

Tel. 1661-5117 www.smlab.co.kr

Report Date: 06 Aug 2025 1 of 18

Patient Name: 김숙희 Gender: F Sample ID: N25-124 Primary Tumor Site: lung Collection Date: 20250715

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	7
Relevant Therapy Summary	8

Report Highlights 2 Relevant Biomarkers 17 Therapies Available 194 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	None detected		NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	EGFR exon 19	deletion	NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	None detected		ROS1	None detected
MET	None detected			
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	3.81 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 36.00% Locus: chr7:55242466 Transcript: NM_005228.5	afatinib 1,2/I,II+ amivantamab + lazertinib 1,2/I,II+ bevacizumab† + erlotinib 2/I,II+ dacomitinib 1,2/I,III+ erlotinib 2/I,III+ erlotinib + ramucirumab 1,2/I,III+ gefitinib 1,2/I,III+ osimertinib 1,2/I,III+ osimertinib + chemotherapy 1,2/I amivantamab + chemotherapy 1,2/II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy I atezolizumab + bevacizumab + chemotherapy II+	None*	194

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/generics

Report Date: 06 Aug 2025 2 of 18

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	STK11 deletion	None*	None*	1
	serine/threonine kinase 11 Locus: chr19:1206847			

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🛕 Alerts informed by public data sources: 🧿 Contraindicated, 🛡 Resistance, 🗳 Breakthrough, 🛕 Fast Track

EGFR exon 19 deletion

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

MAP2K7 deletion, MLH1 p.(V384D) c.1151T>A, Microsatellite stable, RAD52 p.(S346*) c.1037C>A, UGT1A1 p.(G71R) c.211G>A, HLA-B deletion, USP9X p.(Q1476*) c.4426C>T, Tumor Mutational Burden

Variant Details

DNA	Sequence Varian	its					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
EGFR	p. (E746_A750delinsQP)	c.2236_2248delGAATT AAGAGAAGinsCAAC	COSM13557	chr7:55242466	36.00%	NM_005228.5	nonframeshift Block Substitution
MLH1	p.(V384D)	c.1151T>A		chr3:37067240	52.65%	NM_000249.4	missense
RAD52	p.(S346*)	c.1037C>A		chr12:1023218	50.30%	NM_134424.4	nonsense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	44.46%	NM_000463.3	missense
USP9X	p.(Q1476*)	c.4426C>T		chrX:41057826	13.27%	NM_001039590.3	nonsense
OR2M3	p.(K303E)	c.907A>G		chr1:248367276	37.81%	NM_001004689.1	missense
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT CA		chr6:31324208	100.00%	NM_005514.8	missense, missense
MUC19	p.(T2082P)	c.6244A>C		chr12:40872998	12.99%	NM_173600.2	missense
FANCM	p.(H1248Q)	c.3744T>A	•	chr14:45645701	7.86%	NM_020937.4	missense

Copy Number Variations						
Gene	Locus	Copy Number	CNV Ratio			
STK11	chr19:1206847	0.08	0.61			
MAP2K7	chr19:7968792	0	0.58			
HLA-B	chr6:31322252	0	0.47			
FGFR3	chr4:1801456	0.15	0.63			

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

[†] Includes biosimilars/generics

Biomarker Descriptions

EGFR exon 19 deletion

epidermal growth factor receptor

<u>Background</u>: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family¹². In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4⁵⁸. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways⁵⁹. Activation of these pathways promotes cell proliferation, differentiation, and survival^{60,61}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{5,6,7,62}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 2163. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer⁶³. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 2064,65,66,67. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations⁶⁸. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{63,69}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{5,6,7,69,70}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{71,72,73}. Alterations in EGFR are rare in pediatric cancers^{6,7}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)67. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)6,7.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib⁷⁴ (2004) and gefitinib⁷⁵ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations⁷⁶. Second-generation TKIs afatinib⁷⁷ (2013) and dacomitinib⁷⁸ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763 Y764insF0EA, confer resistance to the same therapies^{79,80,81,82}. However, BDTX-18983 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)84 and sunvozertinib85, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance86. The primary resistance mutation that emerges following treatment with firstgeneration TKI is T790M, accounting for 50-60% of resistant cases⁶³. Third generation TKIs were developed to maintain sensitivity in the presence of T790M86. Osimertinib87 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases⁸⁶. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa⁸⁸. T790M and C797S can occur in either cis or trans allelic orientation⁸⁸. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs88. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{88,89}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs⁸⁸. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-153590 (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations⁹¹. The bispecific antibody, amivantamab⁹² (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib93 (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-80194 received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-4295, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast

4 of 18

Report Date: 06 Aug 2025

Biomarker Descriptions (continued)

track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301⁹⁶ (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid⁹⁷ (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{38,98,99}.

STK11 deletion

serine/threonine kinase 11

<u>Background</u>: The STK11 gene, also known as liver kinase B1 (LKB1), encodes the serine/threonine kinase 11 protein. STK11 is a tumor suppressor with multiple substrates including AMP-activated protein kinase (AMPK) that regulates cell metabolism, growth, and tumor suppression¹. Germline mutations in STK11 are associated with Peutz-Jeghers syndrome, an autosomal dominant disorder, characterized by gastrointestinal polyp formation and elevated risk of neoplastic development^{2,3}.

Alterations and prevalence: Somatic mutations in STK11 have been reported in 10% of lung cancer, 4% of cervical cancer, and up to 3% of cholangiocarcinoma and uterine cancer^{4,5,6,7}. Mutations in STK11 are found to co-occur with KEAP1 and KRAS mutations in lung cancer^{6,7}. Copy number deletion leads to inactivation of STK11 in cervical, ovarian, and lung cancers, among others^{2,5,6,7,8}.

Potential relevance: Currently, no therapies are approved for STK11 aberrations. However, in 2023, the FDA granted fast track designation to a first-in-class inhibitor of the CoREST complex (Co-repressor of Repressor Element-1 Silencing Transcription), TNG-2609 in combination with an anti-PD-1 antibody, for advanced non-small cell lung cancer harboring STK11-mutations. The presence of STK11 mutations may be a mechanism of resistance to immunotherapies. Mutations in STK11 are associated with reduced expression of PD-L1, which may contribute to the ineffectiveness of anti-PD-1 immunotherapy in STK11 mutant tumors¹⁰. In a phase III clinical trial of nivolumab in lung adenocarcinoma, patients with KRAS and STK11 co-mutations demonstrated a worse (0/6) objective response rate (ORR) in comparison to patients with KRAS and TP53 co-mutations (4/7) or KRAS mutations only (2/11) (ORR= 0% vs 57.1% vs 18.25%, respectively)¹¹.

MAP2K7 deletion

mitogen-activated protein kinase kinase 7

Background: The MAP2K7 gene encodes the mitogen-activated protein kinase kinase 7, also known as MEK7¹². MAP2K7 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAPK8, MAPK9, and MAPK10^{100,101,102}. Activation of MAPK proteins occurs through a kinase signaling cascade^{100,101,103}. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members^{100,101,103}. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation^{100,101,103}.

Alterations and prevalence: Somatic mutations in MAP2K7 are observed in 7% of stomach adenocarcinoma, 4% of colorectal adenocarcinoma, and 2% of skin cutaneous melanoma and uterine corpus endometrial carcinoma^{6,7}. Biallelic deletions are observed in 4% of uterine carcinosarcoma, 2% of esophageal adenocarcinoma, and 1% of uveal melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for MAP2K7 aberrations.

MLH1 p.(V384D) c.1151T>A

mutL homolog 1

Background: The MLH1 gene encodes the mutL homolog 1 protein¹². MLH1 is a tumor suppressor gene that heterodimerizes with PMS2 to form the MutLα complex, PMS1 to form the MutLβ complex, and MLH3 to form the MutLγ complex¹⁹. The MutLα complex functions as an endonuclease that is specifically involved in the mismatch repair (MMR) process and mutations in MLH1 result in the inactivation of MutLα and degradation of PMS2^{19,20}. Loss of MLH1 protein expression and MLH1 promoter hypermethylation correlates with mutations in these genes and are used to pre-screen colorectal cancer or endometrial hyperplasia^{21,22}. MLH1, along with MSH6, MSH2, and PMS2 form the core components of the MMR pathway¹⁹. The MMR pathway is critical to the repair of mismatch errors which typically occur during DNA replication¹⁹. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression in these genes²³. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{24,25,26}. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in MMR genes^{24,27}. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{25,27,28,29}. Specifically, MLH1 mutations are associated with an increased risk of ovarian and pancreatic cancer^{30,31,32,33}.

