 is a member of class I, along with HDAC1, HDAC3, and HDAC8<sup>35</sup>. HDACs, including HDAC2, function by removing acetyl groups on histone lysines resulting in chromatin condensation, transcriptional repression, and regulation of cell proliferation and differentiation<sup>35,36</sup>. HDAC2 negatively regulates antigen presentation by inhibiting CIITA, which regulates MHC class II genes<sup>35</sup>. Further, HDAC2 and HDAC1 are essential for B-cell proliferation during development and antigen stimulation in mature B-cells<sup>35</sup>. HDAC deregulation, including overexpression, is observed in a variety of tumor types, which is proposed to affect the expression of genes involved in cellular regulation and promote tumor development<sup>35,37</sup>.

Alterations and prevalence: Somatic mutations in HDAC2 are observed in 4% of uterine corpus endometrial carcinoma, 2% of diffuse large B-cell lymphoma (DLBCL) and colorectal adenocarcinoma<sup>4,7</sup>. Biallelic deletions in HDAC2 are observed in 8% of prostate adenocarcinoma and DLBCL, and 6% of uveal melanoma<sup>4,7</sup>.

Potential relevance: Currently, no therapies are approved for HDAC2 aberrations. Although not approved for specific HDAC2 alterations, the pan-HDAC inhibitor vorinostat (2006) is approved for the treatment of progressive, persistent, or recurrent cutaneous T-cell lymphoma (CTCL) following treatment with two systemic therapies<sup>38</sup>. The pan-HDAC inhibitor, romidepsin (2009), is approved for the treatment of CTCL and peripheral T-cell lymphoma (PTCL) having received at least one prior systemic therapy<sup>39</sup>. The pan-HDAC inhibitor, belinostat (2014), is approved for the treatment of relapsed or refractory PTCL<sup>40</sup>. The pan-HDAC inhibitor, panobinostat (2015), is approved for the treatment of multiple myeloma in combination of bortezomib and dexamethasone having received at least 2 prior regimens<sup>41</sup>.

**Report Date:** 15 Sep 2025 9 of 20

## **Alerts Informed By Public Data Sources**

#### **Current FDA Information**

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

## KRAS p.(G12V) c.35G>T

## cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS G12 mutation

#### Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

#### Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

• in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

### Reference:

https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/125084s279lbl.pdf

**Report Date**: 15 Sep 2025 10 of 20

# KRAS p.(G12V) c.35G>T (continued)

## panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

#### Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)\*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)\*

■ In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

\*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

#### Reference:

https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125147s213lbl.pdf

#### **Current NCCN Information**

Contraindicated
Not rec

Not recommended



Breakthrough

Fast Track

NCCN information is current as of 2025-05-01. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

## KRAS p.(G12V) c.35G>T

### cetuximab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

#### Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2025]

**Report Date:** 15 Sep 2025 11 of 20

# KRAS p.(G12V) c.35G>T (continued)

### cetuximab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

## panitumumab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2025]

## panitumumab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

#### **Current EMA Information**

Ocontraindicated Not recommended Resistance Preakthrough A Fast Track

EMA information is current as of 2025-05-14. For the most up-to-date information, search www.ema.europa.eu.

## KRAS p.(G12V) c.35G>T

#### cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information\_en.pdf

## panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information\_en.pdf

**Report Date:** 15 Sep 2025 12 of 20

#### **Current ESMO Information**

Contraindicated

Not recommended



Breakthrough

Fast Track

ESMO information is current as of 2025-05-01. For the most up-to-date information, search www.esmo.org.

