

Tel. 1661-5117 www.smlab.co.kr

Report Date: 11 Jul 2025 1 of 14

Patient Name: 김영석 Gender: M Sample ID: N25-86 Primary Tumor Site: colon Collection Date: 2025.06.25

Sample Cancer Type: Colon Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Relevant Therapy Summary	9

Report Highlights 1 Relevant Biomarkers 0 Therapies Available 2 Clinical Trials

Relevant Colon Cancer Findings

Gene	Finding		Gene	Finding
BRAF	None detected		NTRK2	None detected
ERBB2	None detected		NTRK3	None detected
KRAS	None detected		POLD1	None detected
NRAS	None detected		POLE	None detected
NTRK1	None detected		RET	None detected
Genomic Alto	eration	Finding		
Microsatellite Status		Microsatellite stable		
Tumor Mutational Burden		7.57 Mut/Mb measured		

HRD Status: HR Proficient (HRD-)

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	ARID1A deletion	None*	None*	2
	AT-rich interaction domain 1A Locus: chr1:27022875			

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

APC p.(R1450*) c.4348C>T, ERBB3 p.(V104L) c.310G>T, Microsatellite stable, PIK3R1 deletion, RAD51B deletion, TCF7L2 p. (G436*) c.1306G>T, ERRFI1 deletion, ENO1 deletion, PGD deletion, TERT c.-124C>A, ERAP1 deletion, HLA-B deletion, NQO1 p.(P187S) c.559C>T, DSC1 deletion, AMER1 p.(R353*) c.1057C>T, Tumor Mutational Burden

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

2 of 14

Report Date: 11 Jul 2025

Variant Details

DNA Sequence	Variants

					Allele		
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect
APC	p.(R1450*)	c.4348C>T	COSM13127	chr5:112175639	44.83%	NM_000038.6	nonsense
ERBB3	p.(V104L)	c.310G>T	COSM191840	chr12:56478854	33.35%	NM_001982.4	missense
TCF7L2	p.(G436*)	c.1306G>T		chr10:114917816	31.06%	NM_001146274.2	nonsense
TERT	p.(?)	c124C>A	COSM1716563	chr5:1295228	52.85%	NM_198253.3	unknown
NQ01	p.(P187S)	c.559C>T		chr16:69745145	50.05%	NM_000903.3	missense
AMER1	p.(R353*)	c.1057C>T		chrX:63412110	74.51%	NM_152424.4	nonsense
MAML3	p.(Q488_Q494delinsHD S)	c.1455_1506delACAGC AACAGCAACAGCAGC AGCAGCAGCAGCAGC AGCAGCAGCAGCAGC AGInsGCAGCAACACG ACAGCCAGCAGCAGC ACAGCCAGCAGCAACAACACA		chr4:140811084	34.72%	NM_018717.5	nonframeshift Block Substitution
MAML3	p.(Q491Pfs*32)	c.1455_1506delACAGC AACAGCAACAGCAGC AGCAGCAGCAGCAGC AGCAGCAGCAGCAGC AGInsGCAGCAACAGC AACAGCCAGCAGCAG CAGCAGCAGCAGCAA		chr4:140811084	65.28%	NM_018717.5	frameshift Block Substitution
FAT1	p.(I2531V)	c.7591A>G		chr4:187540149	52.28%	NM_005245.4	missense
NOTCH1	p.(A12T)	c.34G>A		chr9:139440205	22.64%	NM_017617.5	missense
AXIN2	p.(D440G)	c.1319A>G		chr17:63533835	17.70%	NM_004655.4	missense
NWD1	p.(D83N)	c.247G>A		chr19:16855280	50.15%	NM_001007525.5	missense
ZNF682	p.(R473Sfs*11)	c.1415_1416delAG		chr19:20116894	47.16%	NM_033196.3	frameshift Deletion
ARHGAP35	p.(Q483K)	c.1447C>A	•	chr19:47423379	2.82%	NM_004491.5	missense

Copy	Mumbar	Variationa	
CODY	nullibel	Variations	

Copy Humbe	copy Number Variations				
Gene	Locus	Copy Number	CNV Ratio		
ARID1A	chr1:27022875	1	0.7		
PIK3R1	chr5:67522468	0.98	0.7		
RAD51B	chr14:68290164	1	0.78		
ERRFI1	chr1:8073246	0.98	0.7		
ENO1	chr1:8921399	0.98	0.7		
PGD	chr1:10459132	0.88	0.67		
ERAP1	chr5:96112128	0.9	0.67		
HLA-B	chr6:31322252	0.63	0.59		
DSC1	chr18:28710424	1	0.7		
SETBP1	chr18:42281265	0.8	0.64		

Variant Details (continued)