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in MLH1 are observed in 6% of uterine corpus endometrial carcinoma, 4% of colorectal adenocarcinoma, and 2-3% of bladder urothelial carcinoma, stomach adenocarcinoma, and melanoma^{6,7}. Alterations in MLH1 are observed in pediatric cancers^{6,7}. Somatic mutations are observed in 1% of bone cancer and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), embryonal tumor (2 in 332 cases), and leukemia (2 in 311 cases)^{6,7}.

Potential relevance: The PARP inhibitor, talazoparib³⁴ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes MLH1. Additionally, pembrolizumab (2014) is an anti-PD-1 immune checkpoint inhibitor that is approved for patients with MSI-H or dMMR solid tumors that have progressed on prior therapies³⁵. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone or in combination with the cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR colorectal cancer that have progressed on prior treatment^{36,37}. MLH1 mutations are consistent with high grade in pediatric diffuse gliomas^{38,39}.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁴⁴. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{25,27}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2²⁶. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁴⁵. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁴⁵. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{28,46,47,48,49}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes²⁷. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{25,27,28,29}.

<u>Alterations and prevalence</u>: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{25,27,50,51}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{50,51}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab³⁵ (2014) and nivolumab³⁶ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab³⁵ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication³⁵. Dostarlimab⁵² (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{47,53}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab³⁷ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{47,54,55}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁵⁵. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{56,57}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{56,57}.

RAD52 p.(S346*) c.1037C>A

RAD52 homolog, DNA repair protein

<u>Background:</u> The RAD52 gene encodes the RAD52 homolog, DNA repair protein¹². RAD52 binds to single- and double-stranded DNA and enables strand exchange for double-strand break (DSB) repair by binding to RAD51⁴⁰. RAD52 also promotes DSB repair through homologous recombination repair (HRR) by recruiting BRCA1 to sites of DSBs, which leads to the removal of TP53BP1 and prevents DSB repair by non-homologous end joining (NHEJ)⁴¹.

Alterations and prevalence: Somatic mutations in RAD52 are observed in 2% of uterine corpus endometrial carcinoma, uterine carcinosarcoma, and skin cutaneous melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for RAD52 aberrations.

Biomarker Descriptions (continued)

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{12,104}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{104,105}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹⁰⁶. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{106,107,108,109}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹¹⁰.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B12. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells13. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M14. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self15,16,17. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B18.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{6,7}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{6,7}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

USP9X p.(Q1476*) c.4426C>T

ubiquitin specific peptidase 9 X-linked

Background: The USP9X gene encodes the ubiquitin specific peptidase 9 X-lined protein¹². USP9X is a deubiquitinating enzyme (DUB) and a member of the ubiquitin-specific protease (USP) subclass of cysteine proteases⁴². DUBs are responsible for protein deubiquitination, thereby counter-regulating post-transcriptional ubiquitin modification of proteins within the cell^{42,43}. USP9X has many substrates and is commonly upregulated in several solid tumor types, supporting an oncogenic role for USP9X⁴³. Conversely, in some cancer types, USP9X has been observed to function as a tumor suppressor, suggesting its exact role in cancer may be dependent on its subtrates⁴³. In breast cancer, USP9X has been shown to stabilize BRCA1 by inhibiting its ubiquitination, thereby influencing the regulation of homologous recombination and repair⁴³.

Alterations and prevalence: Somatic mutations are observed in 16% of uterine corpus endometrial carcinoma, 11% of skin cutaneous melanoma, 7% of colorectal adenocarcinoma, 6% of cholangiocarcinoma, 5% of stomach adenocarcinoma, lung squamous cell carcinoma, diffuse large B-cell lymphoma (DLBCL), and head and neck squamous cell carcinoma^{6,7}. Biallelic deletions are observed in 4% of esophageal adenocarcinoma, 3% of head and neck squamous cell carcinoma, 2% of mesothelioma, uterine carcinosarcoma, and lung squamous cell carcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for USP9X aberrations.

