

Tel. 1661-5117 www.smlab.co.kr



**Report Date**: 04 Aug 2025 1 of 21

Patient Name: 구정순 Gender: F Sample ID: N25-120 Primary Tumor Site: lung
Collection Date: 2025.07.09

# Sample Cancer Type: Non-Small Cell Lung Cancer

| Table of Contents        | Page |
|--------------------------|------|
| Variant Details          | 2    |
| Biomarker Descriptions   | 3    |
| Alert Details            | 8    |
| Relevant Therapy Summary | 9    |

Report Highlights 3 Relevant Biomarkers 20 Therapies Available 201 Clinical Trials

# **Relevant Non-Small Cell Lung Cancer Findings**

| Gene         | Finding          |                     | Gene  | Finding       |  |
|--------------|------------------|---------------------|-------|---------------|--|
| ALK          | None detected    |                     | MET   | None detected |  |
| BRAF         | None detected    |                     | NRG1  | None detected |  |
| EGFR         | EGFR exon 19     | deletion            | NTRK1 | None detected |  |
| ERBB2        | None detected    |                     | NTRK2 | None detected |  |
| FGFR1        | None detected    |                     | NTRK3 | None detected |  |
| FGFR2        | None detected    |                     | RET   | None detected |  |
| FGFR3        | None detected    |                     | ROS1  | None detected |  |
| KRAS         | None detected    |                     |       |               |  |
| Genomic Alto | eration          | Finding             |       |               |  |
| Tumor Mu     | ıtational Burden | 7.6 Mut/Mb measured |       |               |  |

### **Relevant Biomarkers**

| Tier | Genomic Alteration                                                                                                           | Relevant Therapies<br>(In this cancer type)                                                                                                                                                                                                                                                                                      | Relevant Therapies<br>(In other cancer type) | Clinical Trials |
|------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|
| IA   | EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 32.02% Locus: chr7:55242465 Transcript: NM_005228.5 | afatinib 1,2/I,II+ amivantamab + lazertinib 1,2/I,II+ bevacizumab† + erlotinib 2/I,II+ dacomitinib 1,2/I,II+ erlotinib 2/I,III+ erlotinib + ramucirumab 1,2/I,II+ gefitinib 1,2/I,II+ osimertinib 1,2/I,II+ osimertinib + chemotherapy 1,2/I amivantamab + chemotherapy 1,2/II+ BAT1706 + erlotinib 2 gefitinib + chemotherapy I | None*                                        | 199             |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

<sup>†</sup> Includes biosimilars/generics

Report Date: 04 Aug 2025 2 of 21

# **Relevant Biomarkers (continued)**

| Tier | Genomic Alteration                                                                                                                | Relevant Therapies<br>(In this cancer type)<br>atezolizumab + bevacizumab +<br>chemotherapy   + | Relevant Therapies<br>(In other cancer type)   | Clinical Trials |
|------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|
| IIC  | BRCA2 deletion  BRCA2, DNA repair associated  Locus: chr13:32890491                                                               | None*                                                                                           | niraparib   +<br>olaparib   +<br>rucaparib   + | 2               |
| IIC  | TP53 p.(F109Sfs*14) c.326delT<br>tumor protein p53<br>Allele Frequency: 34.94%<br>Locus: chr17:7579360<br>Transcript: NM_000546.6 | None*                                                                                           | None*                                          | 6               |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.



🔼 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🗳 Breakthrough, 🗚 Fast Track

EGFR exon 19 deletion 

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

### Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, TET2 p.(R1216\*) c.3646C>T, ACVR2A p.(S18\*) c.53C>G, MAP3K1 p.(A150Pfs\*35) c.447delC, NOTCH4 p.(G349Afs\*49) c.1044delC, NOTCH1 deletion, Tumor Mutational Burden

### **Variant Details**

| DNA S   | Sequence Variar   | nts                               |            |                |                     |                |                           |
|---------|-------------------|-----------------------------------|------------|----------------|---------------------|----------------|---------------------------|
| Gene    | Amino Acid Change | Coding                            | Variant ID | Locus          | Allele<br>Frequency | Transcript     | Variant Effect            |
| EGFR    | p.(E746_A750del)  | c.2236_2250delGAATT<br>AAGAGAAGCA | COSM6225   | chr7:55242465  | 32.02%              | NM_005228.5    | nonframeshift<br>Deletion |
| TP53    | p.(F109Sfs*14)    | c.326delT                         |            | chr17:7579360  | 34.94%              | NM_000546.6    | frameshift<br>Deletion    |
| TET2    | p.(R1216*)        | c.3646C>T                         | COSM42029  | chr4:106164778 | 7.40%               | NM_001127208.3 | nonsense                  |
| ACVR2A  | p.(S18*)          | c.53C>G                           |            | chr2:148602774 | 10.59%              | NM_001616.5    | nonsense                  |
| MAP3K1  | p.(A150Pfs*35)    | c.447delC                         |            | chr5:56111844  | 100.00%             | NM_005921.2    | frameshift<br>Deletion    |
| NOTCH4  | p.(G349Afs*49)    | c.1044delC                        |            | chr6:32188296  | 28.88%              | NM_004557.4    | frameshift<br>Deletion    |
| MUTYH   | p.(?)             | c.1187-3C>T                       |            | chr1:45797231  | 2.30%               | NM_001128425.2 | unknown                   |
| BRINP3  | p.(S202F)         | c.605C>T                          |            | chr1:190234008 | 8.26%               | NM_199051.3    | missense                  |
| TET2    | p.(G614E)         | c.1841G>A                         |            | chr4:106156940 | 10.45%              | NM_001127208.3 | missense                  |
| C8orf89 | p.(I57S)          | c.170T>G                          |            | chr8:74169319  | 57.36%              | NM_001243237.1 | missense                  |
| PLCG1   | p.(Y353C)         | c.1058A>G                         |            | chr20:39792608 | 5.70%               | NM_002660.3    | missense                  |
|         |                   |                                   |            |                |                     |                |                           |

