

Tel. 1661-5117 www.smlab.co.kr

Report Date: 29 Jul 2025 1 of 21

Patient Name: 변선화 Gender: Sample ID: N25-113 **Primary Tumor Site:** colon 2024.12.02 **Collection Date:**

Sample Cancer Type: Colon Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	9
Relevant Therapy Summary	14

Report Highlights 2 Relevant Biomarkers 1 Therapies Available 12 Clinical Trials

Relevant Colon Cancer Findings

Gene	Finding		Gene	Finding	
BRAF	None detected		NTRK2	None detected	
ERBB2	None detected		NTRK3	None detected	
KRAS	KRAS p.(A146	T) c.436G>A	POLD1	None detected	
NRAS	None detected		POLE	None detected	
NTRK1	None detected		RET	None detected	
Genomic Alte	eration	Finding			
Microsate	llite Status	Microsatellite stable			
Tumor Mutational Burden		10.45 Mut/Mb measured			

HRD Status: HR Proficient (HRD-)

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	KRAS p.(A146T) c.436G>A KRAS proto-oncogene, GTPase Allele Frequency: 78.55% Locus: chr12:25378562 Transcript: NM_033360.4	bevacizumab + chemotherapy	None*	10
IIC	CCND2 amplification cyclin D2 Locus: chr12:4383227	None*	None*	2

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO Line of therapy: I: First-line therapy, II+: Other line of therapy

Report Date: 29 Jul 2025 2 of 21

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IID	EGFR p.(G724S) c.2170G>A epidermal growth factor receptor Allele Frequency: 8.35% Locus: chr7:55241722 Transcript: NM_005228.5	None*	None*	0

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🛕 Alerts informed by public data sources: 🤣 Contraindicated, 🔻 Resistance, 🗳 Breakthrough, 🔼 Fast Track

KRAS p.(A146T) c.436G>A

⊘ cetuximab ¹,², cetuximab + chemotherapy ², panitumumab ¹, panitumumab + chemotherapy ²

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

APC c.1312+1G>A, FBXW7 p.(R505C) c.1513C>T, FGF23 amplification, Microsatellite stable, PPP2R2A deletion, TCF7L2 p.(W459*) c.1377G>A, TP53 p.(C242F) c.725G>T, HLA-A deletion, NQ01 p.(P187S) c.559C>T, YES1 amplification, Tumor Mutational Burden

Variant Details

DNA S	equence Variar	nts					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
KRAS	p.(A146T)	c.436G>A	COSM19404	chr12:25378562	78.55%	NM_033360.4	missense
EGFR	p.(G724S)	c.2170G>A	COSM13979	chr7:55241722	8.35%	NM_005228.5	missense
APC	p.(?)	c.1312+1G>A		chr5:112155042	74.71%	NM_000038.6	unknown
FBXW7	p.(R505C)	c.1513C>T	COSM22975	chr4:153247289	36.24%	NM_033632.3	missense
TCF7L2	p.(W459*)	c.1377G>A		chr10:114920436	26.86%	NM_001146274.2	nonsense
TP53	p.(C242F)	c.725G>T	COSM10810	chr17:7577556	78.35%	NM_000546.6	missense
NQ01	p.(P187S)	c.559C>T		chr16:69745145	47.44%	NM_000903.3	missense
BARD1	p.(E649A)	c.1946A>C		chr2:215595190	4.93%	NM_000465.4	missense
CASR	p.(Y583C)	c.1748A>G		chr3:122001069	13.25%	NM_001178065.2	missense
IL7R	p.(L406R)	c.1217T>G		chr5:35876425	17.96%	NM_002185.5	missense
MSH3	p.(A57_A62del)	c.162_179delTGCAGC GGCCGCAGCGGC		chr5:79950707	90.71%	NM_002439.5	nonframeshift Deletion
ARID1B	p.(N492K)	c.1476C>G		chr6:157100290	8.85%	NM_001371656.1	missense
RNASEH2C	p.(F116L)	c.348C>G		chr11:65487713	87.69%	NM_032193.4	missense
SLC01B3	p.(K399Nfs*6)	c.1191delT		chr12:21032423	32.44%	NM_019844.4	frameshift Deletion
SLCO1B3-S LCO1B7	p.(K399Nfs*6)	c.1191delT		chr12:21032423	32.44%	NM_001371097.1	frameshift Deletion

