

Tel. 1661-5117 www.smlab.co.kr

Report Date: 07 Aug 2025 1 of 25

Patient Name: 장시화 Gender: M Sample ID: N25-130 Primary Tumor Site: Lung
Collection Date: 2025.07.23

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	11
Relevant Therapy Summary	12

Report Highlights 7 Relevant Biomarkers 20 Therapies Available 207 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	None detected		NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	EGFR exon 19	deletion	NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	None detected		ROS1	None detected
MET	None detected			
Genomic Alt	teration	Finding		
Tumor Mu	ıtational Burden	4.75 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 38.38% Locus: chr7:55242467 Transcript: NM_005228.5	afatinib 1,2/I,II+ amivantamab + lazertinib 1,2/I,II+ bevacizumab† + erlotinib 2/I,II+ dacomitinib 1,2/I,III+ erlotinib 2/I,III+ erlotinib + ramucirumab 1,2/I,III+ gefitinib 1,2/I,III+ osimertinib 1,2/I,III+ osimertinib + chemotherapy 1,2/I amivantamab + chemotherapy 1,2/II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy I atezolizumab + bevacizumab + chemotherapy II+	None*	194

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/generics

Report Date: 07 Aug 2025 2 of 25

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	BRCA2 deletion BRCA2, DNA repair associated Locus: chr13:32890491	None*	niraparib + olaparib + rucaparib +	2
IIC	MTAP deletion methylthioadenosine phosphorylase Locus: chr9:21802646	None*	None*	9
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	3
IIC	CDKN2B deletion cyclin dependent kinase inhibitor 2B Locus: chr9:22005728	None*	None*	1
IIC	CHEK2 deletion checkpoint kinase 2 Locus: chr22:29083868	None*	None*	1
IIC	STK11 deletion serine/threonine kinase 11 Locus: chr19:1206847	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

c.1268C>T

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🔼 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🗳 Breakthrough, 🗚 Fast Track

EGFR exon 19 deletion

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

FAT1 p.(T2369Rfs*2) c.7105delA, MAP2K7 deletion, MDM2 amplification, Microsatellite stable, PARP4 deletion, UGT1A1 p. (G71R) c.211G>A, ERAP2 deletion, NOTCH1 deletion, Tumor Mutational Burden

Variant Details

GRID2

DNA Sequence Variants

p.(T423I)

Allele Gene **Amino Acid Change** Coding Variant ID Locus Frequency Transcript **Variant Effect EGFR** p.(E746_S752delinsV) c.2237_2255delAATTA COSM12384 chr7:55242467 38.38% NM_005228.5 nonframeshift AGAGAAGCAACATCin **Block** sT Substitution FAT1 p.(T2369Rfs*2) c.7105delA chr4:187540634 23.28% NM_005245.4 frameshift Deletion 50.58% NM_000463.3 UGT1A1 p.(G71R) COSM4415616 chr2:234669144 missense c.211G>A BARD1 p.(S16C) c.47C>G chr2:215674247 50.98% NM_000465.4 missense

chr4:94316780

52.83% NM_001510.4

missense

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/generics

3 of 25

Report Date: 07 Aug 2025

Variant Details (continued)

DNA Sequence Variants (continued)

		Alle							Allel			Allele			
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect								
HDAC2	p.(L140S)	c.419T>C		chr6:114277255	7.10%	NM_001527.4	missense								
NRF1	p.(M37V)	c.109A>G		chr7:129297300	17.95%	NM_005011.5	missense								
ERBB2	p.(S423G)	c.1267A>G		chr17:37871743	46.54%	NM_004448.4	missense								

Copy Numb	er Variations			
Gene	Locus	Copy Number	CNV Ratio	
BRCA2	chr13:32890491	1	0.77	
MTAP	chr9:21802646	0	0.52	
CDKN2A	chr9:21968178	0	0.42	
CDKN2B	chr9:22005728	0	0.53	
CHEK2	chr22:29083868	1	0.97	
STK11	chr19:1206847	0.57	0.67	
MAP2K7	chr19:7968792	0.17	0.57	
MDM2	chr12:69202958	5.87	1.91	
PARP4	chr13:25000551	0.68	0.69	
ERAP2	chr5:96219500	0	0.45	
NOTCH1	chr9:139390441	0.26	0.59	

Biomarker Descriptions

EGFR exon 19 deletion

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family¹². In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹¹³. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways¹¹⁴. Activation of these pathways promotes cell proliferation, differentiation, and survival^{115,116}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{5,6,7,117}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21¹¹⁸. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer¹¹⁸. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{119,120,121,122}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹²³. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{118,124}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{5,6,7,124,125}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{126,127,128}. Alterations in EGFR are rare in pediatric cancers^{6,7}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous

Biomarker Descriptions (continued)

system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)^{6,7}. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)^{6,7}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹²⁹ (2004) and gefitinib¹³⁰ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations¹³¹. Second-generation TKIs afatinib¹³² (2013) and dacomitinib¹³³ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies 134,135,136,137. However, BDTX-189138 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)¹³⁹ and sunvozertinib¹⁴⁰, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance¹⁴¹. The primary resistance mutation that emerges following treatment with firstgeneration TKI is T790M, accounting for 50-60% of resistant cases¹¹⁸. Third generation TKIs were developed to maintain sensitivity in the presence of T790M¹⁴¹. Osimertinib¹⁴² (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases¹⁴¹. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa¹⁴³. T790M and C797S can occur in either cis or trans allelic orientation¹⁴³. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs¹⁴³. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{143,144}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs143. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535¹⁴⁵ (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations¹⁴⁶. The bispecific antibody, amivantamab¹⁴⁷ (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib¹⁴⁸ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-801¹⁴⁹ received fast track designation for the treatment of adult patients with EGFR altered glioblastoma, HLX-42150, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301151 (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid¹⁵² (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{73,153,154}.

BRCA2 deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged DNA^{33,34}. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and compromise genome integrity^{33,34}. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast and ovarian cancer and in men for breast and prostate cancer^{35,36,37}. For individuals diagnosed with inherited pathogenic or likely pathogenic BRCA1/2 variants, the cumulative risk of breast cancer by 80 years of age was 69-72% and the cumulative risk of ovarian cancer by 70 years was 20-48%^{35,38}.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer, 5-10% of breast cancer, and 1-4% of prostate cancer^{39,40,41,42,43,44,45,46}. Somatic alterations in BRCA2 are observed in 5-15% of uterine corpus endometrial carcinoma, cutaneous melanoma, bladder urothelial carcinoma, stomach adenocarcinoma, colorectal adenocarcinoma, lung squamous cell carcinoma, lung adenocarcinoma, and uterine carcinosarcoma, 3-4% of cervical squamous

Biomarker Descriptions (continued)

cell carcinoma, head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, cholangiocarcinoma, breast invasive carcinoma, renal papillary cell carcinoma, and 2% of renal clear cell carcinoma, hepatocellular carcinoma, thymoma, prostate adenocarcinoma, sarcoma, and glioblastoma multiforme^{6,7}.

Potential relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)⁴⁷. Inhibitors targeting PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells^{48,49}. Consequently, several PARP inhibitors have been FDA approved for BRCA1/2-mutated cancers. Olaparib18 (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib¹⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA2. Rucaparib¹⁹ is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC and ovarian cancer. Talazoparib²⁰ (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Additionally, talazoparib²⁰ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes BRCA2. Niraparib²¹ (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation. Niraparib in combination with abiraterone acetate⁵⁰ received FDA approval (2023) for the treatment of deleterious or suspected deleterious BRCA-mutated (BRCAm) mCRPC. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported⁵¹. One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality⁵². In addition to PARP inhibitors, other drugs which promote synthetic lethality have been investigated for BRCA mutations. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁵³, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Like PARPi, pidnarulex promotes synthetic lethality but through an alternative mechanism which involves stabilization of G-quadruplexes at the replication fork leading to DNA breaks and genomic instability. In 2024, the FDA granted fast track designation to TNG-348⁵⁴, a USP1 inhibitor, for the treatment of BRCA1/2 mutated breast and ovarian cancer.

MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase¹². Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate^{55,56}. Loss of MTAP function is commonly observed in cancer due to deletion or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation⁵⁶.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be codeleted with CDKN2A in numerous solid and hematological cancers^{56,57}. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21% of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma^{6,7}. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹². CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁶¹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{62,63,64}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions⁶⁵. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation^{12,65,66}. CDKN2A aberrations commonly co-occur with CDKN2B⁶¹. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways,

Biomarker Descriptions (continued)

leading to uncontrolled cell proliferation⁶⁷. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{68,69}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁷⁰. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{6,7}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{6,7}. Alterations in CDKN2A are also observed in pediatric cancers⁷. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors⁷. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)⁷.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{27,71,72}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma⁷³. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{74,75,76}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme⁷⁷. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{78,79,80,81}.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression^{12,61}. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁶¹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{62,63,64}. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A⁶¹. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma^{12,82,83}.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma, 11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma, breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{6,7}. Somatic mutations in CDKN2B are observed in 2% of uterine carcinosarcoma^{6,7}. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14% of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers^{6,7}. Somatic mutations in CDKN2B are observed in less than 1% of bone cancer (1 in 327 cases)^{6,7}.

<u>Potential relevance</u>: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular marker used in staging grade 4 pediatric IDH-mutant astrocytoma⁷³.

CHEK2 deletion

checkpoint kinase 2

<u>Background</u>: The CHEK2 gene encodes the checkpoint kinase-2 serine/threonine kinase, which is a cell-cycle checkpoint regulator. In response to DNA damage, CHEK2 is phosphorylated by ATM and subsequently phosphorylates and negatively regulates CDC25C to prevent entry into mitosis¹⁶⁴. CHEK2 also stabilizes p53, leading to cell-cycle arrest in G1 phase, and is capable of phosphorylating BRCA1 and promoting DNA repair including homologous recombination repair (HRR)^{165,166,167}. Germline mutations in the CHEK2 gene are associated with Li-Fraumeni syndrome and inherited risk of breast cancer^{168,169,170}.