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

<sup>†</sup> Includes biosimilars/generics

# **Variant Details (continued)**

| Copy Number Variations |                |             |           |  |  |  |  |
|------------------------|----------------|-------------|-----------|--|--|--|--|
| Gene                   | Locus          | Copy Number | CNV Ratio |  |  |  |  |
| BRCA2                  | chr13:32890491 | 1           | 0.81      |  |  |  |  |
| NOTCH1                 | chr9:139390441 | 0.25        | 0.65      |  |  |  |  |
| U2AF1L5                | chr21:44513260 | 6.03        | 1.81      |  |  |  |  |

### **Biomarker Descriptions**

#### EGFR exon 19 deletion

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family<sup>22</sup>. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4<sup>81</sup>. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways<sup>82</sup>. Activation of these pathways promotes cell proliferation, differentiation, and survival<sup>83,84</sup>.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations 14,15,85,86. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 2187. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer87. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 2088,89,90,91. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations 92. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma<sup>87,93</sup>. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma<sup>14,15,28,86,93</sup>. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma<sup>94,95,96</sup>. Alterations in EGFR are rare in pediatric cancers<sup>14,15</sup>. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)<sup>14,15</sup>. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)14,15.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib97 (2004) and gefitinib98 (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations<sup>99</sup>. Second-generation TKIs afatinib<sup>100</sup> (2013) and dacomitinib<sup>101</sup> (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763\_Y764insFQEA, confer resistance to the same therapies 102,103,104,105. However, BDTX-189106 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)<sup>107</sup> and sunvozertinib<sup>108</sup>, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance<sup>109</sup>. The primary resistance mutation that emerges following treatment with firstgeneration TKI is T790M, accounting for 50-60% of resistant cases87. Third generation TKIs were developed to maintain sensitivity in the presence of T790M<sup>109</sup>. Osimertinib<sup>110</sup> (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases<sup>109</sup>. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa<sup>111</sup>. T790M and C797S can occur in either cis or trans allelic orientation<sup>111</sup>. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to

# **Biomarker Descriptions (continued)**

first-generation TKIs<sup>111</sup>. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone<sup>111,112</sup>. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs<sup>111</sup>. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535<sup>113</sup> (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations<sup>114</sup>. The bispecific antibody, amivantamab<sup>115</sup> (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib<sup>116</sup> (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-801<sup>117</sup> received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-42118, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301119 (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy guaratusugene ozeplasmid<sup>120</sup> (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma<sup>121,122,123</sup>.

#### **BRCA2** deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged DNA. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and compromise genome integrity<sup>1,2</sup>. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast and ovarian cancer³ and in men for breast and prostate cancer⁴,5. For individuals diagnosed with inherited pathogenic or likely pathogenic BRCA1/2 variants, estimated lifetime risks range from 41% to 90% for developing breast cancer and 8 to 62% for developing ovarian cancer⁶. 테스트 입니다.

Alterations and prevalence: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer and 5-10% of breast cancer<sup>7,8,9,10,11,12,13</sup>. Somatic alterations in BRCA2 are observed in 5-15% of melanomas, uterine, cervical, gastric, colorectal, esophageal, and lung cancers<sup>14,15</sup>.

Potential clinical relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)<sup>16</sup>. Inhibitors targeting PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells<sup>17,18</sup>. Consequently, several PARP inhibitors have been FDA approved for BRCA1/2-mutated cancers. Olaparib[] (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting. Rucaparib[] (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers treated with two or more chemotherapies. Talazoparib[] (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Due to efficacy in both gBRCAm and non-gBRCAm patients, Niraparib (2017) is another PARPi approved for maintenance of epithelial ovarian, fallopian tube, or primary peritoneal cancers, regardless of BRCA status<sup>19</sup>. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported<sup>20</sup>. One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality<sup>21</sup>.

