

Tel. 1661-5117 www.smlab.co.kr

Report Date: 29 Jul 2025 1 of 14

Patient Name: 원종식 Gender: M Sample ID: N25-117 Primary Tumor Site: lung
Collection Date: 2025.07.07

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Relevant Therapy Summary	8

Report Highlights 2 Relevant Biomarkers 0 Therapies Available 4 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding		Gene	Finding	
ALK	None detected		MET	None detected	
BRAF	None detected		NRG1	None detected	
EGFR	None detected		NTRK1	None detected	
ERBB2	None detected		NTRK2	None detected	
FGFR1	None detected		NTRK3	None detected	
FGFR2	None detected		RET	None detected	
FGFR3	None detected		ROS1	None detected	
KRAS	None detected				
Genomic Alt	eration	Finding			
Tumor Mu	ıtational Burden	12.4 Mut/Mb measured			

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	3
IIC	ARID1A p.(A2234Cfs*29) c.6699_6711delGGCTGCCGGGG AT-rich interaction domain 1A Allele Frequency: 33.44%	None*	None*	1
	Locus: chr1:27107084 Transcript: NM_006015.6			

 $[\]hbox{* \bf Public data sources included in relevant the rapies: FDA1, NCCN, EMA2, ESMO } \\$

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

MAPK1 amplification, Microsatellite stable, PIK3R1 p.(Y73*) c.218_219delACinsGAT, TP53 p.(C275Y) c.824G>A, SPEN p. (W661Lfs*10) c.1981_1982insT, UGT1A1 p.(G71R) c.211G>A, TGFBR2 deletion, HLA-A deletion, HLA-A p.(L180*) c.539T>A, NOTCH4 p.(G1941Lfs*4) c.5820_5842delCGGAGGCAGGGTCTCAACGGATG, NQ01 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA S	DNA Sequence Variants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
ARID1A	p.(A2234Cfs*29)	c.6699_6711delGGCTG CCCGCGCG		chr1:27107084	33.44%	NM_006015.6	frameshift Deletion
PIK3R1	p.(Y73*)	c.218_219delACinsGA T		chr5:67522721	1.44%	NM_181523.3	nonsense
TP53	p.(C275Y)	c.824G>A	COSM10893	chr17:7577114	28.15%	NM_000546.6	missense
SPEN	p.(W661Lfs*10)	c.1981_1982insT		chr1:16254715	13.47%	NM_015001.3	frameshift Insertion
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	56.41%	NM_000463.3	missense
HLA-A	p.(L180*)	c.539T>A		chr6:29911240	100.00%	NM_001242758.1	nonsense
NOTCH4	p.(G1941Lfs*4)	c.5820_5842delCGGAG GCAGGGTCTCAACGG ATG		chr6:32163383	6.75%	NM_004557.4	frameshift Deletion
NQ01	p.(P187S)	c.559C>T		chr16:69745145	99.60%	NM_000903.3	missense
HMCN1	p.(G2412V)	c.7235G>T		chr1:186026456	25.91%	NM_031935.3	missense
EPAS1	p.(P556S)	c.1666C>T		chr2:46607477	9.87%	NM_001430.5	missense
LRP1B	p.(L1777*)	c.5330T>A		chr2:141571255	28.82%	NM_018557.3	nonsense
PBRM1	p.(?)	c.715-1G>C		chr3:52682459	34.11%	NM_018313.5	unknown
FAT1	p.(R1547W)	c.4639A>T		chr4:187549479	13.85%	NM_005245.4	missense
CDH10	p.(Q522E)	c.1564C>G		chr5:24492986	26.72%	NM_006727.5	missense
DOCK2	p.(G457Afs*17)	c.1370delG		chr5:169129416	20.90%	NM_004946.3	frameshift Deletion
JAK2	p.(P275H)	c.824C>A		chr9:5054772	39.09%	NM_004972.4	missense
TMEM233	p.(V85A)	c.254T>C		chr12:120067608	48.48%	NM_001136534.3	missense
CREBBP	p.(S980I)	c.2939G>T		chr16:3819296	29.97%	NM_004380.3	missense
COG1	p.(N392G)	c.1174_1175delAAinsG G		chr17:71196808	2.38%	NM_018714.3	missense
ANKRD30B	p.(Q430K)	c.1288C>A		chr18:14772186	29.73%	NM_001367607.1	missense
RNASEH2A	p.(*300Q)	c.898T>C		chr19:12924278	32.32%	NM_006397.3	stoploss
ZMYM3	p.(H635Y)	c.1903C>T		chrX:70468084	99.80%	NM_201599.3	missense