7 of 18 Report Date: 06 Aug 2025

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Fast Track

FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

EGFR exon 19 deletion

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD. PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer type and other cancer types	No evidence
---------------------	------------------------	--	-------------

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib					(III)
afatinib	•	•	•	•	(II)
dacomitinib	•	•	•	•	(II)
gefitinib	•	•	•	•	(II)
erlotinib + ramucirumab	•	•	•	•	×
amivantamab + carboplatin + pemetrexed	•	•	•	×	×
amivantamab + lazertinib	•		•	×	×
osimertinib + chemotherapy + pemetrexed	•	×	•	×	×
bevacizumab + erlotinib	×	•	•	•	×
erlotinib	×	•	•	•	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

In this cancer type

O In other cancer type

In this cancer type and other cancer types

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib + carboplatin + pemetrexed	×	•	×	×	×
osimertinib + cisplatin + pemetrexed	×	•	×	×	×
BAT1706 + erlotinib	×	×	•	×	×
bevacizumab (Allergan) + erlotinib	×	×		×	×
bevacizumab (Biocon) + erlotinib	×	×	•	×	×
bevacizumab (Celltrion) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
bevacizumab (Stada) + erlotinib	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
adebrelimab, bevacizumab, chemotherapy	×	×	×	×	(IV)
afatinib, bevacizumab, chemotherapy	×	×	×	×	(IV)
befotertinib	×	×	×	×	(IV)
bevacizumab, almonertinib, chemotherapy	×	×	×	×	(IV)
catequentinib, toripalimab	×	×	×	×	(IV)
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
gefitinib, chemotherapy	×	×	×	×	(IV)
gefitinib, endostatin	×	×	×	×	(IV)
natural product, gefitinib, erlotinib, icotinib hydrochloride, osimertinib, almonertinib, furmonertinib	×	×	×	×	● (IV)
almonertinib, apatinib	×	×	×	×	(III)
almonertinib, chemotherapy	×	×	×	×	(III)
almonertinib, radiation therapy	×	×	×	×	(III)
almonertinib, radiation therapy, chemotherapy	×	×	×	×	(III)
befotertinib, icotinib hydrochloride	×	×	×	×	(III)
bevacizumab, osimertinib	×	×	×	×	(III)
BL-B01D1	×	×	×	×	(III)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
BL-B01D1, osimertinib	×	×	×	×	(III)
CK-101, gefitinib	×	×	×	×	(III)
datopotamab deruxtecan, osimertinib	×	×	×	×	(III)
FHND9041, afatinib	×	×	×	×	(III)
furmonertinib	×	×	×	×	(III)
furmonertinib, osimertinib, chemotherapy	×	×	×	×	(III)
gefitinib, afatinib, erlotinib, metformin hydrochloride	×	×	×	×	(III)
icotinib hydrochloride, catequentinib	×	×	×	×	(III)
icotinib hydrochloride, chemotherapy	×	×	×	×	(III)
icotinib hydrochloride, radiation therapy	×	×	×	×	(III)
JMT-101, osimertinib	×	×	×	×	(III)
osimertinib, bevacizumab	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
osimertinib, datopotamab deruxtecan	×	×	×	×	(III)
sacituzumab tirumotecan	×	×	×	×	(III)