#### TP53 p.(F109Sfs\*14) c.326delT

tumor protein p53

<u>Background:</u> The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair<sup>22</sup>. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis<sup>23</sup>. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential<sup>24</sup>. Germline mutations in TP53 are

# **Biomarker Descriptions (continued)**

the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers<sup>25,26</sup>.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)<sup>14,15,27,28,29,30</sup>. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282<sup>14,15</sup>. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes<sup>31,32,33,34</sup>. Alterations in TP53 are also observed in pediatric cancers<sup>14,15</sup>. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases) <sup>14,15</sup>. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)<sup>14,15</sup>.

Potential relevance: The small molecule p53 reactivator, PC14586<sup>35</sup> (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt<sup>36</sup>, (2019) and breakthrough designation<sup>37</sup> (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation<sup>38,39</sup>. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma<sup>40</sup>. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)<sup>41,42,43,44,45,46</sup>. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant<sup>47</sup>. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system<sup>48</sup>.

#### Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome<sup>59</sup>. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue<sup>60,61</sup>. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2<sup>62</sup>. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250<sup>63</sup>. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)<sup>63</sup>. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS<sup>64,65,66,67,68</sup>. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes<sup>61</sup>. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer<sup>60,61,65,69</sup>.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma<sup>60,61,70,71</sup>. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers<sup>70,71</sup>.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab<sup>72</sup> (2014) and nivolumab<sup>73</sup> (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab<sup>72</sup> is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication<sup>72</sup>. Dostarlimab<sup>74</sup> (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer<sup>66,75</sup>. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab<sup>76</sup> (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location<sup>66,77,78</sup>. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients<sup>78</sup>. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors<sup>79,80</sup>. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers<sup>79,80</sup>.

# **Biomarker Descriptions (continued)**

#### TET2 p.(R1216\*) c.3646C>T

tet methylcytosine dioxygenase 2

Background: TET2 encodes the tet methylcytosine dioxygenase 2 protein and belongs to the ten-eleven translocation (TET) family, which also includes TET1 and TET3<sup>22,124</sup>. The TET enzymes are involved in DNA methylation, specifically in the conversion of 5-methylcytosine to 5-hydroxymethylcytosine<sup>125,126</sup>. The TET proteins contain a C-terminal core catalytic domain that consists of a cysteine-rich domain and a double-stranded β-helix domain (DSBH)<sup>125,126</sup>. TET1 and TET3 possess a DNA-binding N-terminal CXXC zinc finger domain, whereas TET2, lacking this domain, is regulated by the neighboring CXXC4 protein, which harbors a CXXC domain and recruits TET2 to unmethylated CpG sites<sup>125,126</sup>. As a tumor suppressor gene, loss of function mutations in TET2 are associated with loss of catalytic activity and transformation to hematological malignancies<sup>124,127,128</sup>.

Alterations and prevalence: Somatic TET2 mutations, including nonsense, frameshift, splice site, and missense mutations, are observed in 20-25% of myelodysplastic syndrome (MDS) associated diseases, including 40-60% chronic myelomonocytic leukemia (CMML)<sup>43</sup>. TET2 mutations at H1881 and R1896 are frequently observed in myeloid malignancies<sup>127,129</sup>. TET2 mutations are also observed in 9% of uterine corpus endometrial carcinoma and acute myeloid leukemia (AML), 8% of skin cutaneous melanoma, 7% of diffuse large B-cell lymphoma (DLBCL), 4% of colorectal adenocarcinoma, lung squamous cell carcinoma, and stomach adenocarcinoma, and 2% of sarcoma, esophageal adenocarcinoma, bladder urothelial carcinoma, cervical squamous cell carcinoma, lung adenocarcinoma, uterine carcinosarcoma, and kidney chromophobe<sup>14,15</sup>. Alterations in TET2 are also observed in the pediatric population<sup>15</sup>. Somatic mutations are observed in 3% of Hodgkin lymphoma (2 in 61 cases) and leukemia (9 in 311 cases), and less than 1% of bone cancer (3 in 327 cases), B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (5 in 1158 cases), glioma (1 in 297 cases), and embryonal tumor (1 in 332 cases)<sup>15</sup>. Biallelic deletion of TET2 is observed in 2% of leukemia (6 in 250 cases), and less than 1% of Wilms tumor (1 in 136 cases) and B-lymphoblastic leukemia/lymphoma (4 in 731 cases)<sup>15</sup>.

Potential relevance: The presence of TET2 mutations may be used as one of the major diagnostic criteria in pre-primary myelofibrosis (pre-PMF) and overt PMF in the absence of JAK2/CALR/MPL mutations<sup>44</sup>. TET2 mutations are associated with poor prognosis in PMF and an increased rate of transformation to leukemia<sup>130</sup>. TET2 mutations may be utilized for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) versus other peripheral T-cell lymphomas (PTCLs)<sup>131</sup>.