Copy Number Variations (continued) Gene Locus Copy Number CNV Ratio BCL2 chr18:60795830 0.95 0.69

Biomarker Descriptions

ARID1A deletion

AT-rich interaction domain 1A

Background: The ARID1A gene encodes the AT-rich interaction domain 1A tumor suppressor protein¹⁸. ARID1A, also known as BAF250A, belongs to the ARID1 subfamily that also includes AR1D1B^{18,30}. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin-remodeling complex^{30,31}. The BAF complex is a multisubunit protein that consists of SMARCB1/IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B³¹. The BAF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression^{31,32}. ARID1A binds to transcription factors and coactivator/corepressor complexes to alter transcription³⁰. Recurrent inactivating mutations in BAF complex subunits, including ARID1A, lead to transcriptional dysfunction thereby, altering its tumor suppressor function³⁰.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors³². The majority of ARID1A inactivating mutations are nonsense or frameshift mutations³⁰. Somatic mutations in ARID1A have been identified in 50% of ovarian clear cell carcinoma, 30% of endometrioid carcinoma, and 24-43% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma^{8,9,31}. In microsatellite stable (MSS) colorectal cancer, mutations in ARID1A have been observed to correlate with increased tumor mutational burden (TMB) and expression of genes involved in the immune response³³.

Potential relevance: Currently, no therapies are approved for ARID1A aberrations. However, the FDA has granted fast track designation (2022) to HSF1 pathway inhibitor, NXP-800³⁴, for the treatment of platinum resistant ARID1A-mutated ovarian carcinoma. Tulmimetostat³⁵, dual inhibitor of EZH2 and EZH1, was also granted a fast track designation (2023) for the treatment of patients with advanced, recurrent or metastatic endometrial cancer harboring ARID1A mutations and who have progressed on at least one prior line of treatment.

APC p.(R1450*) c.4348C>T

APC, WNT signaling pathway regulator

Background: The APC gene encodes the adenomatous polyposis coli tumor suppressor protein that plays a crucial role in regulating the β -catenin/WNT signaling pathway which is involved in cell migration, adhesion, proliferation, and differentiation¹⁰⁴. APC is an antagonist of WNT signaling as it targets β -catenin for proteasomal degradation^{105,106}. Germline mutations in APC are predominantly inactivating and result in an autosomal dominant predisposition for familial adenomatous polyposis (FAP) which is characterized by numerous polyps in the intestine^{104,107}. Acquiring a somatic mutation in APC is considered to be an early and possibly initiating event in colorectal cancer¹⁰⁸.

Alterations and prevalence: Somatic mutations in APC are observed in up to 65% of colorectal cancer, and in up to 15% of stomach adenocarcinoma and uterine corpus endometrial carcinoma^{6,8,9}. In colorectal cancer, ~60% of somatic APC mutations have been reported to occur in a mutation cluster region (MCR) resulting in C-terminal protein truncation and APC inactivation^{109,110}.

Potential relevance: Currently, no therapies are approved for APC aberrations.

ERBB3 p.(V104L) c.310G>T

erb-b2 receptor tyrosine kinase 3

Background: The ERBB3 gene encodes the erb-b2 receptor tyrosine kinase 3, a member of the human epidermal growth factor receptor (HER) family. Along with ERBB3/HER3, EGFR/ERBB1/HER1, ERBB2/HER2, and ERBB4/HER4 make up the HER protein family¹. ERBB3/HER3 binds to extracellular factors, such as neuregulins, but has an impaired kinase domain². Upon ligand binding, ERBB3 forms hetero-dimers with other ERBB/HER family members, including ERBB2/HER2 resulting in activation of tyrosine kinase activity primarily through its dimerization partner.

Biomarker Descriptions (continued)

Alterations and prevalence: ERBB3 gene amplification leading to an increase in expression occurs at low frequency (1-5%) in several cancer types including bladder, esophagus, lung adenocarcinoma, ovarian, pancreas, sarcoma, stomach, and uterine cancers^{3,4,5,6,7,8,9}. ERBB3 is also the target of relatively frequent (5-10%) and recurrent somatic mutations in diverse cancer types including bladder, cervical, colorectal, and stomach cancers^{3,6,8,9,10}. Recurrent ERBB3 mutations such as V104L/M, occur primarily in the extracellular domain.