## KRAS p.(G12V) c.35G>T

## cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

#### Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

## panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

#### Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

## **Genes Assayed**

## Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

**Report Date:** 15 Sep 2025 13 of 20

## **Genes Assayed (continued)**

## Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

## Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

## Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

# **Relevant Therapy Summary**

In this cancer type In other cancer type In this car

• In this cancer type and other cancer types

× No evidence

# KRAS p.(G12V) c.35G>T

| Relevant Therapy                               | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|------------------------------------------------|-----|------|-----|------|------------------|
| bevacizumab + CAPOX                            | X   | X    | ×   | O    | ×                |
| bevacizumab + FOLFIRI                          | ×   | ×    | ×   | 0    | ×                |
| bevacizumab + FOLFOX                           | ×   | ×    | ×   | 0    | ×                |
| bevacizumab + FOLFOXIRI                        | ×   | ×    | ×   | 0    | ×                |
| KRAS TCR, chemotherapy, aldesleukin            | ×   | ×    | ×   | ×    | (II)             |
| regorafenib                                    | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| anti-KRAS G12V mTCR, chemotherapy, aldesleukin | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| ERAS-0015                                      | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| IMM-1-104                                      | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| YL-15293                                       | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| AFNT-211                                       | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| HMPL-415                                       | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| JAB-3312                                       | ×   | ×    | ×   | ×    | <b>(</b> 1)      |
| KRAS TCR, aldesleukin, SLATE 001, chemotherapy | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| KRAS-EphA-2-CAR-DC, anti-PD-1, ipilimumab      | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| Nest-1                                         | ×   | ×    | ×   | ×    | (I)              |
| RMC-6236                                       | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| ZEN-3694, binimetinib                          | ×   | ×    | ×   | ×    | (I)              |

# **MTAP** deletion

| Relevant Therapy     | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|----------------------|-----|------|-----|------|------------------|
| AMG 193              | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| TNG-456, abemaciclib | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| TNG-462              | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| GTA-182              | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| ISM-3412             | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| MRTX-1719            | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| PH020-803            | ×   | ×    | ×   | ×    | <b>(</b> 1)      |
| S-095035             | ×   | ×    | ×   | ×    | <b>(</b> 1)      |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

**Report Date:** 15 Sep 2025 15 of 20

## **Relevant Therapy Summary (continued)**

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

| MTAP deletion (continued) |     |      |     |      |                  |
|---------------------------|-----|------|-----|------|------------------|
| Relevant Therapy          | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| SYH-2039                  | ×   | ×    | ×   | ×    | <b>(</b> I)      |

| CDKN2A deletion          |     |      |     |      |                  |
|--------------------------|-----|------|-----|------|------------------|
| Relevant Therapy         | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| palbociclib              | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| palbociclib, abemaciclib | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| AMG 193                  | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |

| OBINIZE deletion         |     |      |     |      |                  |
|--------------------------|-----|------|-----|------|------------------|
| Relevant Therapy         | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| palbociclib, abemaciclib | ×   | ×    | ×   | ×    | <b>(II)</b>      |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

### **HRR Details**

CDKN2B deletion

| Gene/Genomic Alteration | Finding                          |
|-------------------------|----------------------------------|
| LOH percentage          | 30.99%                           |
| RAD54L                  | CNV, CN:1.0                      |
| RAD54L                  | LOH, 1p34.1(46714017-46743978)x1 |

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

Report Date: 15 Sep 2025

### References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 9. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/2146650riq1s009correctedlbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/216340s005lbl.pdf
- 11. NCCN Guidelines® NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
- 12. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 13. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 14. https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination
- 15. https://www.businesswire.com/news/home/20250109170439/en/
- 16. https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation
- 17. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff\_Oncology\_Investor\_Presentation-\_July\_2021.pdf
- 18. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/125084s279lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125147s213lbl.pdf
- 20. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 21. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 22. Grossmann et al. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter. Nat Commun. 2014 Nov 7;5:5419. PMID: 25377891
- 23. Fischbach et al. Ultrasensitive quantification of TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nat Commun. 2015 Feb 6;6:6199. PMID: 25656091
- 24. Ling et al. TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. Oncoimmunology. 2017 Aug 7;6(11):e1356143. PMID: 29147604
- 25. Tabassum et al. Transporter associated with antigen processing 1 (TAP1) expression and prognostic analysis in breast, lung, liver, and ovarian cancer. J Mol Med (Berl). 2021 Sep;99(9):1293-1309. PMID: 34047812
- 26. Henle et al. Downregulation of TAP1 and TAP2 in early stage breast cancer. PLoS One. 2017;12(11):e0187323. PMID: 29091951
- 27. Durgeau et al. Different expression levels of the TAP peptide transporter lead to recognition of different antigenic peptides by tumor-specific CTL. J Immunol. 2011 Dec 1;187(11):5532-9. PMID: 22025554
- 28. Kalev et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012 Dec 15;72(24):6414-24. PMID: 23087057
- 29. Álvarez-Fernández et al. Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death Differ. 2018 May;25(5):828-840. PMID: 29229993
- 30. Perrotti et al. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013 May;14(6):e229-38. PMID: 23639323
- 31. Beca et al. Altered PPP2R2A and Cyclin D1 Expression Defines a Subgroup of Aggressive Luminal-Like Breast Cancer. BMC Cancer. 2015 Apr 15:15:285. doi: 10.1186/s12885-015-1266-1. PMID: 25879784