#### ACVR2A p.(S18\*) c.53C>G

activin A receptor type 2A

Background: The ACVR2A gene encodes the activin A type 2A receptor protein, a transmembrane serine-threonine kinase receptor and member of the bone morphogenic protein (BMP)/transforming growth factor-beta (TGFβ) receptor family<sup>22,49</sup>. ACVR2A is a type II receptor that forms heterotetrametric complex with at least two type I receptors (ACVR1 and ACVR1B) and two type II receptors (including BMPR2 and ACVR2B)<sup>49,50</sup>. When ligands, such as activin A or BMPs, dimerize and bind to the heterotetrametric complex, type II receptors transphosphorylate and activate type I receptors leading to phosphorylation of SMAD proteins and downstream signaling<sup>49,50</sup>. Downregulation of ACVR2A has been associated with increased cell migration, tumor progression, and metastases in colon cancer<sup>51</sup>.

Alterations and prevalence: Somatic mutations of ACVR2A are observed in 11% of stomach adenocarcinoma and uterine corpus endometrial carcinoma, 7% of colorectal adenocarcinoma, 3% of liver hepatocellular carcinoma, skin cutaneous melanoma, and cholangiocarcinoma, 2% of cervical squamous cell carcinoma, and 1% of kidney renal papillary cell carcinoma, pancreatic adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma, breast invasive carcinoma, and glioblastoma multiforme, and esophageal adenocarcinoma<sup>14,15</sup>. Biallelic deletion of ACVR2A is observed in 4% of prostate adenocarcinoma, 2% of liver hepatocellular carcinoma, and 1% of stomach adenocarcinoma, thymoma, testicular germ cell tumors, esophageal adenocarcinoma, and colorectal adenocarcinoma<sup>14,15</sup>.

Potential relevance: Currently, no therapies are approved for ACVR2A aberrations.

#### MAP3K1 p.(A150Pfs\*35) c.447delC

mitogen-activated protein kinase kinase kinase 1

Background: The MAP3K1 gene encodes the mitogen-activated protein kinase kinase kinase 1, also known as MEKK1<sup>22</sup>. Activation of MAPK proteins occurs through a kinase signaling cascade<sup>132,133,134</sup>. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members<sup>132,133,134</sup>. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation<sup>132,133,134</sup>. MAP3K1 is known to exist in two protein configurations, including a full length and an N-terminal truncated form possessing an intact kinase domain<sup>135</sup>. The full length MAP3K1 is observed to regulate cell survival and migration, whereas the truncated form is observed to

**Report Date:** 04 Aug 2025 7 of 21

## **Biomarker Descriptions (continued)**

promote apoptosis<sup>135</sup>. MAP3K1 also regulates JNK activation and contains an E3 ligase domain responsible for ubiquitylating c-JUN and MAPK1/MAPK3<sup>135</sup>.

Alterations and prevalence: Somatic mutations in MAP3K1 are observed in 13% of uterine corpus endometrial carcinoma, 8% of breast invasive carcinoma, 5% of colorectal adenocarcinoma, and 4% of esophageal carcinoma and skin cutaneous melanoma<sup>14,15</sup>. MAP3K1 mutations are most frequently observed in hormone receptor positive breast cancer as opposed to other subtypes<sup>135</sup>. MAP3K1 biallelic deletions have been observed in 4% of ovarian serous cystadenocarcinoma, and prostate adenocarcinoma<sup>14,15</sup>.

Potential relevance: Currently, no therapies are approved for MAP3K1 aberrations.

#### NOTCH4 p.(G349Afs\*49) c.1044delC

notch 4

Background: The NOTCH4 gene encodes the notch receptor 4 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH1, NOTCH2, and NOTCH3. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling<sup>52</sup>. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism<sup>53,54</sup>. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members<sup>55,56,57,58</sup>.

Alterations and prevalence: Somatic mutations observed in NOTCH4 are primarily missense or truncating and are found in about 16% of melanoma, 9% of lung adenocarcinoma and uterine cancer, as well as 3-6% of bladder colorectal, squamous lung and stomach cancers<sup>14</sup>.

Potential relevance: Currently, no therapies are approved for NOTCH4 aberrations.

#### **NOTCH1** deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling<sup>52</sup>. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism<sup>53,54</sup>. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members<sup>55,56,57,58</sup>.

Alterations and prevalence: Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma, melanoma, gastric, esophageal, lung, and uterine cancers<sup>14,15,28</sup>. Activating mutations in either the heterodimerization or PEST domains of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia<sup>136,137</sup>.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

8 of 21 Report Date: 04 Aug 2025

# Alerts Informed By Public Data Sources

#### **Current FDA Information**

Contraindicated

Not recommended



Resistance





FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

#### EGFR exon 19 deletion

# patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion or EGFRi sensitizing mutation

#### **Supporting Statement:**

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

## **Genes Assayed**

### Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD. PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

#### Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

# **Genes Assayed (continued)**

## Genes Assayed for the Detection of Copy Number Variations (continued)

TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

### Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

### Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

# **Relevant Therapy Summary**

ECED oven 10 deletion

| In this cancer type | O In other cancer type | In this cancer type and other cancer types | No evidence |
|---------------------|------------------------|--------------------------------------------|-------------|
|---------------------|------------------------|--------------------------------------------|-------------|

| EGFR exon 19 deletion                   |     |      |     |      |                  |
|-----------------------------------------|-----|------|-----|------|------------------|
| Relevant Therapy                        | FDA | NCCN | EMA | ESMO | Clinical Trials* |
| osimertinib                             | •   | •    | •   | •    | <b>(III)</b>     |
| afatinib                                | •   | •    | •   |      | <b>(II)</b>      |
| dacomitinib                             | •   | •    | •   | •    | <b>(II)</b>      |
| gefitinib                               | •   | •    | •   | •    | <b>(II)</b>      |
| erlotinib + ramucirumab                 | •   | •    | •   | •    | ×                |
| amivantamab + carboplatin + pemetrexed  | •   | •    | •   | ×    | ×                |
| amivantamab + lazertinib                | •   | •    | •   | ×    | ×                |
| osimertinib + chemotherapy + pemetrexed | •   | ×    | •   | ×    | ×                |
| bevacizumab + erlotinib                 | ×   | •    | •   | •    | ×                |
| erlotinib                               | ×   | •    | •   | •    | ×                |
|                                         |     |      |     |      |                  |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

| Relevant Therapy                                                                                              | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|---------------------------------------------------------------------------------------------------------------|-----|------|-----|------|------------------|
| osimertinib + carboplatin + pemetrexed                                                                        | ×   |      | ×   | ×    | ×                |
| osimertinib + cisplatin + pemetrexed                                                                          | ×   |      | ×   | ×    | ×                |
| BAT1706 + erlotinib                                                                                           | ×   | ×    |     | ×    | ×                |
| bevacizumab (Allergan) + erlotinib                                                                            | ×   | ×    |     | ×    | ×                |
| bevacizumab (Biocon) + erlotinib                                                                              | ×   | ×    | •   | ×    | ×                |
| bevacizumab (Celltrion) + erlotinib                                                                           | ×   | ×    | •   | ×    | ×                |
| bevacizumab (Mabxience) + erlotinib                                                                           | ×   | ×    | •   | ×    | ×                |
| bevacizumab (Pfizer) + erlotinib                                                                              | ×   | ×    | •   | ×    | ×                |
| bevacizumab (Samsung Bioepis) + erlotinib                                                                     | ×   | ×    | •   | ×    | ×                |
| bevacizumab (Stada) + erlotinib                                                                               | ×   | ×    | •   | ×    | ×                |
| atezolizumab + bevacizumab + carboplatin +<br>paclitaxel                                                      | ×   | ×    | ×   | •    | ×                |
| gefitinib + carboplatin + pemetrexed                                                                          | ×   | ×    | ×   | •    | ×                |
| adebrelimab, bevacizumab, chemotherapy                                                                        | ×   | ×    | ×   | ×    | (IV)             |
| afatinib, bevacizumab, chemotherapy                                                                           | ×   | ×    | ×   | ×    | (IV)             |
| befotertinib                                                                                                  | ×   | ×    | ×   | ×    | (IV)             |
| bevacizumab, almonertinib, chemotherapy                                                                       | ×   | ×    | ×   | ×    | (IV)             |
| catequentinib, toripalimab                                                                                    | ×   | ×    | ×   | ×    | (IV)             |
| EGFR tyrosine kinase inhibitor                                                                                | ×   | ×    | ×   | ×    | (IV)             |
| gefitinib, chemotherapy                                                                                       | ×   | ×    | ×   | ×    | (IV)             |
| gefitinib, endostatin                                                                                         | ×   | ×    | ×   | ×    | (IV)             |
| natural product, gefitinib, erlotinib, icotinib<br>hydrochloride, osimertinib, almonertinib,<br>furmonertinib | ×   | ×    | ×   | ×    | <b>●</b> (IV)    |
| almonertinib, apatinib                                                                                        | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| almonertinib, catequentinib                                                                                   | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| almonertinib, chemotherapy                                                                                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| almonertinib, radiation therapy                                                                               | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| almonertinib, radiation therapy, chemotherapy                                                                 | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| befotertinib, icotinib hydrochloride                                                                          | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| bevacizumab, osimertinib                                                                                      | ×   | ×    | ×   | ×    | (III)            |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