Potential relevance: Currently, no therapies are approved for ERBB3 aberrations. Overexpression and activation of ERBB3/HER3 is one mechanism of acquired resistance to therapies targeting EGFR and ERBB2/HER2^{11,12}. Preclinical and translational research studies have characterized the oncogenic potential of recurrent ERBB3 mutations and their sensitivity to anti-ERBB antibodies and small molecule inhibitors^{13,14,15,16}. A phase I study exhibited progression-free survival (PFS) of 2.5 months and overall survival (OS) of 9 months in 25 patients with ERBB3 mutations treated by anti-ERBB antibodies or molecular-targeted agents¹⁷.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁷⁹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{80,81}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁸². Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁸³. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁸³. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{84,85,86,87,88}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁸¹. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{80,81,85,89}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{80,81,90,91}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{90,91}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁹² (2014) and nivolumab⁹³ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁹² is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁹². Dostarlimab⁹⁴ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{96,95}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁹⁶ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{86,97,98}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁹⁸. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{99,100}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{99,100}.

PIK3R1 deletion

phosphoinositide-3-kinase regulatory subunit 1

Background: The PIK3R1 gene encodes the phosphoinositide-3-kinase regulatory subunit 1 of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹⁸. PI3K is a heterodimer that contains a p85 regulatory subunit and a p110 catalytic subunit⁷³. Specifically, PIK3R1 encodes the p85α protein, one of five p85 isoforms⁷³. p85α is responsible for the binding, stabilization, and inhibition of the p110 catalytic subunit, thereby regulating PI3K activity⁷³. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) into phosphatidylinositol (3,4,5)-trisphosphate (PIP3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{74,75}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{74,75,76,77}. p85 is also capable of binding PTEN thereby preventing ubiquitination and increasing PTEN stability⁷⁸. Loss of function mutations in PIK3R1 results in the inability of p85 to bind p110 or PTEN resulting in aberrant activation of the PI3K/AKT/MTOR pathway, a common driver event in several cancer types which supports a tumor suppressor role for PIK3R1⁷³.

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in PIK3R1 are predominantly truncating or missense and are observed in about 31% of uterine cancer, 10% of uterine carcinosarcoma and glioblastoma, 6% of colorectal cancer, and 3-4% of melanoma, low grade glioma (LGG), stomach, and cervical cancers⁸. Additionally, biallelic loss of PIK3R1 is observed in 3-4% of ovarian and prostate cancers⁸.

Potential relevance: Currently, no therapies are approved for PIK3R1 aberrations.

RAD51B deletion

RAD51 paralog B

Background: The RAD51B gene encodes the RAD51 paralog B protein, a member of the RAD51 recombinase family that also includes RAD51, RAD51C (RAD51L2), RAD51D (RAD51L3), XRCC2, and XRCC3 paralogs. The RAD51 family of proteins are involved in homologous recombination repair (HRR) and DNA repair of double-strand breaks (DSB)⁵⁹. RAD51B associates with other RAD51 paralogs to form RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex⁶⁰. The BCDX2 complex binds single- and double-stranded DNA to hydrolyze ATP⁶¹. RAD51B is a tumor suppressor gene. Loss of function mutations in RAD51B are implicated in the BRCAness phenotype, which is characterized by a defect in HRR mimicking BRCA1 or BRCA2 loss^{62,63}. Biallelic expression of RAD51B is required for chromosomal integrity and haploinsufficiency leads to aberrant HRR resulting in centrosome fragmentation, aneuploidy, and mild hypersensitivity to DNA-damaging agents⁶⁴. Genetic variation within the RAD51B locus on 14q24.1 is significantly associated with familial breast cancer risk⁶⁵.

Alterations and prevalence: Somatic mutations in RAD51B are observed in up to 3% of uterine cancer^{8,9}. Loss of function mutations in RAD51B are rare, but variation within the RAD51B locus is significantly associated with familial breast cancer risk⁶⁵.

Potential relevance: The PARP inhibitor, olaparib⁶⁶ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes RAD51B. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁶⁷, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

TCF7L2 p.(G436*) c.1306G>T

transcription factor 7 like 2

Background: TCF7L2 encodes the transcription factor 7 like 2, a key component of the WNT signaling pathway^{18,101}. Through its interaction with β-catenin, TCF7L2 functions as a central transcriptional regulator of the WNT pathway by modulating the expression of several genes involved in epithelial to mesenchymal transdifferentiation (EMT) and cancer progression, including MYC^{101,102,103}. TCF7L2 is also responsible for the regulation of cell cycle inhibitors, including CDKN2C and CDKN2D, thereby influencing cell cycle progression¹⁰¹. Loss of TCF7L2 function is commonly observed in colorectal cancer due to mutations or copy number loss which has been correlated with increased tumor invasion and metastasis, supporting a tumor suppressor role for TCF7L2¹⁰¹.