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Report Date: 29 Jul 2025 3 of 21

Variant Details (continued)

DNA Sequence Variants (continued)

0	Ausina Asid Ohanna	Ondina	Variant ID	Lance	Allele	Turnarius	Variant Effect
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect
ASXL1	p.(S1079C)	c.3236C>G		chr20:31023751	7.71%	NM_015338.6	missense

riations		
Locus	Copy Number	CNV Ratio
chr12:4383227	18.9	7.0
chr12:4479456	17.73	6.58
chr8:26149298	1.15	0.7
chr6:29910229	0.39	0.43
chr18:724481	9.34	3.61
chr12:1022494	4.49	1.89
chr12:121416535	5.38	2.2
chr18:60795830	0.94	0.63
	chr12:4383227 chr12:4479456 chr8:26149298 chr6:29910229 chr18:724481 chr12:1022494 chr12:121416535	LocusCopy Numberchr12:438322718.9chr12:447945617.73chr8:261492981.15chr6:299102290.39chr18:7244819.34chr12:10224944.49chr12:1214165355.38

Biomarker Descriptions

KRAS p.(A146T) c.436G>A

KRAS proto-oncogene, GTPase

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁴. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{4,5,6}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{7,8}.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib⁹ (2021) and adagrasib¹⁰ (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma¹¹. The FDA has also granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036¹², for KRAS G12C-mutated non-small cell lung cancer. The SHP2 inhibitor, BBP-398¹³ was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC. The RAF/MEK clamp, avutometinib¹⁴ was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520¹⁵, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The KRAS G12C inhibitor, D3S-001¹⁶, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib¹⁷, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab¹⁸ and panitumumab¹⁹, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²⁰.

Biomarker Descriptions (continued)

CCND2 amplification

cyclin D2

Background: The CCND2 gene encodes the cyclin D2 protein, a member of the highly conserved D-cyclin family that also includes CCND1 and CCND3^{28,29,30}. D-type cyclins are known to regulate cell cycle progression by binding to and activating cyclin dependent kinases (CDKs), specifically CDK4 and CDK6, which leads to the phosphorylation and inactivation of the retinoblastoma (RB1) protein^{28,29}. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition thereby resulting in cell cycle progression, a common event observed in tumorigenesis^{28,29,31}. Aberrations in the D-type cyclins have been observed to promote tumor progression suggesting an oncogenic role for CCND2^{30,32}.

Alterations and prevalence: Somatic mutations in CCND2 are observed in 2-3% of melanoma, diffuse large B-cell lymphoma (DLBCL), and uterine cancer⁴. Additionally, amplification of CCND2 is observed in 6-7% of ovarian and uterine carcinosarcoma, 4-5% of low grade gliomas and testicular cancer, and 2-3% of sarcomas, glioblastoma, squamous lung, colorectal, pancreatic, and head and neck cancers⁴.

Potential relevance: Currently, no therapies are approved for CCND2 aberrations.

EGFR p.(G724S) c.2170G>A

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family²¹. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹¹². EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways¹¹³. Activation of these pathways promotes cell proliferation, differentiation, and survival^{114,115}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{4,7,116,117}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21118. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer¹¹⁸. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20119,120,121,122. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations 123. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{118,124}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{4,7,52,117,124}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{125,126,127}. Alterations in EGFR are rare in pediatric cancers^{4,7}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)^{4,7}. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)4,7.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹²⁸ (2004) and gefitinib¹²⁹ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations¹³⁰. Second-generation TKIs afatinib¹³¹ (2013) and dacomitinib¹³² (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{133,134,135,136}. However, BDTX-189¹³⁷ was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)¹³⁸ and sunvozertinib¹³⁹, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance¹⁴⁰. The primary resistance mutation that emerges following treatment with first-generation TKIs is T790M, accounting for 50-60% of resistant cases¹¹⁸. Third generation TKIs were developed to maintain sensitivity in the presence of T790M¹⁴⁰. Osimertinib¹⁴¹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung

Biomarker Descriptions (continued)

cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases¹⁴⁰. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa¹⁴². T790M and C797S can occur in either cis or trans allelic orientation¹⁴². If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs¹⁴². If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{142,143}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs¹⁴². Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535144 (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations¹⁴⁵. The bispecific antibody, amivantamab¹⁴⁶ (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib¹⁴⁷ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-801148 received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-42149, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301150 (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid¹⁵¹ (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{152,153,154}.