| Relevant Therapy                                        | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|---------------------------------------------------------|-----|------|-----|------|------------------|
| BL-B01D1                                                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| BL-B01D1, osimertinib                                   | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| CK-101, gefitinib                                       | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| datopotamab deruxtecan, osimertinib                     | ×   | ×    | ×   | ×    | (III)            |
| FHND9041, afatinib                                      | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| furmonertinib                                           | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| furmonertinib, osimertinib, chemotherapy                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| gefitinib, afatinib, erlotinib, metformin hydrochloride | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| icotinib hydrochloride, catequentinib                   | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| icotinib hydrochloride, chemotherapy                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| icotinib hydrochloride, radiation therapy               | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| JMT-101, osimertinib                                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, bevacizumab                                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, chemotherapy                               | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, datopotamab deruxtecan                     | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| sacituzumab tirumotecan                                 | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| sacituzumab tirumotecan, osimertinib                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| savolitinib, osimertinib                                | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| SH-1028                                                 | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| targeted therapy                                        | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| TY-9591, osimertinib                                    | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| SCTB-14, chemotherapy                                   | ×   | ×    | ×   | ×    | (II/III)         |
| ABSK-043, furmonertinib                                 | ×   | ×    | ×   | ×    | (II)             |
| almonertinib                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| almonertinib, adebrelimab, chemotherapy                 | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| almonertinib, bevacizumab                               | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| almonertinib, chemoradiation therapy                    | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| almonertinib, dacomitinib                               | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| amivantamab, chemotherapy                               | ×   | ×    | ×   | ×    | (II)             |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

| Relevant Therapy                                             | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|--------------------------------------------------------------|-----|------|-----|------|------------------|
| amivantamab, lazertinib, chemotherapy                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| atezolizumab, bevacizumab, tiragolumab                       | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| pefotertinib, bevacizumab, chemotherapy                      | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| pevacizumab, afatinib                                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| oevacizumab, furmonertinib                                   | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| cadonilimab, chemotherapy, catequentinib                     | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| camrelizumab, apatinib                                       | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| capmatinib, osimertinib, ramucirumab                         | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| catequentinib, almonertinib                                  | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| chemotherapy, atezolizumab, bevacizumab                      | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| dacomitinib, osimertinib                                     | ×   | ×    | ×   | ×    | (II)             |
| EGFR tyrosine kinase inhibitor, osimertinib,<br>chemotherapy | ×   | ×    | ×   | ×    | <b>●</b> (II)    |
| EGFR tyrosine kinase inhibitor, radiation therapy            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| erlotinib, chemotherapy                                      | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| erlotinib, OBI-833                                           | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| furmonertinib, bevacizumab                                   | ×   | ×    | ×   | ×    | (II)             |
| furmonertinib, bevacizumab, chemotherapy                     | ×   | ×    | ×   | ×    | (II)             |
| furmonertinib, catequentinib                                 | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| furmonertinib, chemotherapy                                  | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| furmonertinib, chemotherapy, bevacizumab                     | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| furmonertinib, icotinib hydrochloride                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| gefitinib, bevacizumab, chemotherapy                         | ×   | ×    | ×   | ×    | <b>●</b> (II)    |
| gefitinib, icotinib hydrochloride                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| gefitinib, thalidomide                                       | ×   | ×    | ×   | ×    | (II)             |
| cotinib hydrochloride                                        | ×   | ×    | ×   | ×    | (II)             |
| cotinib hydrochloride, autologous RAK cell                   | ×   | ×    | ×   | ×    | (II)             |
| cotinib hydrochloride, osimertinib                           | ×   | ×    | ×   | ×    | (II)             |
| vonescimab, chemotherapy                                     | ×   | ×    | ×   | ×    | (II)             |
| azertinib                                                    | ×   | ×    | ×   | ×    | (II)             |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

| Relevant Therapy                                                 | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|------------------------------------------------------------------|-----|------|-----|------|------------------|
| lazertinib, bevacizumab                                          | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| lazertinib, chemotherapy                                         | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| lenvatinib, pembrolizumab                                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| osimertinib, bevacizumab, chemotherapy                           | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| osimertinib, chemoradiation therapy                              | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| osimertinib, radiation therapy                                   | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| PLB-1004, bozitinib, osimertinib                                 | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| ramucirumab, erlotinib                                           | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sacituzumab govitecan                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sacituzumab tirumotecan, chemotherapy, osimertinib               | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib                                                    | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib, catequentinib                                     | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib, golidocitinib                                     | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| tislelizumab, chemotherapy, bevacizumab                          | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| toripalimab                                                      | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| toripalimab, bevacizumab, Clostridium butyricum,<br>chemotherapy | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| toripalimab, chemotherapy                                        | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| TY-9591, chemotherapy                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| zorifertinib, pirotinib                                          | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| AFM-24_I, atezolizumab                                           | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| almonertinib, icotinib hydrochloride                             | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| benmelstobart, catequentinib                                     | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| BH-30643                                                         | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| bozitinib, osimertinib                                           | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| BPI-361175                                                       | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| cetrelimab, amivantamab                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| dacomitinib, catequentinib                                       | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| DAJH-1050766                                                     | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| DB-1310, osimertinib                                             | ×   | ×    | ×   | ×    | (I/II)           |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