Biomarker Descriptions (continued)

Alterations and prevalence: Consistent with its role as a tumor suppressor, CHEK2 is enriched for deleterious truncating mutations. Somatic mutations in CHEK2 are common (2-6%) in uterine carcinoma, bladder carcinoma, and lung adenocarcinoma^{6,7}. CHEK2 gene deletions are observed in adrenocortical carcinoma, thymoma, and prostate cancer^{6,7}.

Potential relevance: The PARP inhibitor, olaparib¹⁸ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK2. Additionally, talazoparib²⁰ in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CHEK2. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁵³, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

STK11 deletion

serine/threonine kinase 11

<u>Background:</u> The STK11 gene, also known as liver kinase B1 (LKB1), encodes the serine/threonine kinase 11 protein. STK11 is a tumor suppressor with multiple substrates including AMP-activated protein kinase (AMPK) that regulates cell metabolism, growth, and tumor suppression¹. Germline mutations in STK11 are associated with Peutz-Jeghers syndrome, an autosomal dominant disorder, characterized by gastrointestinal polyp formation and elevated risk of neoplastic development^{2,3}.

Alterations and prevalence: Somatic mutations in STK11 have been reported in 10% of lung cancer, 4% of cervical cancer, and up to 3% of cholangiocarcinoma and uterine cancer^{4,5,6,7}. Mutations in STK11 are found to co-occur with KEAP1 and KRAS mutations in lung cancer^{6,7}. Copy number deletion leads to inactivation of STK11 in cervical, ovarian, and lung cancers, among others^{2,5,6,7,8}.

Potential relevance: Currently, no therapies are approved for STK11 aberrations. However, in 2023, the FDA granted fast track designation to a first-in-class inhibitor of the CoREST complex (Co-repressor of Repressor Element-1 Silencing Transcription), TNG-2609 in combination with an anti-PD-1 antibody, for advanced non-small cell lung cancer harboring STK11-mutations. The presence of STK11 mutations may be a mechanism of resistance to immunotherapies. Mutations in STK11 are associated with reduced expression of PD-L1, which may contribute to the ineffectiveness of anti-PD-1 immunotherapy in STK11 mutant tumors¹⁰. In a phase III clinical trial of nivolumab in lung adenocarcinoma, patients with KRAS and STK11 co-mutations demonstrated a worse (0/6) objective response rate (ORR) in comparison to patients with KRAS and TP53 co-mutations (4/7) or KRAS mutations only (2/11) (ORR=0% vs 57.1% vs 18.25%, respectively)¹¹.

FAT1 p.(T2369Rfs*2) c.7105delA

FAT atypical cadherin 1

Background: FAT1 encodes the FAT atypical cadherin 1 protein, a member of the cadherin superfamily characterized by the presence of cadherin-type repeats 12,28 . FAT cadherins, which also include FAT2, FAT3, and FAT4, are transmembrane proteins containing a cytoplasmic domain and a number of extracellular laminin G-like motifs and EGF-like motifs, which contributes to their individual functions 28 . The cytoplasmic tail of FAT1 is known to interact with a number of protein targets involved in cell adhesion, proliferation, migration, and invasion 28 . FAT1 has been observed to influence the regulation of several oncogenic pathways, including the WNT/β-catenin, Hippo, and MAPK/ERK signaling pathways, as well as epithelial to mesenchymal transition 28 . Alterations of FAT1 lead to down-regulation or loss of function, supporting a tumor suppressor role for FAT1 28 .

Alterations and prevalence: Somatic mutations in FAT1 are predominantly truncating although, the R1627Q mutation has been identified as a recurrent hotspot^{6,7}. Mutations in FAT1 are observed in 22% of head and neck squamous cell carcinoma, 20% of uterine corpus endometrial carcinoma, 14% of lung squamous cell carcinoma and skin cutaneous melanoma, and 12% diffuse large b-cell lymphoma and bladder urothelial carcinoma^{6,7}. Biallelic loss of FAT1 is observed in 7% of head and neck squamous cell carcinoma, 6% of lung squamous cell carcinoma, 5% of esophageal adenocarcinoma, and 4% of diffuse large b-cell lymphoma, stomach adenocarcinoma and uterine carcinosarcoma^{6,7}.

Potential relevance: Currently, no therapies are approved for FAT1 aberrations.

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7¹². MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10^{29,30,31}. Activation of MAPK proteins occurs through a kinase signaling cascade^{29,30,32}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{29,30,32}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{29,30,32}.