Alterations and prevalence: Somatic mutations of TCF7L2 are observed in 11% colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma, 3% of stomach adenocarcinoma, and 2% of skin cutaneous melanoma and uterine carcinosarcoma^{8,9}. Biallelic deletion of TCF7L2 is observed in 2% diffuse large B-cell lymphoma, brain lower grade glioma, and colorectal adenocarcinoma, and 1% of bladder urothelial carcinoma, mesothelioma, stomach adenocarcinoma, esophageal adenocarcinoma, liver hepatocellular carcinoma, and skin cutaneous melanoma^{8,9}.

Potential relevance: Currently, no therapies are approved for TCF7L2 aberrations.

ERRFI1 deletion

ERBB receptor feedback inhibitor 1

Background: ERRFI1 encodes ERBB receptor feedback inhibitor 1, a scaffold adaptor protein^{18,50}. As an early response gene, expression of ERRFI1 is induced by several stimuli such as stress, hormones, and growth factors such as EGF^{50,51}. ERRFI1 directly binds to EGFR resulting in inhibition of EGFR catalytic activity as well as EGFR lysosomal degradation^{50,52}. As a tumor suppressor, ERRFI1 induces apoptosis and inhibits proliferation and invasion^{50,53,54,55,56}. ERRFI1 downregulation has been identified in several cancer types and loss of ERRFI1 promotes proliferation and migration^{50,53,54,57,58}.

Alterations and prevalence: Somatic mutations in ERRFI1 are observed in 4% of uterine corpus endometrial carcinoma and 2% of skin cutaneous melanoma, uterine carcinosarcoma, and colorectal adenocarcinoma^{8,9}. Biallelic loss of ERRFI1 is observed in 6% of cholangiocarcinoma, 4% of adrenocortical carcinoma and diffuse large B-cell lymphoma, and 2% of liver hepatocellular carcinoma, pheochromocytoma and paraganglioma, and glioblastoma multiforme^{8,9}.

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for ERRFI1 aberrations.

ENO1 deletion

enolase 1

Background: The ENO1 gene encodes enolase 1 and its alternatively spliced protein isoform, c-MYC promoter binding protein 1 $\overline{(\text{MBP1})^{18,111}}$. ENO1 is a glycolytic enzyme that catalyzes the dehydration of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis¹¹¹. In addition to its role in glycolysis, ENO1 acts as a cell surface plasminogen receptor and is involved in cytoskeleton reorganization, stabilization of the mitochondrial membrane, and modulation of several oncogenic pathways, including PI3K/AKT, AMPK/mTOR and Wnt/ β -catenin^{111,112,113}. ENO1 has been found to be overexpressed in various cancers contributing to upregulation of glycolysis, cancer cell survival and proliferation, chemoresistance, extracellular matrix degradation, migration, invasion, and metastases^{111,112,114}. In contrast, MBP1 is known to repress c-MYC transcription under cellular stress and low glucose conditions, leading to suppression of cellular proliferation, migration, and invasion^{111,112}.

Alterations and prevalence: Somatic mutations in ENO1 are observed in 3% uterine corpus endometrial carcinoma and kidney chromophobe, and 2% of diffuse large B-cell lymphoma, skin cutaneous melanoma, and cervical squamous cell carcinoma^{8,9}. Amplification of ENO1 is observed in 2% of adrenocortical carcinoma, pancreatic adenocarcinoma, esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, and sarcoma^{8,9}. Biallelic loss of ENO1 is observed in 6% of cholangiocarcinoma, 4% of adrenocortical carcinoma, and 2% of pheochromocytoma and paraganglioma, liver hepatocellular carcinoma, and diffuse large B-cell lymphoma^{8,9}.

Potential relevance: Currently, no therapies are approved for ENO1 aberrations.

PGD deletion

phosphogluconate dehydrogenase

Background: The PGD gene encodes phosphogluconate dehydrogenase, an essential enzyme of the pentose phosphate pathway (PPP) that catalyzes oxidative decarboxylation of 6-phosphogluconate to ribulose-5-phosphate and reduction of NADP+ to NADPH^{18,36}. PPP mediated generation of pentose phosphates and NADPH is essential for nucleic acid synthesis and fatty acid synthesis, respectively, making it a crucial metabolic pathway for cancer cell survival and proliferation^{37,38}. Although biallelic deletion appears to be more common than amplification across cancer types, post-translational modifications and overexpression of PGD in cancer have also been observed to result in elevated PPP activity, which is associated with cancer cell proliferation^{36,39}.

Alterations and prevalence: Somatic mutations in PGD have been observed in 4% of skin cutaneous melanoma, 3% of uterine corpus endometrial carcinoma, 2% of diffuse large B-cell lymphoma, stomach adenocarcinoma, and bladder urothelial carcinoma^{8,9}. Biallelic loss of PGD has been observed in 4% of adrenocortical carcinoma, 3% of cholangiocarcinoma, and 2% of pheochromocytoma and paraganglioma and diffuse large B-cell lymphoma^{8,9}. Amplification of PGD has been observed in 2% of esophageal adenocarcinoma, ovarian serous cystadenocarcinoma, stomach adenocarcinoma, and sarcoma^{8,9}.