| Relevant Therapy                                  | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|---------------------------------------------------|-----|------|-----|------|------------------|
| dositinib                                         | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| FWD-1509                                          | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| H-002                                             | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| ifebemtinib, furmonertinib                        | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| MRTX0902                                          | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| necitumumab, osimertinib                          | ×   | ×    | ×   | ×    | (I/II)           |
| quaratusugene ozeplasmid, osimertinib             | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| RC-108, furmonertinib, toripalimab                | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| sotiburafusp alfa, HB-0030                        | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| sunvozertinib, chemotherapy                       | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| TAS-3351                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| TQ-B3525, osimertinib                             | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| TRX-221                                           | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| WSD-0922                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| afatinib, chemotherapy                            | ×   | ×    | ×   | ×    | (I)              |
| almonertinib, midazolam                           | ×   | ×    | ×   | ×    | (I)              |
| ASKC-202                                          | ×   | ×    | ×   | ×    | (I)              |
| AZD-9592                                          | ×   | ×    | ×   | ×    | (I)              |
| BG-60366                                          | ×   | ×    | ×   | ×    | (I)              |
| BPI-1178, osimertinib                             | ×   | ×    | ×   | ×    | (I)              |
| catequentinib, gefitinib, metformin hydrochloride | ×   | ×    | ×   | ×    | <b>(</b> I)      |
| DZD-6008                                          | ×   | ×    | ×   | ×    | (I)              |
| EGFR tyrosine kinase inhibitor, catequentinib     | ×   | ×    | ×   | ×    | (I)              |
| genolimzumab, fruquintinib                        | ×   | ×    | ×   | ×    | (I)              |
| IBI-318, lenvatinib                               | ×   | ×    | ×   | ×    | (I)              |
| KQB-198, osimertinib                              | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| LAVA-1223                                         | ×   | ×    | ×   | ×    | (I)              |
| MRX-2843, osimertinib                             | ×   | ×    | ×   | ×    | (I)              |
|                                                   |     |      |     |      |                  |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

TP53 p.(F109Sfs\*14) c.326delT

| Relevant Therapy                                                       | FDA | NCCN | EMA | ESMO | Clinical Trials*      |
|------------------------------------------------------------------------|-----|------|-----|------|-----------------------|
| osimertinib, Minnelide                                                 | ×   | ×    | ×   | ×    | <ul><li>(I)</li></ul> |
| osimertinib, tegatrabetan                                              | ×   | ×    | ×   | ×    | <b>(</b> l)           |
| patritumab deruxtecan                                                  | ×   | ×    | ×   | ×    | <b>(</b> I)           |
| PB-101 (Precision Biotech Taiwan Corp), EGFR tyrosine kinase inhibitor | ×   | ×    | ×   | ×    | <b>(</b> 1)           |
| repotrectinib, osimertinib                                             | ×   | ×    | ×   | ×    | <b>(</b> l)           |
| VIC-1911, osimertinib                                                  | ×   | ×    | ×   | ×    | <b>(</b> l)           |
| WJ13404                                                                | ×   | ×    | ×   | ×    | <b>(</b> l)           |
| WTS-004                                                                | ×   | ×    | ×   | ×    | <b>(</b> I)           |
| YH-013                                                                 | ×   | ×    | ×   | ×    | <b>(</b> l)           |
| YL-202                                                                 | ×   | ×    | ×   | ×    | (I)                   |

#### **BRCA2** deletion **Relevant Therapy** FDA NCCN **EMA ESMO Clinical Trials\*** (II) olaparib 0 × × × 0 niraparib × × × × rucaparib × 0 × × × pamiparib, tislelizumab × × × × (II)

| Relevant Therapy                       | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|----------------------------------------|-----|------|-----|------|------------------|
| almonertinib, catequentinib            | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, chemotherapy              | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| osimertinib, bevacizumab, chemotherapy | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| sunvozertinib, catequentinib           | ×   | ×    | ×   | ×    | <b>(II)</b>      |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

#### **HRR Details**

| Gene/Genomic Alteration | Finding                            |
|-------------------------|------------------------------------|
| LOH percentage          | 23.18%                             |
| BRCA1                   | LOH, 17q21.31(41197602-41276123)x3 |
| BRCA2                   | CNV, CN:1.0                        |
| BRCA2                   | LOH, 13q13.1(32890491-32972932)x1  |
| BRIP1                   | LOH, 17q23.2(59760627-59938976)x3  |
| CDK12                   | LOH, 17q12(37618286-37687611)x3    |
| RAD51C                  | LOH, 17q22(56769933-56811619)x3    |
| RAD51D                  | LOH, 17q12(33427950-33446720)x3    |