sacituzumab tirumotecan, osimertinib	×	×	×	×	(III)
savolitinib, osimertinib	×	×	×	×	(III)
SH-1028	×	×	×	×	(III)
targeted therapy	×	×	×	×	(III)
TY-9591, osimertinib	×	×	×	×	(III)
SCTB-14, chemotherapy	×	×	×	×	(II/III)
ABSK-043, furmonertinib	×	×	×	×	(II)
almonertinib	×	×	×	×	(II)
almonertinib, adebrelimab, chemotherapy	×	×	×	×	(II)
almonertinib, bevacizumab	×	×	×	×	(II)
almonertinib, chemoradiation therapy	×	×	×	×	(II)
almonertinib, dacomitinib	×	×	×	×	(II)
amivantamab, chemotherapy	×	×	×	×	(II)
amivantamab, lazertinib, chemotherapy	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
atezolizumab, bevacizumab, tiragolumab	×	×	×	×	(II)
befotertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
bevacizumab, afatinib	×	×	×	×	(II)
bevacizumab, furmonertinib	×	×	×	×	(II)
cadonilimab, chemotherapy, catequentinib	×	×	×	×	(II)
camrelizumab, apatinib	×	×	×	×	(II)
capmatinib, osimertinib, ramucirumab	×	×	×	×	(II)
catequentinib, almonertinib	×	×	×	×	(II)
chemotherapy, atezolizumab, bevacizumab	×	×	×	×	(II)
dacomitinib, osimertinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, osimertinib, chemotherapy	×	×	×	×	● (II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
erlotinib, chemotherapy	×	×	×	×	(II)
erlotinib, OBI-833	×	×	×	×	(II)
furmonertinib, bevacizumab	×	×	×	×	(II)
furmonertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
furmonertinib, catequentinib	×	×	×	×	(II)
furmonertinib, chemotherapy	×	×	×	×	(II)
furmonertinib, chemotherapy, bevacizumab	×	×	×	×	(II)
furmonertinib, icotinib hydrochloride	×	×	×	×	(II)
gefitinib, bevacizumab, chemotherapy	×	×	×	×	(II)
gefitinib, icotinib hydrochloride	×	×	×	×	● (II)
gefitinib, thalidomide	×	×	×	×	(II)
icotinib hydrochloride	×	×	×	×	(II)
icotinib hydrochloride, autologous RAK cell	×	×	×	×	(II)
icotinib hydrochloride, osimertinib	×	×	×	×	(II)
ivonescimab, chemotherapy	×	×	×	×	(II)
lazertinib	×	×	×	×	(II)
lazertinib, bevacizumab	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
lazertinib, chemotherapy	×	×	×	×	(II)
lenvatinib, pembrolizumab	×	×	×	×	(II)
osimertinib, chemoradiation therapy	×	×	×	×	(II)
osimertinib, radiation therapy	×	×	×	×	(II)
PLB-1004, bozitinib, osimertinib	×	×	×	×	(II)
ramucirumab, erlotinib	×	×	×	×	(II)
sacituzumab govitecan	×	×	×	×	(II)
sacituzumab tirumotecan, chemotherapy, osimertinib	×	×	×	×	(II)
sunvozertinib	×	×	×	×	(II)
sunvozertinib, catequentinib	×	×	×	×	(II)
sunvozertinib, golidocitinib	×	×	×	×	(II)
tislelizumab, chemotherapy, bevacizumab	×	×	×	×	● (II)
toripalimab	×	×	×	×	(II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	×	×	×	×	(II)
toripalimab, chemotherapy	×	×	×	×	(II)
TY-9591, chemotherapy	×	×	×	×	(II)
zorifertinib, pirotinib	×	×	×	×	(II)
AFM-24_I, atezolizumab	×	×	×	×	(I/II)
almonertinib, icotinib hydrochloride	×	×	×	×	(I/II)