APC c.1312+1G>A

APC, WNT signaling pathway regulator

Background: The APC gene encodes the adenomatous polyposis coli tumor suppressor protein that plays a crucial role in regulating the β -catenin/WNT signaling pathway which is involved in cell migration, adhesion, proliferation, and differentiation¹⁵⁸. APC is an antagonist of WNT signaling as it targets β -catenin for proteasomal degradation^{159,160}. Germline mutations in APC are predominantly inactivating and result in an autosomal dominant predisposition for familial adenomatous polyposis (FAP) which is characterized by numerous polyps in the intestine^{158,161}. Acquiring a somatic mutation in APC is considered to be an early and possibly initiating event in colorectal cancer¹⁶².

Alterations and prevalence: Somatic mutations in APC are observed in up to 65% of colorectal cancer, and in up to 15% of stomach adenocarcinoma and uterine corpus endometrial carcinoma^{4,7,163}. In colorectal cancer, ~60% of somatic APC mutations have been reported to occur in a mutation cluster region (MCR) resulting in C-terminal protein truncation and APC inactivation^{164,165}.

Potential relevance: Currently, no therapies are approved for APC aberrations.

FBXW7 p.(R505C) c.1513C>T

F-box and WD repeat domain containing 7

<u>Background:</u> The FBXW7 gene encodes a member of the F-box protein family that functions as the substrate recognition component of the SCF complex, which is responsible for protein ubiquitination and subsequent degradation by the proteasome⁷³. FBXW7 is a tumor suppressor gene that plays a crucial role in the degradation and turnover of various proto-oncogenes. Aberrations such as mutations or deletions that alter the tumor suppression function can lead to the deregulation of downstream genes, including MYC, MTOR, and NOTCH1, thereby promoting cell proliferation and survival^{73,74,75,76,77,78,79}.

Alterations and prevalence: Mutations in FBXW7 occur at high frequencies in various malignancies, including 40% of uterine carcinoma and 10-15% of stomach, bladder, cervical, and colorectal cancers^{4,7,80,81,82}.

Potential relevance: The FDA has granted fast track designation (2024) to the small molecule PKMYT1 inhibitor, lunresertib⁸³, in combination with camonsertib for the treatment of adult patients with FBXW7 mutated endometrial cancer and platinum resistant ovarian cancer. Missense mutations in FBXW7 are associated with poor prognosis and worse overall survival (OS) in comparison to FBXW7 wild-type metastatic colorectal cancer⁸⁰. In a clinical case report, a patient with FBXW7 R465H-mutated, EGFR/ALK-wildtype lung adenocarcinoma demonstrated tumor shrinkage after treatment with the mTOR inhibitor temsirolimus. In a phase I clinical trial of

Biomarker Descriptions (continued)

sirolimus, one hepatocellular fibrolamellar carcinoma patient with the FBXW7 E192A mutation demonstrated stable disease for over 6 months⁷⁹.

FGF23 amplification

fibroblast growth factor 23

<u>Background</u>: The FGF23 gene encodes the fibroblast growth factor 23 protein, a member of the FGF protein family, which is composed of 22 members^{21,84}. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases^{84,85}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways, thereby influencing cell proliferation, migration, and survival^{86,87,88}. Normally expressed in osteoclasts, FGF23 is known to function as an endocrine FGF and promotes the regulation of vitamin D levels and phosphate homeostasis^{85,89}.

Alterations and prevalence: Amplifications in FGF23 are observed in up to 7% of uterine carcinosarcoma, 6% of ovarian serous cystadenocarcinoma, and 5% of testicular germ cell tumors and brain lower grade glioma^{4,7}. Somatic mutations are observed in up to 4% of skin cutaneous melanoma and 2% of uterine corpus endometrial carcinoma and adrenocortical carcinoma^{4,7}. Expression of FGF23 has been observed in prostate cancer cells and has been shown to promote growth and invasion in vitro⁸⁹.