Potential relevance: Currently, no therapies are approved for PGD aberrations.

TERT c.-124C>A

telomerase reverse transcriptase

Background: The TERT gene encodes telomerase reverse transcriptase, a component of the telomerase core enzyme along with the internal telomerase RNA template (TERC)⁶⁸. TERT is repressed in most differentiated cells, resulting in telomerase silencing⁶⁸. In cancer, telomerase reactivation is known to contribute to cellular immortalization^{68,69}. Increased TERT expression results in telomerase activation, allowing for unlimited cancer cell proliferation through telomere stabilization⁶⁸. In addition to its role in telomere maintenance, TERT has RNA-dependent RNA polymerase activity, which, when deregulated, can promote oncogenesis by facilitating mitotic progression and cancer cell stemness⁶⁸.

Alterations and prevalence: Somatic mutations are observed in 4% of skin cutaneous melanoma and uterine corpus endometrial carcinoma, 3% of kidney renal papillary cell carcinoma, and 2% of pancreatic adenocarcinoma, stomach adenocarcinoma, and sarcoma^{8,9}. Additionally, TERT promoter mutations causing upregulation are observed in many cancer types, especially non-aural cutaneous melanoma (80% of cases), and glioblastoma (70% of cases)⁶⁹. Specifically, TERT promoter mutations at C228T and C250T are recurrent and result in de novo binding sites for ETS transcription factors, leading to enhanced TERT transcription⁶⁸. Amplification of TERT is observed in 15% of lung squamous cell carcinoma, 14% of esophageal adenocarcinoma, 13% of adrenocortical carcinoma and lung adenocarcinoma, and 10% of bladder urothelial carcinoma, 9% of ovarian serous cystadenocarcinoma, 6% of cervical squamous cell carcinoma, 5% of liver hepatocellular carcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, head and neck squamous cell carcinoma, 4% of uterine carcinosarcoma, 3% of uterine corpus endometrial carcinoma, breast invasive

Biomarker Descriptions (continued)

carcinoma, and 2% of diffuse large B-cell lymphoma^{8,9}. TERT is overexpressed in over 85% of tumors and is considered a universal tumor associated antigen⁷⁰. Alterations in TERT are rare in pediatric cancers^{8,9}. Somatic mutations are observed in less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), glioma (2 in 297 cases), bone cancer (1 in 327 cases), and Wilms tumor (1 in 710 cases)^{8,9}. TERT amplification is observed in 1-2% of peripheral nervous system cancers (2 in 91 cases), leukemia (2 in 250 cases), and B-lymphoblastic leukemia/lymphoma (5 in 731 cases)^{8,9}.

Potential relevance: Currently, no therapies are approved for TERT aberrations. TERT promoter mutations are diagnostic of oligodendroglioma IDH-mutant with 1p/19q co-deletion, while the absence of promoter mutations combined with an IDH mutation is characteristic of astrocytoma^{71,72}. Due to its immunogenicity and near-universal expression on cancer cells, TERT has been a focus of immunotherapy research, including peptide, dendritic, and DNA vaccines as well as T-cell therapy⁷⁰.

ERAP1 deletion

endoplasmic reticulum aminopeptidase 1

Background: The ERAP1 gene encodes the endoplasmic reticulum aminopeptidase 1 protein¹⁸. ERAP1, and structurally related ERAP2, are zinc metallopeptidases which play a role in antigen processing within the immune response pathway^{24,25}. Upon uptake by an immune cell, antigens are first processed by the proteasome and then transported into the endoplasmic reticulum where ERAP1 and ERAP2 excise peptide N-terminal extensions to generate mature antigen peptides for presentation on MHC class I molecules^{24,26}. ERAP1 has also been shown to be involved in the shedding of cytokine receptors (including TNFR1, IL6-Ra, and type II IL-II receptor) and is observed to be secreted by macrophages, which is believed to enhance phagocytosis^{24,27,28}. Mutations in ERAP1 leads to a predisposition for HPV-induced cervical carcinoma^{24,29}.