benmelstobart, catequentinib	×	×	×	×	(1/11)
BH-30643	×	×	×	×	(I/II)
bozitinib, osimertinib	×	×	×	×	(I/II)
BPI-361175	×	×	×	×	(1/11)
cetrelimab, amivantamab	×	×	×	×	(I/II)
dacomitinib, catequentinib	×	×	×	×	(1/11)
DAJH-1050766	×	×	×	×	(I/II)
DB-1310, osimertinib	×	×	×	×	(I/II)
dositinib	×	×	×	×	(I/II)
FWD-1509	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Ifebemtinib, furmonertinib MRTX0902 (Vil) MRTX0902 (Vil) quaratusugene ozeplasmid, osimertinib (Vil) RC-108, furmonertinib, toripalimab (Vil) Sotiburafusp alfa, HB-0030 Sunvozertinib, chemotherapy (Vil) TAS-3351 (Vil) TQ-B3525, osimertinib (Vil) TRX-221 (Vil) WSD-0922 (Vil) Afatinib, chemotherapy (Vil) Afatinib, chemotherapy (Vil) ASKC-202 (AZD-9592 BG-60366 (BPI-1178, osimertinib (C) Catequentinib, gefitinib, metformin hydrochloride (D) DZD-6008 EGFR tyrosine kinase inhibitor, catequentinib (RGB-198, osimertinib (Vil) BI-318, lenvatinib (Vil) KQB-198, osimertinib (Vil) MRX-2843, osimertinib, carotuximab (Vil) MRX-2843, osimertinib, carotuximab	Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
MRTX0902	H-002	×	×	×	×	(1/11)
necitumumab, osimertinib (/III)	ifebemtinib, furmonertinib	×	×	×	×	(I/II)
quaratusugene ozeplasmid, osimertinib RC-108, furmonertinib, toripalimab	MRTX0902	×	×	×	×	(1/11)
RC-108, furmonertinib, toripalimab RC-108, furmonertinib, toripalimab RC-108, furmonertinib, toripalimab RC-108, furmonertinib, chemotherapy RC-108, HB-0030 RC-108, HB-0030 RC-108, HB-0030 RC-108, HB-0030 RC-108, furmonertinib, chemotherapy RC-108, furmonertinib RC	necitumumab, osimertinib	×	×	×	×	(1/11)
sotiburafusp alfa, HB-0030	quaratusugene ozeplasmid, osimertinib	×	×	×	×	(1/11)
sunvozertinib, chemotherapy TAS-3351 (I/II) TQ-B3525, osimertinib (IVII) TRX-221 (IVII) WSD-0922 (IVIII) afattinib, chemotherapy (IVIII) afattinib, chemotherapy (IVIII) afattinib, osimertinib (IVIII) almonertinib, midazolam (IVIII) ASKC-202 (IVIII) ASKC-202 (IVIII) ASC-9592 (IVIII) ASC-959	RC-108, furmonertinib, toripalimab	×	×	×	×	(1/11)
TAS-3351 TQ-83525, osimertinib TQ-83525, osimertinib TRX-221 WSD-0922 W	sotiburafusp alfa, HB-0030	×	×	×	×	(I/II)
TQ-B3525, osimertinib TRX-221 WSD-0922 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	sunvozertinib, chemotherapy	×	×	×	×	(1/11)
TRX-221 WSD-0922 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TAS-3351	×	×	×	×	(/)
WSD-0922 A	TQ-B3525, osimertinib	×	×	×	×	(1/11)
afatinib, chemotherapy alisertib, osimertinib almonertinib, midazolam ASKC-202 AZD-9592 BG-60366 BPI-1178, osimertinib catequentinib, gefitinib, metformin hydrochloride DZD-6008 BGFR tyrosine kinase inhibitor, catequentinib genolimzumab, fruquintinib BRI-318, lenvatinib CRB-198, osimertinib ACR-1923 ACR-198, osimertinib ACR-1923 ACR-198, osimertinib ACR-1923 ACR-198, osimertinib ACR-198, osimerti	TRX-221	×	×	×	×	(1/11)