Variant Details (continued)

Copy Number Variations				
Gene	Locus	Copy Number	CNV Ratio	
CDKN2A	chr9:21968178	0.34	0.59	
MAPK1	chr22:22123473	5.36	1.84	
TGFBR2	chr3:30648337	0.74	0.69	
HLA-A	chr6:29910229	0.2	0.55	
SMARCB1	chr22:24129273	8.34	2.59	

Biomarker Descriptions

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁸⁹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{90,91,92}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions⁹³. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation¹,93,94</sup>. CDKN2A aberrations commonly co-occur with CDKN2B⁸⁹. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation⁹⁵. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{96,97}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁹⁸. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{8,9}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{8,9}. Alterations in CDKN2A are also observed in pediatric cancers⁹. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors⁹. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)⁹.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{99,100,101}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma¹⁰². Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{103,104,105}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme¹⁰⁶. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{107,108,109,110}.

ARID1A p.(A2234Cfs*29) c.6699_6711delGGCTGCCCGCGCG

AT-rich interaction domain 1A

<u>Background</u>: The ARID1A gene encodes the AT-rich interaction domain 1A tumor suppressor protein¹. ARID1A, also known as BAF250A, belongs to the ARID1 subfamily that also includes AR1D1B^{1,83}. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin-remodeling complex^{83,84}. The BAF complex is a multisubunit protein that consists of SMARCB1/IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B⁸⁴. The BAF complex

Biomarker Descriptions (continued)

remodels chromatin at promoter and enhancer elements to alter and regulate gene expression^{84,85}. ARID1A binds to transcription factors and coactivator/corepressor complexes to alter transcription⁸³. Recurrent inactivating mutations in BAF complex subunits, including ARID1A, lead to transcriptional dysfunction thereby, altering its tumor suppressor function⁸³.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors⁸⁵. The majority of ARID1A inactivating mutations are nonsense or frameshift mutations⁸³. Somatic mutations in ARID1A have been identified in 50% of ovarian clear cell carcinoma, 30% of endometrioid carcinoma, and 24-43% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma^{8,9,84}. In microsatellite stable (MSS) colorectal cancer, mutations in ARID1A have been observed to correlate with increased tumor mutational burden (TMB) and expression of genes involved in the immune response⁸⁶.

Potential relevance: Currently, no therapies are approved for ARID1A aberrations. However, the FDA has granted fast track designation (2022) to HSF1 pathway inhibitor, NXP-80087, for the treatment of platinum resistant ARID1A-mutated ovarian carcinoma. Tulmimetostat⁸⁸, dual inhibitor of EZH2 and EZH1, was also granted a fast track designation (2023) for the treatment of patients with advanced, recurrent or metastatic endometrial cancer harboring ARID1A mutations and who have progressed on at least one prior line of treatment.

MAPK1 amplification

mitogen-activated protein kinase 1

Background: The MAPK1 gene encodes the mitogen-activated protein kinase 1, also known as ERK2¹. MAPK1 is involved in the ERK1/2 signaling pathway along with MAPK3, MAP2K2, MAP2K4, BRAF, and RAF1⁴7,⁴8. Activation of MAPK proteins occurs through a kinase signaling cascade⁴8,⁴9,50. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members⁴8,⁴9,50. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation⁴8,⁴9,50. MAPK1 activation leads to homodimerization and phosphorylation of downstream targets including transcription factors RSK, MSK, and MYC, cytoskeletal molecules, and nucleoporins⁵¹. MAPK1 mutations have been observed to confer gain of function and promote MAPK pathway signaling, supporting an oncogenic role for MAPK1⁵2,⁵3.