Alterations and prevalence: Somatic mutations in ERAP1 are observed in 7% of uterine corpus endometrial carcinoma, 3% of skin cutaneous melanoma and stomach adenocarcinoma, and 2% of diffuse large B-cell lymphoma (DLBCL) and colorectal adenocarcinoma^{8,9}. Biallelic deletions are observed in 2% of ovarian serous cystadenocarcinoma and prostate adenocarcinoma, and 1% of colorectal adenocarcinoma, mesothelioma, stomach adenocarcinoma, and esophageal adenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for ERAP1 aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B18. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁴⁴. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M⁴⁵. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{46,47,48}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁴⁹.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

DSC1 deletion

desmocollin 1

Background: The DSC1 gene encodes desmocollin 1, a member of the desmocollin (DSC) subfamily of the cadherin superfamily, which also includes DSC2 and DSC3¹⁸. DSCs along with desmogleins (DSGs) function as membrane-spanning constituents of the desmosomes¹⁹. Desmosomes are protein complexes in the intracellular junctions that confer stability and strengthen cell-cell adhesion²⁰. Deregulation of DSC expression is suggested to impact β-catenin signaling and has been observed in a number of cancer types, supporting a potential role for DSC1 in tumorigenesis^{19,21,22,23}.

Alterations and prevalence: Somatic mutations in DSC1 are observed in 17% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 4% of uterine carcinosarcoma, and 3% of lung adenocarcinoma, lung squamous cell carcinoma, and colorectal adenocarcinoma^{8,9}. Biallelic deletion of DSC1 is observed in 2% of pancreatic adenocarcinoma and esophageal adenocarcinoma^{8,9}.

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for DSC1 aberrations.

AMER1 p.(R353*) c.1057C>T

APC membrane recruitment protein 1

<u>Background</u>: The AMER1 gene encodes APC membrane recruitment protein 1¹⁸. AMER1 works in complex with CTNNB1, APC, AXIN1, and AXIN2 to regulate the WNT pathway^{18,40}. The WNT signaling pathway is responsible for regulating several key components during embryogenesis and has been observed to be involved in tumorigenesis^{41,42}. Consequently, the WNT signaling pathway is a target for therapeutic response in various cancer types⁴². The AMER1 gene is located on the X chromosome and is commonly inactivated in Wilms tumor, a pediatric kidney cancer⁴³. AMER1 has also been observed to influence cell proliferation, tumorigenesis, migration, invasion, and cell cycle arrest⁴⁰.

Alterations and prevalence: Somatic mutations of AMER1 are observed in 13% of colorectal adenocarcinoma, 10% of uterine corpus endometrial carcinoma, 8% of skin cutaneous melanoma, 7% of lung adenocarcinoma, 4% of stomach adenocarcinoma, and uterine carcinosarcoma, 3% of lung squamous cell carcinoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, and 2% of diffuse large B-cell lymphoma, liver hepatocellular carcinoma, head and neck squamous cell carcinoma, and breast invasive carcinoma^{8,9}. Biallelic deletion of AMER1 is observed in 2% of esophageal adenocarcinoma, diffuse large b-cell lymphoma, uterine carcinosarcoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma, and 1% of stomach adenocarcinoma, sarcoma, liver hepatocellular carcinoma, colorectal adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, and ovarian serous cystadenocarcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for AMER1 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

ARID1A deletion

In this cancer type	In other cancer type	In this cancer type and other cancer types	No evidence

FDA NCCN ESMO Clinical Trials* Relevant Therapy **EMA** pamiparib, tislelizumab × × × × (II) tucidinostat, catequentinib, PD-1 Inhibitor, anti-PD-L1 (II) X X X ×

HRR Details

antibody

Gene/Genomic Alteration	Finding
LOH percentage	11.3%
RAD51B	CNV, CN:1.0
RAD51B	LOH, 14q24.1(68290164-69061406)x1