alisertib, osimertinib almonertinib, midazolam alsertib, midazolam	WSD-0922	×	×	×	×	(/)
almonertinib, midazolam ASKC-202 AZD-9592 BG-60366 BPI-1178, osimertinib catequentinib, gefitinib, metformin hydrochloride DZD-6008 BGFR tyrosine kinase inhibitor, catequentinib BGFR tyrosine kinase inhibi	afatinib, chemotherapy	×	×	×	×	(I)
ASKC-202	alisertib, osimertinib	×	×	×	×	(I)
AZD-9592 BG-60366 BPI-1178, osimertinib catequentinib, gefitinib, metformin hydrochloride DZD-6008 EGFR tyrosine kinase inhibitor, catequentinib genolimzumab, fruquintinib BIBI-318, lenvatinib KQB-198, osimertinib LAVA-1223 MRX-2843, osimertinib o (1) osimertinib, carotuximab (0) O (1) O	almonertinib, midazolam	×	×	×	×	(I)
BG-60366	ASKC-202	×	×	×	×	(I)
BPI-1178, osimertinib X X X (1) catequentinib, gefitinib, metformin hydrochloride X X X (1) DZD-6008 X X X (1) EGFR tyrosine kinase inhibitor, catequentinib X X X (1) genolimzumab, fruquintinib X X X (1) IBI-318, lenvatinib X X X (1) KQB-198, osimertinib X X X (1) LAVA-1223 X X X (1) MRX-2843, osimertinib X X X (1) osimertinib, carotuximab X X X (1)	AZD-9592	×	×	×	×	(I)
catequentinib, gefitinib, metformin hydrochloride DZD-6008 EGFR tyrosine kinase inhibitor, catequentinib EGFR tyrosi	BG-60366	×	×	×	×	(I)
DZD-6008 X X X X (I) EGFR tyrosine kinase inhibitor, catequentinib X X X (I) genolimzumab, fruquintinib X X X X (I) IBI-318, lenvatinib X X X (I) KQB-198, osimertinib X X X X (I) LAVA-1223 X X X (I) MRX-2843, osimertinib X X X (I) osimertinib, carotuximab X X X (I)	BPI-1178, osimertinib	×	×	×	×	(I)
EGFR tyrosine kinase inhibitor, catequentinib genolimzumab, fruquintinib IBI-318, lenvatinib KQB-198, osimertinib LAVA-1223 MRX-2843, osimertinib	catequentinib, gefitinib, metformin hydrochloride	×	×	×	×	(I)
genolimzumab, fruquintinib X X X (I) IBI-318, lenvatinib X X X (I) KQB-198, osimertinib X X X (I) LAVA-1223 X X X (I) MRX-2843, osimertinib X X X (I) Osimertinib, carotuximab	DZD-6008	×	×	×	×	(I)
IBI-318, lenvatinib X X X X (I) KQB-198, osimertinib X X X X X (I) LAVA-1223 X X X X X (I) MRX-2843, osimertinib X X X X X (I) osimertinib, carotuximab X X X X (I)	EGFR tyrosine kinase inhibitor, catequentinib	×	×	×	×	(I)
KQB-198, osimertinib X X X X (I) LAVA-1223 X X X X (I) MRX-2843, osimertinib X X X X (I) osimertinib, carotuximab X X X (I)	genolimzumab, fruquintinib	×	×	×	×	(I)
LAVA-1223 X X X (I) MRX-2843, osimertinib X X X X (I) osimertinib, carotuximab X X X (I)	IBI-318, lenvatinib	×	×	×	×	(I)
MRX-2843, osimertinib	KQB-198, osimertinib	×	×	×	×	● (I)
osimertinib, carotuximab × × × (I)	LAVA-1223	×	×	×	×	(I)
	MRX-2843, osimertinib	×	×	×	×	(I)
osimertinib, Minnelide XXXX (I)	osimertinib, carotuximab	×	×	×	×	(I)
	osimertinib, Minnelide	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