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{6,7}. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

MDM2 amplification

MDM2 proto-oncogene

<u>Background</u>: The MDM2 gene encodes the murine double minute 2 proto-oncogene. MDM2 is structurally related to murine double minute 4 (MDM4), with both proteins containing an N-terminal domain that binds p53, a zinc-finger domain, and a C-terminal RING domain²². MDM2 and MDM4 are oncogenes that function as negative regulators of the tumor suppressor TP53, and can homo- or heterodimerize with p53 through their RING domains²². Specifically, the MDM2 RING domain functions as an E3 ubiquitin ligase and is responsible for the polyubiquitination and degradation of the p53 protein when MDM2 is present at high levels²³. Alternately, low levels of MDM2 activity promote mono-ubiquitination and nuclear export of p53²³. MDM2 amplification and overexpression disrupt the p53 protein function, thereby contributing to tumorigenesis and supporting an oncogenic role for MDM2²³.

Alterations and prevalence: MDM2 is amplified in up to 13% of sarcoma, 8% of bladder urothelial carcinoma, glioblastoma, and 7% of adrenal cortical carcinoma^{6,7}. MDM2 overexpression is observed in lung, breast, liver, esophagogastric, and colorectal cancers²⁴. The most common co-occurring aberrations with MDM2 amplification or overexpression are CDK4 amplification and TP53 mutation^{25,26}.

<u>Potential relevance:</u> Currently, no therapies are approved for MDM2 aberrations. Amplification of region 12q13-15, which includes MDM2, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/well differentiated liposarcoma (ALT/WDLS) and dedifferentiated liposarcoma²⁷.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁹¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{92,93}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁹⁴. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁹⁵. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁹⁵. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{96,97,98,99,100}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁹³. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer ^{92,93,97,101}.

<u>Alterations and prevalence</u>: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{92,93,102,103}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{102,103}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹⁰⁴ (2014) and nivolumab¹⁰⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹⁰⁴ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹⁰⁴. Dostarlimab¹⁰⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{98,107}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹⁰⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{98,109,110}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹¹⁰. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{111,112}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{111,112}.

Biomarker Descriptions (continued)

PARP4 deletion

poly(ADP-ribose) polymerase family member 4

Background: The PARP4 gene encodes the poly(ADP-ribose) polymerase 4 protein¹². PARP4 belongs to the large PARP protein family that also includes PARP1, PARP2, and PARP3¹³. PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADP-ribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis, nucleic acid metabolism, and regulation of chromatin structure^{13,14}. PARP enzymes are involved in several DNA repair pathways^{13,14}. Although the functional role of PARP4 is not well understood, PARP4 has been predicted to function in base excision repair (BER) due to its BRCA1 C Terminus (BRCT) domain which is found in other DNA repair pathway proteins¹⁵.

Alterations and prevalence: Somatic mutations in PARP4 are observed in 9% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 5% of bladder urothelial carcinoma, 4% of stomach adenocarcinoma, and 3% of lung squamous cell carcinoma^{6,7}. Biallelic deletions in PARP4 are observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{6,7}.

Potential relevance: Currently, no therapies are approved for PARP4 aberrations. However, PARP inhibition is known to induce synthetic lethality in certain cancer types that are homologous recombination repair (HRR) deficient (HRD) due to mutations in the HRR pathway. This is achieved from PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently resulting in cell death 16,17. Although not indicated for specific alterations in PARP4, several PARPis including olaparib, rucaparib, talazoparib, and niraparib have been approved in various cancer types with HRD. Olaparib (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC. Talazoparib (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Niraparib (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{12,84}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{84,85}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance⁸⁶. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{86,87,88,89}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38⁹⁰.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

ERAP2 deletion

endoplasmic reticulum aminopeptidase 2

Background: The ERAP2 gene encodes the endoplasmic reticulum aminopeptidase 2 protein. ERAP2, and structurally related ERAP1, are zinc metallopeptidases which play a role in antigen processing within the immune response pathway^{58,59}. Upon uptake by an immune cell, antigens are first processed by the proteasome and then transported into the endoplasmic reticulum where ERAP1 and ERAP2 excise peptide N-terminal extensions to generate mature antigen peptides for presentation on MHC class I molecules^{58,60}. The polymorphic variability in ERAP2 is hypothesized to affect the severity of cytotoxic responses to transformed cells and potentially influence their chances to gain mutations that evade the immune system and become tumorigenic⁵⁸.

Report Date: 07 Aug 2025 10 of 25

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in ERAP2 are observed in 7% of uterine corpus endometrial carcinoma and skin cutaneous melanoma, and 2% of colorectal adenocarcinoma, uterine carcinosarcoma, head and neck squamous cell carcinoma, and stomach adenocarcinoma^{6,7}. Deletions are observed in 2% of ovarian serous cystadenocarcinoma, prostate adenocarcinoma, and 1% of colorectal adenocarcinoma, mesothelioma, esophageal adenocarcinoma, and lung squamous cell carcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for ERAP2 aberrations.

NOTCH1 deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling¹⁵⁵. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{156,157}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{158,159,160,161}.