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6.
 PMID: 2992089
- Knighton et al. Structural features that specify tyrosine kinase activity deduced from homology modeling of the epidermal growth factor receptor. Proc. Natl. Acad. Sci. U.S.A. 1993 Jun 1;90(11):5001-5. PMID: 8389462
- 3. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
- 4. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 5. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29:474(7353):609-15. PMID: 21720365
- 6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 7. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Donna et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18;487(7407):330-7. PMID: 22810696
- 11. Mujoo et al. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget. 2014 Nov 15;5(21):10222-36. PMID: 25400118
- Gaborit et al. Emerging anti-cancer antibodies and combination therapies targeting HER3/ERBB3. Hum Vaccin Immunother. 2016 Mar 3;12(3):576-92. PMID: 26529100
- 13. Mishra et al. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget. 2017 Dec 26;8(69):114371-114392. PMID: 29371993
- 14. Jaiswal et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell. 2013 May 13;23(5):603-17. PMID: 23680147
- 15. Zhang et al. HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim. Biophys. Sin. (Shanghai). 2016 Jan;48(1):39-48. PMID: 26496898
- 16. Ross et al. Targeting HER2 in colorectal cancer: The landscape of amplification and short variant mutations in ERBB2 and ERBB3. Cancer. 2018 Apr 1;124(7):1358-1373. PMID: 29338072
- 17. Verlingue et al. Human epidermal receptor family inhibitors in patients with ERBB3 mutated cancers: Entering the back door. Eur. J. Cancer. 2018 Mar;92:1-10. PMID: 29413684
- 18. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 19. Chidgey et al. Desmosomes: a role in cancer?. Br J Cancer. 2007 Jun 18;96(12):1783-7. PMID: 17519903
- 20. Dubash et al. Desmosomes. Curr Biol. 2011 Jul 26;21(14):R529-31. PMID: 21783027
- 21. Hardman et al. Desmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation. Mol Cell Biol. 2005 Feb;25(3):969-78. PMID: 15657425
- 22. Wang et al. Lower DSC1 expression is related to the poor differentiation and prognosis of head and neck squamous cell carcinoma (HNSCC). J Cancer Res Clin Oncol. 2016 Dec;142(12):2461-2468. PMID: 27601166
- 23. Oshiro et al. Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res. 2005;7(5):R669-80. PMID: 16168112
- 24. Stratikos et al. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer predisposition. Front Oncol. 2014;4:363. PMID: 25566501
- 25. López. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front Immunol. 2018;9:2463. PMID: 30425713
- 26. Serwold et al. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature. 2002 Oct 3;419(6906):480-3. PMID: 12368856
- 27. Cui et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Invest. 2002 Aug;110(4):515-26. PMID: 12189246
- 28. Cui et al. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J Immunol. 2003 Dec 15;171(12):6814-9. PMID: 14662887

12 of 14

Report Date: 11 Jul 2025

References (continued)

- 29. Mehta et al. Genetic variation of antigen processing machinery components and association with cervical carcinoma. Genes Chromosomes Cancer. 2007 Jun;46(6):577-86. PMID: 17366619
- 30. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013 Jan;3(1):35-43. PMID: 23208470
- 31. Wilson et al. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011 Jun 9;11(7):481-92. PMID: 21654818
- 32. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. Nat Commun. 8;14648. PMID: 28262751
- 33. Mehrvarz et al. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res. 2021 Mar 15;27(6):1663-1670. PMID: 33414133
- 34. https://nuvectis.com/press-release-view/?i=114174
- 35. https://www.morphosys.com/en/news/morphosys-receives-us-fda-fast-track-designation-tulmimetostat-endometrial-cancer
- 36. Liu et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun. 2019 Mar 1;10(1):991. PMID: 30824700
- 37. Patra et al. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014 Aug;39(8):347-54. PMID: 25037503
- 38. Kowalik et al. Emerging Role of the Pentose Phosphate Pathway in Hepatocellular Carcinoma. Front Oncol. 2017;7:87. PMID: 28553614
- 39. Rao et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 2015 Sep 24;6:8468. PMID: 26399441
- 40. Liu et al. Aging (Albany NY). 2020 May 4;12(9):8372-8396. PMID: 32365332
- 41. Komiya et al. Wnt signal transduction pathways. Organogenesis. 2008 Apr;4(2):68-75. PMID: 19279717
- 42. Zhang et al. J Hematol Oncol. 2020 Dec 4;13(1):165. PMID: 33276800
- 43. Rivera et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007 Feb 2;315(5812):642-5. PMID: 17204608
- 44. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 45. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 46. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 47. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 48. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 49. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 50. Cui et al. ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov. 2021 Oct 4;7(1):274. PMID: 34608122
- 51. Hackel et al. Mig-6 is a negative regulator of the epidermal growth factor receptor signal. Biol Chem. 2001 Dec;382(12):1649-62. PMID: 11843178
- 52. Frosi et al. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol. 2010 May 3;189(3):557-71. PMID: 20421427
- 53. Wendt et al. The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6. Neoplasia. 2015 Jan;17(1):124-33. PMID: 25622905
- 54. Lin et al. Mitogen-inducible gene-6 is a multifunctional adaptor protein with tumor suppressor-like activity in papillary thyroid cancer. J Clin Endocrinol Metab. 2011 Mar;96(3):E554-65. PMID: 21190978
- 55. Xu et al. Upregulation of mitogen-inducible gene 6 triggers antitumor effect and attenuates progesterone resistance in endometrial carcinoma cells. Cancer Gene Ther. 2015 Nov;22(11):536-41. PMID: 26450625
- 56. Li et al. Low expression of Mig-6 is associated with poor survival outcome in NSCLC and inhibits cell apoptosis via ERK-mediated upregulation of Bcl-2. Oncol Rep. 2014 Apr;31(4):1707-14. PMID: 24573418
- 57. Li et al. Downregulation of Mig-6 in nonsmall-cell lung cancer is associated with EGFR signaling. Mol Carcinog. 2012 Jul;51(7):522-34. PMID: 21739478
- 58. Ferby et al. Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat Med. 2006 May;12(5):568-73. PMID: 16648858