Potential relevance: Currently, no therapies are approved for FGF23 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁹⁰. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{91,92}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁹³. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁹⁴. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁹⁴. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{95,96,97,98,99}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁹². LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{91,92,96,100}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{91,92,101,102}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{101,102}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹⁰³ (2014) and nivolumab¹⁰⁴ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹⁰³ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹⁰³. Dostarlimab¹⁰⁵ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{97,106}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹⁰⁷ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{97,108,109}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹⁰⁹. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{110,111}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{110,111}.

PPP2R2A deletion

protein phosphatase 2 regulatory subunit Balpha

<u>Background:</u> The PPP2R2A gene encodes the protein phosphatase 2 regulatory subunit B alpha, a member of a large heterotrimeric serine/threonine phosphatase 2A (PP2A) family. Proteins of the PP2A family includes 3 subunits—the structural A subunit (includes PPP2R1A and PPP2R1B), the regulatory B subunit (includes PPP2R2A, PPP2R3, and STRN), and the catalytic C subunit

Biomarker Descriptions (continued)

(PPPP2CA and PPP2CB)^{40,41}. PPA2 proteins are essential tumor suppressor genes that regulate cell division and possess proapoptotic activity through negative regulation of the PI3K/AKT pathway⁴². Specifically, PPP2R2A modulates ATM phosphorylation which is critical in the regulation of the homologous recombination repair (HRR) pathway⁴⁰.

Alterations and prevalence: Copy number loss and downregulation of PPP2R2A is commonly observed in solid tumors including breast and non-small cell lung cancer and define an aggressive subgroup of luminal-like breast cancer^{40,41,43,44}. Biallelic loss of PPP2R2A is observed in 4-8% of breast invasive carcinoma, lung, colorectal, bladder, liver, and prostate cancers, as well as 4% of diffuse large B-cell lymphoma⁴.

Potential relevance: Currently no therapies are approved for PPP2R2A aberrations. However, in 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁵, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Loss of PPP2R2A in pre-clinical and xenograft models have been shown to inhibit homologous recombination DNA directed repair and may predict sensitivity to PARP inhibitors such as veliparib⁴⁰. Olaparib treatment in prostate cancer with PPP2R2A mutations is not recommended due to unfavorable risk benefit⁴⁶.

TCF7L2 p.(W459*) c.1377G>A

transcription factor 7 like 2

Background: TCF7L2 encodes the transcription factor 7 like 2, a key component of the WNT signaling pathway 21,155 . Through its interaction with β-catenin, TCF7L2 functions as a central transcriptional regulator of the WNT pathway by modulating the expression of several genes involved in epithelial to mesenchymal transdifferentiation (EMT) and cancer progression, including MYC 155,156,157 . TCF7L2 is also responsible for the regulation of cell cycle inhibitors, including CDKN2C and CDKN2D, thereby influencing cell cycle progression 155 . Loss of TCF7L2 function is commonly observed in colorectal cancer due to mutations or copy number loss which has been correlated with increased tumor invasion and metastasis, supporting a tumor suppressor role for TCF7L2 155 .

Alterations and prevalence: Somatic mutations of TCF7L2 are observed in 11% colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma, 3% of stomach adenocarcinoma, and 2% of skin cutaneous melanoma and uterine carcinosarcoma^{4,7}. Biallelic deletion of TCF7L2 is observed in 2% diffuse large B-cell lymphoma, brain lower grade glioma, and colorectal adenocarcinoma, and 1% of bladder urothelial carcinoma, mesothelioma, stomach adenocarcinoma, esophageal adenocarcinoma, liver hepatocellular carcinoma, and skin cutaneous melanoma^{4,7}.

<u>Potential relevance:</u> Currently, no therapies are approved for TCF7L2 aberrations.

TP53 p.(C242F) c.725G>T

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair²¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁴⁷. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential⁴⁸. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{49,50}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{4,7,51,52,53,54}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{4,7}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{55,56,57,58}. Alterations in TP53 are also observed in pediatric cancers^{4,7}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{4,7}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{4,7}.