Alterations and prevalence: Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma, melanoma, gastric, esophageal, lung, and uterine cancers^{6,7,125}. Activating mutations in either the heterodimerization or PEST domains of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia^{162,163}.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

Report Date: 07 Aug 2025 11 of 25

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

EGFR exon 19 deletion

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD. PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer type and other cancer types	No evidence
---------------------	------------------------	--	-------------

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib					(III)
afatinib	•	•	•	•	(II)
dacomitinib	•	•	•	•	(II)
gefitinib	•	•	•	•	(II)
erlotinib + ramucirumab	•	•	•	•	×
amivantamab + carboplatin + pemetrexed	•	•	•	×	×
amivantamab + lazertinib	•	•	•	×	×
osimertinib + chemotherapy + pemetrexed	•	×	•	×	×
bevacizumab + erlotinib	×	•	•	•	×
erlotinib	×	•	•	•	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials ³
osimertinib + carboplatin + pemetrexed	×		×	×	×
osimertinib + cisplatin + pemetrexed	×		×	×	×
BAT1706 + erlotinib	×	×		×	×
bevacizumab (Allergan) + erlotinib	×	×	•	×	×
bevacizumab (Biocon) + erlotinib	×	×	•	×	×
bevacizumab (Celltrion) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
bevacizumab (Stada) + erlotinib	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
adebrelimab, bevacizumab, chemotherapy	×	×	×	×	(IV)
afatinib, bevacizumab, chemotherapy	×	×	×	×	(IV)
befotertinib	×	×	×	×	(IV)
bevacizumab, almonertinib, chemotherapy	×	×	×	×	(IV)
catequentinib, toripalimab	×	×	×	×	(IV)
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
gefitinib, chemotherapy	×	×	×	×	(IV)
gefitinib, endostatin	×	×	×	×	(IV)
natural product, gefitinib, erlotinib, icotinib hydrochloride, osimertinib, almonertinib, furmonertinib	×	×	×	×	(IV)
almonertinib, apatinib	×	×	×	×	(III)
almonertinib, chemotherapy	×	×	×	×	(III)
almonertinib, radiation therapy	×	×	×	×	(III)
almonertinib, radiation therapy, chemotherapy	×	×	×	×	(III)
befotertinib, icotinib hydrochloride	×	×	×	×	(III)
bevacizumab, osimertinib	×	×	×	×	(III)
BL-B01D1	×	×	×	×	(III)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
BL-B01D1, osimertinib	×	×	×	×	(III)
CK-101, gefitinib	×	×	×	×	(III)
datopotamab deruxtecan, osimertinib	×	×	×	×	(III)
FHND9041, afatinib	×	×	×	×	(III)
furmonertinib	×	×	×	×	(III)
furmonertinib, osimertinib, chemotherapy	×	×	×	×	(III)
gefitinib, afatinib, erlotinib, metformin hydrochloride	×	×	×	×	(III)
icotinib hydrochloride, catequentinib	×	×	×	×	(III)
icotinib hydrochloride, chemotherapy	×	×	×	×	(III)
icotinib hydrochloride, radiation therapy	×	×	×	×	(III)
JMT-101, osimertinib	×	×	×	×	(III)
osimertinib, bevacizumab	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
osimertinib, datopotamab deruxtecan	×	×	×	×	(III)
sacituzumab tirumotecan	×	×	×	×	(III)
sacituzumab tirumotecan, osimertinib	×	×	×	×	(III)
savolitinib, osimertinib	×	×	×	×	(III)
SH-1028	×	×	×	×	(III)
targeted therapy	×	×	×	×	(III)
TY-9591, osimertinib	×	×	×	×	(III)
SCTB-14, chemotherapy	×	×	×	×	(II/III)
ABSK-043, furmonertinib	×	×	×	×	(II)
almonertinib	×	×	×	×	(II)
almonertinib, adebrelimab, chemotherapy	×	×	×	×	(II)
almonertinib, bevacizumab	×	×	×	×	(II)
almonertinib, chemoradiation therapy	×	×	×	×	(II)
almonertinib, dacomitinib	×	×	×	×	(II)
amivantamab, chemotherapy	×	×	×	×	(II)
amivantamab, lazertinib, chemotherapy	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