Alterations and prevalence: Somatic mutations in MAPK1 are observed in up to 4% of cervical squamous cell carcinoma, and up to 2% of head and neck squamous cell and uterine corpus endometrial carcinomas^{8,9}. The most common missense mutations occur at codon 322^{8,9}. Amplifications in MAPK1 are observed in up to 4% of sarcoma, and 3% of bladder carcinoma, lung squamous carcinoma, and ovarian cancer^{8,9}.

Potential relevance: Currently, no therapies are approved for MAPK1 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁶¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{62,63}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁶⁴. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁶⁵. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁶⁵. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{66,67,68,69,70}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁶³. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{62,63,67,71}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{62,63,72,73}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{72,73}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁷⁴ (2014) and nivolumab⁷⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁷⁴ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁷⁴. Dostarlimab⁷⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/

Biomarker Descriptions (continued)

MSI-H advanced or metastatic colon or rectal cancer^{68,77}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁷⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{68,79,80}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁸⁰. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{81,82}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{81,82}.

PIK3R1 p.(Y73*) c.218_219delACinsGAT

phosphoinositide-3-kinase regulatory subunit 1

Background: The PIK3R1 gene encodes the phosphoinositide-3-kinase regulatory subunit 1 of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹. PI3K is a heterodimer that contains a p85 regulatory subunit and a p110 catalytic subunit¹⁰. Specifically, PIK3R1 encodes the p85α protein, one of five p85 isoforms¹⁰. p85α is responsible for the binding, stabilization, and inhibition of the p110 catalytic subunit, thereby regulating PI3K activity¹⁰. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) into phosphatidylinositol (3,4,5)-trisphosphate (PIP3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{11,12}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{11,12,13,14}. p85 is also capable of binding PTEN thereby preventing ubiquitination and increasing PTEN stability¹⁵. Loss of function mutations in PIK3R1 results in the inability of p85 to bind p110 or PTEN resulting in aberrant activation of the PI3K/AKT/MTOR pathway, a common driver event in several cancer types which supports a tumor suppressor role for PIK3R1¹⁰.

Alterations and prevalence: Somatic mutations in PIK3R1 are predominantly truncating or missense and are observed in about 31% of uterine cancer, 10% of uterine carcinosarcoma and glioblastoma, 6% of colorectal cancer, and 3-4% of melanoma, low grade glioma (LGG), stomach, and cervical cancers⁸. Additionally, biallelic loss of PIK3R1 is observed in 3-4% of ovarian and prostate cancers⁸.

Potential relevance: Currently, no therapies are approved for PIK3R1 aberrations.

TP53 p.(C275Y) c.824G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis¹⁶. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹⁷. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{18,19}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,20,21,22,23}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,⁹. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{24,25,26,27}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586²⁸ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt²⁹, (2019) and breakthrough designation³⁰ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{31,32}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma³³. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{34,35,36,37,38,39}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁴⁰. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁴¹.

Biomarker Descriptions (continued)

SPEN p.(W661Lfs*10) c.1981_1982insT

spen family transcriptional repressor

<u>Background</u>: SPEN encodes spen family transcriptional repressor¹. SPEN plays a role in chromosome X inactivation and regulation of transcription^{111,112,113}. As a transcriptional repressor, SPEN sequesters transcriptional activators and interacts with other repressors and chromatin remodeling complexes, such as histone deacetylases (HDACs) and the NuRD complex^{111,113}. In ER α -positive breast cancers, SPEN binds ER α in a ligand-independent manner and negatively regulates the transcription of ER α targets, acting as a tumor suppressor gene to regulate cell proliferation, tumor growth, and survival^{114,115}.