Potential relevance: The small molecule p53 reactivator, PC14586⁵⁹ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt⁶⁰, (2019) and breakthrough designation⁶¹ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{62,63}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁶⁴. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL),

Biomarker Descriptions (continued)

and acute lymphoblastic leukemia (ALL)^{65,66,67,68,69,70}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁷¹. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁷².

HLA-A deletion

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A^{21} . MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells²². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M²³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{24,25,26}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A²⁷.

<u>Alterations and prevalence:</u> Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{4,7}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{4,7}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

YES1 amplification

YES proto-oncogene 1, Src family tyrosine kinase

Background: YES1 encodes the YES proto-oncogene 1 and is part of the SRC family kinases (SFKs) which includes SRC, LCK, LYN, BLK, HCK, FYN, FGR, and YRK^{21,33,34}. SFKs are membrane-associated, non-receptor tyrosine kinases that are involved in several cellular functions such as growth, survival, and differentiation^{33,34,35}. YES1 alterations have been identified in several cancer types and are associated with tumor progression^{33,36,37,38,39}.

Alterations and prevalence: Somatic mutations in YES1 are observed in 5% of uterine corpus endometrial carcinoma and 2% diffuse large B-cell lymphoma, esophageal adenocarcinoma, skin cutaneous melanoma, and uterine carcinosarcoma^{4,7}. Amplification of YES1 is observed in 5% of esophageal adenocarcinoma, 4% of bladder urothelial carcinoma, uterine carcinosarcoma, 3% of head and neck squamous cell carcinoma, lung squamous cell carcinoma, 2% of sarcoma, pancreatic adenocarcinoma, uterine corpus endometrial carcinoma, cervical squamous cell carcinoma, skin cutaneous melanoma, stomach adenocarcinoma, and kidney chromophobe^{4,7}. Biallelic loss of YES1 is observed in 2% diffuse large B-cell lymphoma and testicular germ cell tumors^{4,7}.

Potential relevance: Currently, no therapies are approved for YES1 aberrations. YES1 amplification and overexpression is associated with resistance to EGFR, HER2, and ALK inhibitors^{36,37,39}.

Report Date: 29 Jul 2025 9 of 21

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

FDA information is current as of 2025-05-14. For the most up-to-date information, search www.fda.gov.

KRAS p.(A146T) c.436G>A

cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS A146 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

• in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

Report Date: 29 Jul 2025 10 of 21

KRAS p.(A146T) c.436G>A (continued)

panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS A146 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

■ In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

Current NCCN Information

Contraindicated

Not recommended

◆ Breakthrough

A Fast Track

NCCN information is current as of 2025-05-01. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(A146T) c.436G>A

cetuximab

Cancer type: Colon Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2025]

Report Date: 29 Jul 2025 11 of 21

KRAS p.(A146T) c.436G>A (continued)

panitumumab

Cancer type: Colon Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2025]

cetuximab

Cancer type: Rectal Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

panitumumab

Cancer type: Rectal Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

Current EMA Information

Ocontraindicated Not recommended Resistance Preakthrough A Fast Track

EMA information is current as of 2025-05-14. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(A146T) c.436G>A

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS A146 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-05-07 Variant class: KRAS A146 mutation


Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Report Date: 29 Jul 2025 12 of 21

Current ESMO Information

Contraindicated

Fast Track

ESMO information is current as of 2025-05-01. For the most up-to-date information, search www.esmo.org.

KRAS p.(A146T) c.436G>A

cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS A146 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/ j.annonc.2022.10.003 (published)]

panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS A146 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/ j.annonc.2022.10.003 (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYDD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Report Date: 29 Jul 2025 14 of 21

Relevant Therapy Summary

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
bevacizumab + CAPOX	×	×	×	•	×
bevacizumab + FOLFIRI	×	×	×	•	×
bevacizumab + FOLFOX	×	×	×	•	×
bevacizumab + FOLFOXIRI	×	×	×	•	×
bevacizumab, chemotherapy	×	×	×	×	(III)
fruquintinib, chemotherapy	×	×	×	×	(II)
regorafenib	×	×	×	×	(II)
tunlametinib, vemurafenib	×	×	×	×	(II)
afatinib, selumetinib	×	×	×	×	(/)
ERAS-0015	×	×	×	×	(1/11)
IMM-1-104	×	×	×	×	(/)
HMPL-415	×	×	×	×	(I)
Nest-1	×	×	×	×	(I)
ZEN-3694, binimetinib	×	×	×	×	(I)