Report Date: 15 Sep 2025

- 32. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012 Apr 18;486(7403):346-52. PMID: 22522925
- 33. https://www.senhwabio.com//en/news/20220125
- 34. NCCN Guidelines® NCCN-Prostate Cancer [Version 2.2025]
- 35. Falkenberg et al. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014 Sep;13(9):673-91. PMID: 25131830
- 36. Li et al. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016 Dec;84:284-290. PMID: 27665474
- 37. Li et al. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10). PMID: 27599530
- 38. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2018/021991s009lbl.pdf
- 39. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/022393s017lbl.pdf
- 40. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/2062560rig1s006lbl.pdf
- 41. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2015/205353s000lbl.pdf
- 42. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia. 2002 Sep;16(9):1799-807. PMID: 12200696
- 43. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther. 2011 Apr 1;11(7):627-32. PMID: 21301207
- 44. Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. 10.1146/annurev-cancerbio-030419-033444
- 45. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 46. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 47. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 48. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 49. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 50. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 51. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 52. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 53. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 54. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 55. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 56. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 57. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 58. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 59. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 61. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 62. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607

Report Date: 15 Sep 2025

- 63. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 64. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 65. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 66. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 67. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. . Cancer Discov.2015 Jul;5(7):723-9. PMID: 25873077
- 68. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018 Jan 4;37(1):128-138. PMID: 28892048
- 69. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 70. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 71. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 72. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 73. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 74. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 75. Heyer et al. Rad54: the Swiss Army knife of homologous recombination?. Nucleic Acids Res. 2006;34(15):4115-25. PMID: 16935872
- 76. Ryan et al. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol. 2011 Oct;15(5):649-56. PMID: 21862382
- 77. Matsuda et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene. 1999 Jun 3;18(22):3427-30. PMID: 10362365
- 78. Bugreev et al. Rad54 protein promotes branch migration of Holliday junctions. Nature. 2006 Aug 3;442(7102):590-3. PMID: 16862129
- 79. Mason et al. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res. 2015 Mar 31;43(6):3180-96. PMID: 25765654
- 80. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocr. Relat. Cancer. 2016 Jun;23(6):R267-85. PMID: 27226207
- 81. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/208558s028lbl.pdf
- 82. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 83. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 84. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 85. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 86. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 87. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 88. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 89. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061

- 90. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 91. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 92. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 93. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 94. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 95. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 96. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 97. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 98. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 99. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 100. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 101. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 102. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 103. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 104. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 105. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 106. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 107. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 108. Namekata et al. MOCA induces membrane spreading by activating Rac1. J Biol Chem. 2004 Apr 2;279(14):14331-7. PMID: 14718541
- 109. Laurin et al. Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes Dev. 2014 Mar 15;28(6):533-47. PMID: 24637113
- 110. Zhu et al. Inhibition of RAC1-GEF DOCK3 by miR-512-3p contributes to suppression of metastasis in non-small cell lung cancer. Int J Biochem Cell Biol. 2015 Apr;61:103-14. PMID: 25687035
- 111. Caspi et al. A novel functional screen in human cells identifies MOCA as a negative regulator of Wnt signaling. Mol Biol Cell. 2008 Nov;19(11):4660-74. PMID: 18716063
- 112. Cui et al. Oncotarget. 2016 Feb 2;7(5):5613-29. PMID: 26716413
- 113. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 114. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 115. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 116. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 117. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 118. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 119. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460

Report Date: 15 Sep 2025 20 of 20

- 120. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 121. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 122. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 123. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 124. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 125. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 126. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125514s174lbl.pdf
- 127. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125554s129lbl.pdf
- 128. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/761174s009lbl.pdf
- 129. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 130. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125377s133lbl.pdf
- 131. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 132. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 133. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 134. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031