Alterations and prevalence: Somatic mutations in SPEN are observed in 13% of skin cutaneous melanoma, 12% of uterine corpus endometrial carcinoma, 10% of stomach adenocarcinoma, 7% of diffuse large B-cell lymphoma, bladder urothelial carcinoma, and colorectal adenocarcinoma, 6% of cervical squamous cell carcinoma, 5% of head and neck squamous cell carcinoma and lung adenocarcinoma, 4% of lung squamous cell carcinoma and ovarian serous cystadenocarcinoma, 3% of kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, breast invasive carcinoma, glioblastoma multiforme, and acute myeloid leukemia, and 2% of pancreatic adenocarcinoma, adrenocortical carcinoma, liver hepatocellular carcinoma, uterine carcinosarcoma, and esophageal adenocarcinoma^{8,9}. Biallelic loss of SPEN is observed in 6% of cholangiocarcinoma and 2% of pheochromocytoma and paraganglioma^{8,9}.

Potential relevance: Currently, no therapies are approved for SPEN aberrations.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,116}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{116,117}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹¹⁸. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{118,119,120,121}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹²².

<u>Alterations and prevalence:</u> Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

TGFBR2 deletion

transforming growth factor beta receptor 2

Background: TGFBR2 encodes transforming growth factor beta receptor 21. Along with TGFBR1 and TGFBR3, TGFBR2 is a member of the TGF-beta receptor family⁴². Both TGFBR1 and TGFBR2 function as serine/threonine and tyrosine kinases, whereas TGFBR3 does not possess any kinase activity⁴². TGFBR1 heterodimerizes with TGFBR2 and activates ligand binding of TGF-beta cytokines namely TGFB1, TGFB2, and TGFB3⁴². Heterodimerization with TGFBR2 enables TGFBR1 to phosphorylate downstream SMAD2/3, which leads to activation of SMAD4⁴³. This process regulates various signaling pathways implicated in cancer initiation and progression, including epithelial to mesenchymal transition (EMT) and apoptosis^{44,45,46}.

Alterations and prevalence: Somatic mutations in TGFBR2 are observed in 5% of esophageal adenocarcinoma, and head and neck squamous cell carcinoma, 4% of pancreatic adenocarcinoma, stomach adenocarcinoma, uterine corpus endometrial carcinoma, colorectal adenocarcinoma, and cholangiocarcinoma^{8,9}. Biallelic deletion of TGFRB2 is observed in 3% of kidney renal clear cell carcinoma and 2% of stomach adenocarcinoma and head and neck squamous cell carcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for TGFBR2 aberrations.

Report Date: 29 Jul 2025 7 of 14

Biomarker Descriptions (continued)

HLA-A deletion, HLA-A p.(L180*) c.539T>A

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A⁷.

<u>Alterations and prevalence:</u> Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{8,9}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

NOTCH4 p.(G1941Lfs*4) c.5820_5842delCGGAGGCAGGGTCTCAACGGATG

notch 4

<u>Background</u>: The NOTCH4 gene encodes the notch receptor 4 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH1, NOTCH2, and NOTCH3. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signalling⁵⁴. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{55,56}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{57,58,59,60}.

Alterations and prevalence: Somatic mutations observed in NOTCH4 are primarily missense or truncating and are found in about 16% of melanoma, 9% of lung adenocarcinoma and uterine cancer, as well as 3-6% of bladder colorectal, squamous lung and stomach cancers⁸.

Potential relevance: Currently, no therapies are approved for NOTCH4 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

In this cancer type	In other cancer type	In this cancer	type and other car	icer types	X No eviden	ce
CDKN2A deletion	on					
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib		×	×	×	×	(II)
palbociclib, abemacio	elib	×	×	×	×	(II)
AMG 193		×	×	×	×	(1/11)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 29 Jul 2025 9 of 14

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

ARID1A p.(A2234Cfs*29) c.6699_6711delGGCTGCCCGCGCG

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
talazoparib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	70.93%
BRCA1	LOH, 17q21.31(41197602-41276123)x2
BRCA2	LOH, 13q13.1(32890491-32972932)x2
CDK12	LOH, 17q12(37618286-37687611)x2
CHEK2	LOH, 22q12.1(29083868-29130729)x2
PALB2	LOH, 16p12.2(23614759-23652528)x3
RAD51B	LOH, 14q24.1(68290164-69061406)x2
RAD51D	LOH, 17q12(33427950-33446720)x2
RAD54L	LOH, 1p34.1(46714017-46743978)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 5. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 6. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Cheung et al. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics. 2016 Feb;17(3):297-307. PMID: 26807692
- 11. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 12. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 13. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 14. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 15. Chagpar et al. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 2010 Mar 23;107(12):5471-6. PMID: 20212113
- 16. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 17. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 18. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 19. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 20. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 21. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 22. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 23. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 24. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 25. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 26. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 27. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 28. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 29. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation

11 of 14

Report Date: 29 Jul 2025

- 30. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 31. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 32. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 33. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 34. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 35. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 36. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 37. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 38. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 39. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 40. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 41. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 42. Vander et al. TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 2018 Dec;52:112-120. PMID: 30184463
- 43. Shi et al. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003 Jun 13;113(6):685-700. PMID: 12809600
- 44. Heldin et al. Role of Smads in TGFβ signaling. Cell Tissue Res. 2012 Jan;347(1):21-36. PMID: 21643690
- 45. Sorrentino et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008 Oct;10(10):1199-207. PMID: 18758450
- 46. Ioannou et al. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study. J Mol Histol. 2018 Jun;49(3):235-244. PMID: 29468299
- 47. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. PMID: 21372320
- 48. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 49. Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- 50. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156
- 51. Roskoski. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 2012 Aug;66(2):105-43. PMID: 22569528
- 52. Roskoski. MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem. Biophys. Res. Commun. 2012 Jan 6;417(1):5-10. PMID: 22177953
- 53. Marampon et al. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int J Mol Sci. 2019 May 23;20(10). PMID: 31126017
- 54. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 55. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209
- 56. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID: 19379690
- 57. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802
- 58. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 59. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338

Report Date: 29 Jul 2025 12 of 14

- 60. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 61. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 62. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 63. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 64. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 65. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 66. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 67. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 68. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 69. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 70. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 71. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 72. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 73. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 74. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 75. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 76. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 77. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 78. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 79. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 80. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 81. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 82. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 83. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013 Jan;3(1):35-43. PMID: 23208470
- 84. Wilson et al. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011 Jun 9;11(7):481-92. PMID: 21654818
- 85. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. Nat Commun. 8:14648. PMID: 28262751
- 86. Mehrvarz et al. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res. 2021 Mar 15;27(6):1663-1670. PMID: 33414133
- 87. https://nuvectis.com/press-release-view/?i=114174
- 88. https://www.morphosys.com/en/news/morphosys-receives-us-fda-fast-track-designation-tulmimetostat-endometrial-cancer
- 89. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 90. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051

- 91. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 92. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 93. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 94. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 95. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 96. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 97. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 98. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 99. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 100. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 101. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 102. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 103. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 104. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 105. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 106. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 107. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 108. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 109. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 110. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 111. Dossin et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature. 2020 Feb;578(7795):455-460. PMID: 32025035
- 112. Li et al. SPEN induces miR-4652-3p to target HIPK2 in nasopharyngeal carcinoma. Cell Death Dis. 2020 Jul 2;11(7):509. PMID: 32641685
- 113. Radio et al. SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. Am J Hum Genet. 2021 Mar 4;108(3):502-516. PMID: 33596411
- 114. Légaré et al. The Estrogen Receptor Cofactor SPEN Functions as a Tumor Suppressor and Candidate Biomarker of Drug Responsiveness in Hormone-Dependent Breast Cancers. Cancer Res. 2015 Oct 15;75(20):4351-63. PMID: 26297734
- 115. Légaré et al. SPEN, a new player in primary cilia formation and cell migration in breast cancer. Breast Cancer Res. 2017 Sep 6;19(1):104. PMID: 28877752
- 116. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 2014;8:349. PMID: 25389387
- 117. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1659-72. PMID: 16550166
- 118. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020 Apr;122(9):1277-1287. PMID: 32047295

Report Date: 29 Jul 2025 14 of 14

- 119. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. Mol Carcinog. 2014 Apr;53(4):314-24. PMID: 23143693
- 120. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. Oncotarget. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
- 121. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PLoS One. 2015;10(5):e0127524. PMID: 26010150
- 122. Karas et al. JCO Oncol Pract. 2021 Dec 3:0P2100624. PMID: 34860573