CCND2 amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
abemaciclib	×	×	×	×	(II)
palbociclib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	40.71%
BRCA1	LOH, 17q21.31(41197602-41276231)x2
ATM	LOH, 11q22.3(108098341-108236285)x2
BRIP1	LOH, 17q23.2(59760627-59938976)x2
CHEK1	LOH, 11q24.2(125496639-125525271)x2
RAD51B	LOH, 14q24.1(68290164-69061406)x3
RAD51C	LOH, 17q22(56769933-56811619)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51D, and RAD54L.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.06(006)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-05-14. NCCN information was sourced from www.nccn.org and is current as of 2025-05-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-05-14. ESMO information was sourced from www.esmo.org and is current as of 2025-05-01. Clinical Trials information is current as of 2025-05-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/2146650rig1s009correctedlbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
- 11. NCCN Guidelines® NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
- 12. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 13. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 14. https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination
- 15. https://www.businesswire.com/news/home/20250109170439/en/
- 16. https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation
- 17. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation-_July_2021.pdf
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
- 20. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 21. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 22. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 23. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 24. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 25. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 26. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 27. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 28. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 29. Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene. 2013 Aug 15;32(33):3840-5. PMID: 22964630
- 30. Ding et al. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. Cancer Med. 2019 Jun;8(6):2717-2729. PMID: 30950241
- 31. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001 Feb 16;490(3):117-22. PMID: 11223026

- 32. Shan et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett. 2017 Oct;14(4):4517-4526. PMID: 28943959
- 33. Hamanaka et al. YES1 Is a Targetable Oncogene in Cancers Harboring YES1 Gene Amplification. Cancer Res. 2019 Nov 15;79(22):5734-5745. PMID: 31391186
- 34. Ortiz et al. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal. 2021 Jun 30;19(1):67. PMID: 34193161
- 35. Amata et al. Phosphorylation of unique domains of Src family kinases. Front Genet. 2014;5:181. PMID: 25071818
- 36. Takeda et al. Yes1 signaling mediates the resistance to Trastuzumab/Lap atinib in breast cancer. PLoS One. 2017;12(2):e0171356. PMID: 28158234
- 37. Ichihara et al. SFK/FAK Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-Resistant Models of EGFR-Mutant Lung Cancer. Cancer Res. 2017 Jun 1;77(11):2990-3000. PMID: 28416483
- 38. Fang et al. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer. 2017 Aug 17;16(1):139. PMID: 28818100
- 39. Minari et al. YES1 and MYC Amplifications as Synergistic Resistance Mechanisms to Different Generation ALK Tyrosine Kinase Inhibitors in Advanced NSCLC: Brief Report of Clinical and Preclinical Proofs. JTO Clin Res Rep. 2022 Feb;3(2):100278. PMID: 35199053
- 40. Kalev et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012 Dec 15;72(24):6414-24. PMID: 23087057
- 41. Álvarez-Fernández et al. Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death Differ. 2018 May;25(5):828-840. PMID: 29229993
- 42. Perrotti et al. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013 May;14(6):e229-38. PMID: 23639323
- 43. Beca et al. Altered PPP2R2A and Cyclin D1 Expression Defines a Subgroup of Aggressive Luminal-Like Breast Cancer. BMC Cancer. 2015 Apr 15;15:285. doi: 10.1186/s12885-015-1266-1. PMID: 25879784
- 44. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012 Apr 18;486(7403):346-52. PMID: 22522925
- 45. https://www.senhwabio.com//en/news/20220125
- 46. NCCN Guidelines® NCCN-Prostate Cancer [Version 2.2025]
- 47. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 48. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 49. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 50. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 51. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 52. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 53. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 54. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 55. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 56. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 57. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 58. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566