14 of 18

Report Date: 06 Aug 2025

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

In this cancer type and other cancer types

No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib, tegatrabetan	×	×	×	×	(l)
patritumab deruxtecan	×	×	×	×	(l)
PB-101 (Precision Biotech Taiwan Corp), EGFR tyrosine kinase inhibitor	×	×	×	×	● (I)
repotrectinib, osimertinib	×	×	×	×	(I)
VIC-1911, osimertinib	×	×	×	×	(I)
WJ13404	×	×	×	×	(I)
WTS-004	×	×	×	×	(l)
YH-013	×	×	×	×	(l)
YL-202	×	×	×	×	(I)

STK11 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TQ-B3525, osimertinib	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/II, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	4.45%
BRCA2	LOH, 13q13.1(32890491-32972932)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- Li et al. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol. Rep. 2015 Dec;34(6):2821-6. PMID: 26398719
- Zhou et al. LKB1 Tumor Suppressor: Therapeutic Opportunities Knock when LKB1 Is Inactivated. Genes Dis. 2014 Sep 1;1(1):64-74. PMID: 25679014
- Hemminki et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998 Jan 8;391(6663):184-7. PMID: 9428765
- 4. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 5. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Sanchez-Cespedes et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 2002 Jul 1;62(13):3659-62. PMID: 12097271
- 9. https://ir.tangotx.com//news-releases/news-release-details/tango-therapeutics-announces-first-patient-dosed-tng260-phase-12
- Koyama et al. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress Tcell Activity in the Lung Tumor Microenvironment. Cancer Res. 2016 Mar 1;76(5):999-1008. PMID: 26833127
- 11. Skoulidis et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018 Jul;8(7):822-835. PMID: 29773717
- 12. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 13. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 14. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 15. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 16. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 17. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 18. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 19. Li. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008 Jan;18(1):85-98. PMID: 18157157
- 20. Zhao et al. Mismatch Repair Deficiency/Microsatellite Instability-High as a Predictor for anti-PD-1/PD-L1 Immunotherapy Efficacy. J Hematol Oncol. 12(1),54. PMID: 31151482
- 21. Berends et al. MLH1 and MSH2 protein expression as a pre-screening marker in hereditary and non-hereditary endometrial hyperplasia and cancer. Int. J. Cancer. 2001 May 1;92(3):398-403. PMID: 11291077
- 22. Gausachs et al. MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur. J. Hum. Genet. 2012 Jul;20(7):762-8. PMID: 22274583
- 23. Martin et al. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010 Nov 1;16(21):5107-13. PMID: 20823149
- 24. Lynch et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009 Jul;76(1):1-18. PMID: 19659756
- 25. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 26. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 27. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 28. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460

References (continued)

- 29. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 30. Bonadona et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011 Jun 8;305(22):2304-10. PMID: 21642682
- 31. Engel et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012 Dec 10;30(35):4409-15. PMID: 23091106
- 32. Grant et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015 Mar;148(3):556-64. PMID: 25479140
- 33. Hu et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA. 2018 Jun 19;319(23):2401-2409. PMID: 29922827
- 34. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf
- 35. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 36. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 37. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 38. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 39. Friker et al. MSH2, MSH6, MLH1, and PMS2 immunohistochemistry as highly sensitive screening method for DNA mismatch repair deficiency syndromes in pediatric high-grade glioma. Acta Neuropathol. 2025 Feb 2;149(1):11. PMID: 39894875
- 40. Jalan et al. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel). 2019 Jul 23;11(7). PMID: 31340507
- 41. Yasuhara et al. Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell. 2018 Oct 4;175(2):558-570.e11. PMID: 30245011
- 42. Dufner et al. Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans. 2019 Dec 20;47(6):1867-1879. PMID: 31845722
- 43. Lu et al. USP9X stabilizes BRCA1 and confers resistance to DNA-damaging agents in human cancer cells. Cancer Med. 2019 Nov;8(15):6730-6740. PMID: 31512408
- 44. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 45. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 46. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 47. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 48. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 49. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 50. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 51. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 52. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 53. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 54. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 55. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 56. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 57. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 58. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089

References (continued)

- 59. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 60. Zhixiang, ErbB Receptors and Cancer, Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 61. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 62. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 63. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 64. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 66. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 67. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 68. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 69. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 70. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 71. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 72. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 73. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 74. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 75. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 76. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 77. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 78. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 79. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]
- 80. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 81. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 82. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 83. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 84. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 85. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 86. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 87. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
- 88. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297

18 of 18

Report Date: 06 Aug 2025

References (continued)

- 89. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 90. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and
- 91. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 92. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s007lbl.pdf
- 93. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbledt.pdf
- 94. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 95. https://iis.aastocks.com/20231227/11015917-0.PDF
- 96. http://iis.aastocks.com/20230612/10770455-0.PDF
- 97. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 98. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 99. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 100. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 101. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156
- 102. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. PMID: 21372320
- 103. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- 104. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 2014;8:349. PMID: 25389387
- 105. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1659-72. PMID: 16550166
- 106. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020 Apr;122(9):1277-1287. PMID: 32047295
- 107. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. Mol Carcinog. 2014 Apr;53(4):314-24. PMID: 23143693
- 108. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. Oncotarget. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
- 109. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PLoS One. 2015;10(5):e0127524. PMID: 26010150
- 110. Karas et al. JCO Oncol Pract. 2021 Dec 3:0P2100624. PMID: 34860573