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

#### References

- 1. Liu et al. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Res. 2002;4(1):9-13. PMID: 11879553
- 2. Jasin. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene. 2002 Dec 16;21(58):8981-93. PMID: 12483514
- 3. Kuchenbaecker et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun 20;317(23):2402-2416. PMID: 28632866
- 4. Tai et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007 Dec 5;99(23):1811-4. PMID: 18042939
- Levy-Lahad et al. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer. 2007 Jan 15;96(1):11-5. PMID: 17213823
- NCCN Guidelines® NCCN-Genetic/Familial High-Risk Assessment: Breast and Ovarian [Version 1.2018]. NCCN-Genetic/Familial High-Risk Assessment: Breast and Ovarian
- 7. ARUP Laboratories University of Utah Department of Pathology.. https://arupconsult.com/ati/hereditary-breast-and-ovarian-cancer
- 8. Petrucelli et al. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews® [Internet]. PMID: 20301425
- 9. Pruthi et al. Identification and Management of Women With BRCA Mutations or Hereditary Predisposition for Breast and Ovarian Cancer. Mayo Clin. Proc. 2010 Dec;85(12):1111-20. PMID: 21123638
- 10. Walsh et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. U.S.A. 2011 Nov 1;108(44):18032-7. PMID: 22006311
- 11. Alsop et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012 Jul 20;30(21):2654-63. PMID: 22711857
- 12. Whittemore et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 2004 Dec;13(12):2078-83. PMID: 15598764
- 13. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer. 2000 Nov;83(10):1301-8. PMID: 11044354
- 14. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 15. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 16. Hodgson et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer. 2018 Nov;119(11):1401-1409. PMID: 30353044
- 17. Bryant et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005 Apr 14:434(7035):913-7. PMID: 15829966
- 18. Farmer et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005 Apr 14;434(7035):917-21. PMID: 15829967
- 19. Ison et al. FDA Approval Summary: Niraparib for the Maintenance Treatment of Patients with Recurrent Ovarian Cancer in Response to Platinum-Based Chemotherapy. Clin. Cancer Res. 2018 Sep 1;24(17):4066-4071. PMID: 29650751
- 20. Barber et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 2013 Feb;229(3):422-9. PMID: 23165508
- 21. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst.). 2018 Nov;71:172-176. PMID: 30177437
- 22. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 23. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 24. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 25. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 26. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 27. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745

- 28. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 29. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 30. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 31. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 32. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 33. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 34. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 35. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 36. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 37. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 38. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 39. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 40. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 41. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 42. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 43. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 44. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 45. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 46. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 47. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 48. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 49. Valer et al. ACVR1 Function in Health and Disease. Cells. 2019 Oct 31;8(11). PMID: 31683698
- 50. Haupt et al. Variable signaling activity by FOP ACVR1 mutations. Bone. 2018 Apr;109:232-240. PMID: 29097342
- 51. Zhuo et al. Downregulation of Activin A Receptor Type 2A Is Associated with Metastatic Potential and Poor Prognosis of Colon Cancer. J Cancer. 2018;9(19):3626-3633. PMID: 30310521
- 52. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 53. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209
- 54. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID: 19379690
- 55. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802
- 56. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 57. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338

19 of 21

Report Date: 04 Aug 2025

- 58. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 59. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 60. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 61. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 62. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 63. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 64. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 65. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 66. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 67. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 68. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 69. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 70. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 71. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 72. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125514s174lbl.pdf
- 73. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125554s129lbl.pdf
- 74. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/761174s009lbl.pdf
- 75. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 76. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125377s133lbl.pdf
- 77. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 78. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 79. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 80. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 81. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 82. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 83. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 84. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 85. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 86. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 87. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192

- 88. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 89. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 90. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 91. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 92. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 93. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 94. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 95. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 96. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 97. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2016/021743s025lbl.pdf
- 98. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/206995s004lbl.pdf
- 99. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 100. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2022/201292s017lbl.pdf
- 101. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2020/211288s003lbl.pdf
- 102. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]
- 103. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 104. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 105. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 106. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 107. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 108. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 109. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 110. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/208065s033lbl.pdf
- 111. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 112. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 113. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and
- 114. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 115. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/761210s007lbl.pdf
- 116. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/219008s000lbledt.pdf
- 117. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr

21 of 21

Report Date: 04 Aug 2025

- 118. https://iis.aastocks.com/20231227/11015917-0.PDF
- 119. http://iis.aastocks.com/20230612/10770455-0.PDF
- 120. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 121. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 122. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 123. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 124. Pan et al. The TET2 interactors and their links to hematological malignancies. IUBMB Life. 2015 Jun;67(6):438-45. PMID: 26099018
- 125. An et al. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp. Mol. Med. 2017 Apr 28;49(4):e323. PMID: 28450733
- 126. Rasmussen et al. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016 Apr 1;30(7):733-50. PMID: 27036965
- 127. Ko et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010 Dec 9;468(7325):839-43. PMID: 21057493
- 128. Solary et al. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014 Mar;28(3):485-96. PMID: 24220273
- 129. Kosmider et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009 Oct 8;114(15):3285-91. PMID: 19666869
- 130. Lundberg et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014 Apr 3;123(14):2220-8. PMID: 24478400
- 131. NCCN Guidelines® NCCN-T-Cell Lymphomas [Version 1.2025]
- 132. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 133. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- 134. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156
- 135. Pham et al. MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis. Genes Cancer. 2013 Nov;4(11-12):419-26. PMID: 24386504
- 136. Weng et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004 Oct 8;306(5694):269-71. PMID: 15472075
- 137. Breit et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006 Aug 15;108(4):1151-7. PMID: 16614245