13 of 14

Report Date: 11 Jul 2025

References (continued)

- 59. Sullivan et al. RAD-ical New Insights into RAD51 Regulation. Genes (Basel). 2018 Dec 13;9(12). PMID: 30551670
- 60. Suwaki et al. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin. Cell Dev. Biol. 2011 Oct;22(8):898-905. PMID: 21821141
- 61. Chun et al. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell. Biol. 2013 Jan;33(2):387-95. PMID: 23149936
- 62. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocr. Relat. Cancer. 2016 Jun;23(6):R267-85. PMID: 27226207
- 63. Lord et al. BRCAness revisited. Nat. Rev. Cancer. 2016 Feb;16(2):110-20. PMID: 26775620
- 64. Date et al. Haploinsufficiency of RAD51B causes centrosome fragmentation and aneuploidy in human cells. Cancer Res. 2006 Jun 15;66(12):6018-24. PMID: 16778173
- 65. Pelttari et al. RAD51B in Familial Breast Cancer. PLoS ONE. 2016;11(5):e0153788. PMID: 27149063
- 66. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208558s028lbl.pdf
- 67. https://www.senhwabio.com//en/news/20220125
- 68. Yuan et al. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene. 2019 Aug;38(34):6172-6183. PMID: 31285550
- 69. Colebatch et al. TERT gene: its function and dysregulation in cancer. J Clin Pathol. 2019 Apr;72(4):281-284. PMID: 30696697
- 70. Mizukoshi et al. Telomerase-Targeted Cancer Immunotherapy. Int J Mol Sci. 2019 Apr 12;20(8). PMID: 31013796
- 71. NCCN Guidelines® NCCN-Central Nervous System Cancers [Version 5.2024]
- 72. Arita et al. TERT promoter mutation confers favorable prognosis regardless of 1p/19q status in adult diffuse gliomas with IDH1/2 mutations. Acta Neuropathol Commun. 2020 Nov 23;8(1):201. PMID: 33228806
- 73. Cheung et al. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics. 2016 Feb;17(3):297-307. PMID: 26807692
- 74. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 75. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 76. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 77. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 78. Chagpar et al. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 2010 Mar 23;107(12):5471-6. PMID: 20212113
- 79. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 80. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 81. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 82. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 83. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 84. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 85. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 86. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]
- 87. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 88. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 89. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427

Report Date: 11 Jul 2025 14 of 14

References (continued)

- 90. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 91. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 92. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 93. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 94. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 95. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 96. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 97. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 98. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1).
 PMID: 30654522
- 100. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 101. Wenzel et al. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene. 2020 May;39(19):3893-3909. PMID: 32203164
- 102. Hong et al. MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem. 2009 Jul 17;284(29):19613-22. PMID: 19443654
- 103. He et al. Identification of c-MYC as a target of the APC pathway. Science. 1998 Sep 4;281(5382):1509-12. PMID: 9727977
- 104. Wang et al. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell. Physiol. Biochem. 2018;51(6):2647-2693. PMID: 30562755
- 105. Stamos et al. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a007898. PMID: 23169527
- 106. Minde et al. Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?. Mol Cancer. 2011 Aug 22;10:101. doi: 10.1186/1476-4598-10-101. PMID: 21859464
- 107. Aoki et al. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J. Cell. Sci. 2007 Oct 1;120(Pt 19):3327-35. PMID: 17881494
- 108. Miyoshi et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1992 Jul;1(4):229-33. PMID: 1338904
- 109. Rowan et al. APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". Proc. Natl. Acad. Sci. U.S.A. 2000 Mar 28;97(7):3352-7. PMID: 10737795
- 110. Laurent-Puig et al. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1998 Jan 1;26(1):269-70. PMID: 9399850
- 111. Huang et al. ENO1 and Cancer. Mol Ther Oncolytics. 2022 Mar 17;24:288-298. PMID: 35434271
- 112. Almaguel et al. Alpha-Enolase: Emerging Tumor-Associated Antigen, Cancer Biomarker, and Oncotherapeutic Target. Front Genet. 2020;11:614726. PMID: 33584813
- 113. Qiao et al. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci. 2021;17(14):3981-3992. PMID: 34671213
- 114. Xu et al. Enolase 1 Correlated With Cancer Progression and Immune-Infiltrating in Multiple Cancer Types: A Pan-Cancer Analysis. Front Oncol. 2020;10:593706. PMID: 33643901