atezolizumab, bevacizumab, tiragolumab	×	×	×	×	(II)
befotertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
bevacizumab, afatinib	×	×	×	×	(II)
bevacizumab, furmonertinib	×	×	×	×	(II)
cadonilimab, chemotherapy, catequentinib	×	×	×	×	(II)
camrelizumab, apatinib	×	×	×	×	(II)
capmatinib, osimertinib, ramucirumab	×	×	×	×	(II)
catequentinib, almonertinib	×	×	×	×	(II)
chemotherapy, atezolizumab, bevacizumab	×	×	×	×	(II)
dacomitinib, osimertinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, osimertinib, chemotherapy	×	×	×	×	● (II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
erlotinib, chemotherapy	×	×	×	×	(II)
erlotinib, OBI-833	×	×	×	×	(II)
furmonertinib, bevacizumab	×	×	×	×	(II)
furmonertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
furmonertinib, catequentinib	×	×	×	×	(II)
furmonertinib, chemotherapy	×	×	×	×	(II)
furmonertinib, chemotherapy, bevacizumab	×	×	×	×	(II)
furmonertinib, icotinib hydrochloride	×	×	×	×	(II)
gefitinib, bevacizumab, chemotherapy	×	×	×	×	(II)
gefitinib, icotinib hydrochloride	×	×	×	×	● (II)
gefitinib, thalidomide	×	×	×	×	(II)
icotinib hydrochloride	×	×	×	×	(II)
icotinib hydrochloride, autologous RAK cell	×	×	×	×	(II)
icotinib hydrochloride, osimertinib	×	×	×	×	(II)
ivonescimab, chemotherapy	×	×	×	×	(II)
lazertinib	×	×	×	×	(II)
lazertinib, bevacizumab	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
lazertinib, chemotherapy	×	×	×	×	(II)
lenvatinib, pembrolizumab	×	×	×	×	(II)
osimertinib, chemoradiation therapy	×	×	×	×	(II)
osimertinib, radiation therapy	×	×	×	×	(II)
PLB-1004, bozitinib, osimertinib	×	×	×	×	(II)
ramucirumab, erlotinib	×	×	×	×	(II)
sacituzumab govitecan	×	×	×	×	(II)
sacituzumab tirumotecan, chemotherapy, osimertinib	×	×	×	×	(II)
sunvozertinib	×	×	×	×	(II)
sunvozertinib, catequentinib	×	×	×	×	(II)
sunvozertinib, golidocitinib	×	×	×	×	(II)
tislelizumab, chemotherapy, bevacizumab	×	×	×	×	(II)
toripalimab	×	×	×	×	(II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	×	×	×	×	(II)
toripalimab, chemotherapy	×	×	×	×	(II)
TY-9591, chemotherapy	×	×	×	×	(II)
zorifertinib, pirotinib	×	×	×	×	(II)
AFM-24_I, atezolizumab	×	×	×	×	(/)
almonertinib, icotinib hydrochloride	×	×	×	×	(I/II)
benmelstobart, catequentinib	×	×	×	×	(I/II)
BH-30643	×	×	×	×	(/)
bozitinib, osimertinib	×	×	×	×	(/)
BPI-361175	×	×	×	×	(/)
cetrelimab, amivantamab	×	×	×	×	(/)
dacomitinib, catequentinib	×	×	×	×	(I/II)
DAJH-1050766	×	×	×	×	(I/II)
DB-1310, osimertinib	×	×	×	×	(1/11)
dositinib	×	×	×	×	(/)
FWD-1509	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
H-002	×	×	×	×	(1/11)
ifebemtinib, furmonertinib	×	×	×	×	(I/II)
MRTX0902	×	×	×	×	(I/II)
necitumumab, osimertinib	×	×	×	×	(1/11)
quaratusugene ozeplasmid, osimertinib	×	×	×	×	(I/II)
RC-108, furmonertinib, toripalimab	×	×	×	×	(I/II)
sotiburafusp alfa, HB-0030	×	×	×	×	(1/11)
sunvozertinib, chemotherapy	×	×	×	×	(1/11)
TAS-3351	×	×	×	×	(1/11)
TQ-B3525, osimertinib	×	×	×	×	(1/11)
TRX-221	×	×	×	×	(1/11)
WSD-0922	×	×	×	×	(1/11)
afatinib, chemotherapy	×	×	×	×	(l)
alisertib, osimertinib	×	×	×	×	(l)
almonertinib, midazolam	×	×	×	×	(l)
ASKC-202	×	×	×	×	(1)
AZD-9592	×	×	×	×	(l)
BG-60366	×	×	×	×	(I)
BPI-1178, osimertinib	×	×	×	×	(l)
catequentinib, gefitinib, metformin hydrochloride	×	×	×	×	(I)
DZD-6008	×	×	×	×	(l)
EGFR tyrosine kinase inhibitor, catequentinib	×	×	×	×	(l)
genolimzumab, fruquintinib	×	×	×	×	(I)
IBI-318, lenvatinib	×	×	×	×	● (I)
KQB-198, osimertinib	×	×	×	×	(I)
LAVA-1223	×	×	×	×	(I)
MRX-2843, osimertinib	×	×	×	×	(I)
osimertinib, carotuximab	×	×	×	×	(I)
osimertinib, Minnelide	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