- 59. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 60. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 61. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 62. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 63. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 64. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 65. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 66. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 67. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 68. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 69. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2025]
- 70. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 71. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 72. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 73. Yeh et al. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 2018 Aug 7;17(1):115. doi: 10.1186/s12943-018-0857-2. PMID: 30086763
- 74. Wang et al. Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett. 2012 May 21;586(10):1409-18. PMID: 22673505
- 75. Uhlén et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419. PMID: 25613900
- 76. Yada et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004 May 19;23(10):2116-25. PMID: 15103331
- 77. Hori et al. Notch signaling at a glance. J. Cell. Sci. 2013 May 15;126(Pt 10):2135-40. PMID: 23729744
- 78. Aydin et al. FBXW7 mutations in melanoma and a new therapeutic paradigm. J. Natl. Cancer Inst. 2014 Jun;106(6):dju107. PMID: 24838835
- 79. Jardim et al. FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors. PLoS ONE. 2014;9(2):e89388. PMID: 24586741
- 80. Korphaisarn et al. FBXW7 missense mutation: a novel negative prognostic factor in metastatic colorectal adenocarcinoma. Oncotarget. 2017 Jun 13;8(24):39268-39279. PMID: 28424412
- 81. Donna et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18;487(7407):330-7. PMID: 22810696
- 82. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
- $83. \ \ https://ir.reparerx.com/news-releases/news-release-details/repare-therapeutics-announces-fast-track-designation-granted-fda$
- 84. Ornitz et al. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol . May-Jun 2015;4(3):215-66. doi: 10.1002/wdev.176. PMID: 25772309
- 85. Beenken et al. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009 Mar;8(3):235-53. PMID: 19247306
- 86. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 87. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 88. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515

- 89. Feng et al. FGF23 promotes prostate cancer progression. Oncotarget. 2015 Jul 10;6(19):17291-301. PMID: 26019137
- 90. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 91. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 92. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 93. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 94. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 95. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 96. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 97. NCCN Guidelines® NCCN-Colon Cancer [Version 3.2025]
- 98. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 99. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 100. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 101. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 102. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 103. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 104. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125554s129lbl.pdf
- 105. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 106. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 107. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s133lbl.pdf
- 108. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 109. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 110. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 111. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 112. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 113. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 114. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 115. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 116. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 117. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 118. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 119. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856

20 of 21

Report Date: 29 Jul 2025

- 120. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 121. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 122. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 123. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 124. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 125. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 126. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 127. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 128. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 129. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 130. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 131. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 132. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 133. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]
- 134. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 135. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 136. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 137. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 138. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 139. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 140. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- $141.\ https://www.access data.fda.gov/drugs at fda_docs/label/2024/208065 s 033 lbl.pdf$
- 142. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 143. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 144. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and
- 145. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 146. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s007lbl.pdf
- 147. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbledt.pdf
- 148. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 149. https://iis.aastocks.com/20231227/11015917-0.PDF
- 150. http://iis.aastocks.com/20230612/10770455-0.PDF

Report Date: 29 Jul 2025 21 of 21

- 151. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 152. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 153. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 154. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 155. Wenzel et al. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene. 2020 May;39(19):3893-3909. PMID: 32203164
- 156. Hong et al. MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem. 2009 Jul 17;284(29):19613-22. PMID: 19443654
- 157. He et al. Identification of c-MYC as a target of the APC pathway. Science. 1998 Sep 4;281(5382):1509-12. PMID: 9727977
- 158. Wang et al. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell. Physiol. Biochem. 2018;51(6):2647-2693. PMID: 30562755
- 159. Stamos et al. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a007898. PMID: 23169527
- 160. Minde et al. Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?. Mol Cancer. 2011 Aug 22;10:101. doi: 10.1186/1476-4598-10-101. PMID: 21859464
- 161. Aoki et al. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J. Cell. Sci. 2007 Oct 1;120(Pt 19):3327-35. PMID: 17881494
- 162. Miyoshi et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1992 Jul;1(4):229-33. PMID: 1338904
- 163. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 164. Rowan et al. APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". Proc. Natl. Acad. Sci. U.S.A. 2000 Mar 28;97(7):3352-7. PMID: 10737795
- 165. Laurent-Puig et al. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1998 Jan 1;26(1):269-70. PMID: 9399850