MTAP deletion

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

EGFR exon 19 deletion (continued) FDA NCCN **EMA ESMO Clinical Trials* Relevant Therapy** osimertinib, tegatrabetan **(**l) × × × × patritumab deruxtecan × × × × (I) PB-101 (Precision Biotech Taiwan Corp), EGFR (I) × × × × tyrosine kinase inhibitor repotrectinib, osimertinib × × × × (I) VIC-1911, osimertinib (I) × × × × WJ13404 (I) × × × × WTS-004 **(**l) × × × × YH-013 (I) × X X X YL-202 (I) × X × ×

BRCA2 deletion NCCN **Clinical Trials*** FDA **ESMO Relevant Therapy EMA** olaparib (II) × 0 × × niraparib × 0 × × × rucaparib × × × × pamiparib, tislelizumab × × × × (II)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AMG 193	×	×	×	×	(/)
TNG-456, abemaciclib	×	×	×	×	(/)
TNG-462	×	×	×	×	(/)
GTA-182	×	×	×	×	(I)
ISM-3412	×	×	×	×	(I)
MRTX-1719	×	×	×	×	(I)
PH020-803	×	×	×	×	(I)
S-095035	×	×	×	×	(I)
SYH-2039	×	×	×	×	(l)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 07 Aug 2025 19 of 25

Relevant Therapy Summary (continued)

DIVNOA dalati

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

CDKN2A deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	×	×	×	×	(II)
palbociclib, abemaciclib	×	×	×	×	(II)
AMG 193	×	×	×	×	(I/II)

CDKN2B deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib, abemaciclib	×	×	×	×	(II)

CHERZ deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
pamiparib, tislelizumab	×	×	×	×	(II)

STK11 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TQ-B3525, osimertinib	×	×	×	×	(1/11)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	31.8%
BRCA2	CNV, CN:1.0
BRCA2	LOH, 13q13.1(32890491-32972932)x1
CHEK2	CNV, CN:1.0
CHEK2	LOH, 22q12.1(29083868-29130729)x1

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- Li et al. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol. Rep. 2015 Dec;34(6):2821-6. PMID: 26398719
- Zhou et al. LKB1 Tumor Suppressor: Therapeutic Opportunities Knock when LKB1 Is Inactivated. Genes Dis. 2014 Sep 1;1(1):64-74. PMID: 25679014
- Hemminki et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998 Jan 8;391(6663):184-7. PMID: 9428765
- 4. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 5. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Sanchez-Cespedes et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 2002 Jul 1;62(13):3659-62. PMID: 12097271
- 9. https://ir.tangotx.com//news-releases/news-release-details/tango-therapeutics-announces-first-patient-dosed-tng260-phase-12
- Koyama et al. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress Tcell Activity in the Lung Tumor Microenvironment. Cancer Res. 2016 Mar 1;76(5):999-1008. PMID: 26833127
- 11. Skoulidis et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018 Jul;8(7):822-835. PMID: 29773717
- 12. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 13. Amé et al. The PARP superfamily. Bioessays. 2004 Aug;26(8):882-93. PMID: 15273990
- 14. Morales et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15-28. PMID: 24579667
- 15. Prawira et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res Treat. 2019 Aug;177(1):145-153. PMID: 31119570
- 16. Pilié et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res. 2019 Jul 1;25(13):3759-3771. PMID: 30760478
- 17. Lord et al. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017 Mar 17;355(6330):1152-1158. PMID: 28302823
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208558s028lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209115s013lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/214876s000lbl.pdf
- 22. Toledo et al. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 2007;39(7-8):1476-82. PMID: 17499002
- 23. Zhao et al. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin. (Shanghai). 2014 Mar;46(3):180-9. PMID: 24389645
- 24. Helei et al. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell International volume 19, Article number: 216 (2019). PMID: 31440117
- 25. Dembla et al. Prevalence of MDM2 amplification and coalterations in 523 advanced cancer patients in the MD Anderson phase 1 clinic. Oncotarget. 2018 Sep 4;9(69):33232-33243. PMID: 30237864
- 26. Momand et al. The MDM2 gene amplification database. Nucleic Acids Res. 1998 Aug 1;26(15):3453-9. PMID: 9671804
- 27. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 28. Peng et al. Role of FAT1 in health and disease. Oncol Lett. 2021 May;21(5):398. PMID: 33777221
- 29. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 30. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156

- 31. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. PMID: 21372320
- 32. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- 33. Liu et al. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Res. 2002;4(1):9-13. PMID: 11879553
- 34. Jasin. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene. 2002 Dec 16;21(58):8981-93. PMID: 12483514
- 35. Kuchenbaecker et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun 20:317(23):2402-2416. PMID: 28632866
- 36. Tai et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007 Dec 5;99(23):1811-4. PMID: 18042939
- 37. Levy-Lahad et al. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer. 2007 Jan 15;96(1):11-5. PMID: 17213823
- 38. Chen et al. Penetrance of Breast and Ovarian Cancer in Women Who Carry a BRCA1/2 Mutation and Do Not Use Risk-Reducing Salpingo-Oophorectomy: An Updated Meta-Analysis . JNCI Cancer Spectr. 2020 Aug;4(4):pkaa029. PMID: 32676552
- 39. Petrucelli et al. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews® [Internet]. PMID: 20301425
- 40. Pruthi et al. Identification and Management of Women With BRCA Mutations or Hereditary Predisposition for Breast and Ovarian Cancer. Mayo Clin. Proc. 2010 Dec;85(12):1111-20. PMID: 21123638
- 41. Walsh et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. U.S.A. 2011 Nov 1;108(44):18032-7. PMID: 22006311
- 42. Alsop et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012 Jul 20;30(21):2654-63. PMID: 22711857
- 43. Whittemore et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 2004 Dec;13(12):2078-83. PMID: 15598764
- 44. King et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003 Oct 24;302(5645):643-6. PMID: 14576434
- 45. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer. 2000 Nov;83(10):1301-8. PMID: 11044354
- 46. Shao et al. A comprehensive literature review and meta-analysis of the prevalence of pan-cancer BRCA mutations, homologous recombination repair gene mutations, and homologous recombination deficiencies. Environ Mol Mutagen. 2022 Jul;63(6):308-316. PMID: 36054589
- 47. Hodgson et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer. 2018 Nov;119(11):1401-1409. PMID: 30353044
- 48. Bryant et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005 Apr 14;434(7035):913-7. PMID: 15829966
- 49. Farmer et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005 Apr 14;434(7035):917-21. PMID: 15829967
- 50. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216793s000lbl.pdf
- 51. Barber et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 2013 Feb;229(3):422-9. PMID: 23165508
- 52. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst.). 2018 Nov;71:172-176. PMID: 30177437
- 53. https://www.senhwabio.com//en/news/20220125
- 54. https://ir.tangotx.com//news-releases/news-release-details/tango-therapeutics-reports-third-quarter-2023-financial-results
- 55. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia. 2002 Sep;16(9):1799-807. PMID: 12200696
- 56. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther. 2011 Apr 1;11(7):627-32. PMID: 21301207
- 57. Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. 10.1146/annurev-cancerbio-030419-033444

- 58. Stratikos et al. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer predisposition. Front Oncol. 2014;4:363. PMID: 25566501
- 59. López. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front Immunol. 2018;9:2463. PMID: 30425713
- 60. Serwold et al. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature. 2002 Oct 3;419(6906):480-3. PMID: 12368856
- 61. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 62. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 63. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 64. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 65. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 66. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 67. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 68. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 69. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 70. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 71. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 72. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 73. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 74. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 75. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 76. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 77. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 78. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 79. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 80. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 81. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 82. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. . Cancer Discov.2015 Jul;5(7):723-9. PMID: 25873077
- 83. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018 Jan 4;37(1):128-138. PMID: 28892048
- 84. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 2014;8:349. PMID: 25389387
- 85. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1659-72. PMID: 16550166

- 86. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020 Apr;122(9):1277-1287. PMID: 32047295
- 87. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. Mol Carcinog. 2014 Apr;53(4):314-24. PMID: 23143693
- 88. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. Oncotarget. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
- 89. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PLoS One. 2015;10(5):e0127524. PMID: 26010150
- 90. Karas et al. JCO Oncol Pract. 2021 Dec 3:0P2100624. PMID: 34860573
- 91. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 92. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 93. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 94. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 95. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 96. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 97. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 98. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 99. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 100. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 101. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 102. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 103. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 104. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 105. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 106. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 107. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 108. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 109. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 110. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 111. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 112. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 113. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 114. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 115. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 116. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711

- 117. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 118. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 119. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 120. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 121. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 122. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 123. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 124. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 125. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 126. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 127. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 128. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 129. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 130. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 131. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 132. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 133. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 134. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]
- 135. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 136. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 137. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 138. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 139. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 140. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 141. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 142. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
- 143. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 144. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 145. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and

25 of 25

Report Date: 07 Aug 2025

- 146. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 147. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s007lbl.pdf
- 148. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbledt.pdf
- 149. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 150. https://iis.aastocks.com/20231227/11015917-0.PDF
- 151. http://iis.aastocks.com/20230612/10770455-0.PDF
- 152. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 153. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 154. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 155. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 156. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209
- 157. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID: 19379690
- 158. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802
- 159. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 160. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338
- 161. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 162. Weng et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004 Oct 8;306(5694):269-71. PMID: 15472075
- 163. Breit et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006 Aug 15;108(4):1151-7. PMID: 16614245
- 164. Matsuoka et al. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998 Dec 4;282(5395):1893-7. PMID: 9836640
- 165. Cai et al. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell. 2009 Sep 24;35(6):818-29. PMID: 19782031
- 166. Zhang et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell. Biol. 2004 Jan;24(2):708-18. PMID: 14701743
- 167. Huang et al. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. Mol. Cancer Ther. 2008 Jun;7(6):1440-9. PMID: 18566216
- 168. Apostolou et al. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer (Dove Med Press). 2017;9:331-335.
 PMID: 28553140
- 169. Nevanlinna et al. The CHEK2 gene and inherited breast cancer susceptibility. Oncogene. 2006 Sep 25;25(43):5912-9. PMID: 16998506
- 170. Näslund-Koch et al. Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J. Clin. Oncol. 2016 Apr 10;34(11):1208-16. PMID: 26884562