

Tel. 1661-5117 www.smlab.co.kr

Report Date: 10 Jul 2025 1 of 22

Patient Name: 박선옥 Gender: F Sample ID: N25-85 Primary Tumor Site: breast Collection Date: 2024.03.15

Sample Cancer Type: Breast Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Relevant Therapy Summary	12

Report Highlights 9 Relevant Biomarkers 3 Therapies Available 28 Clinical Trials

Relevant Breast Cancer Findings

Gene	Finding	
BRCA1	None detected	
ERBB2	None detected	
Genomic Alto	eration	Finding
Tumor Mu	itational Burden	7.6 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	PIK3CA p.(H1047R) c.3140A>G phosphatidylinositol-4,5-bisphosphate 3- kinase catalytic subunit alpha Allele Frequency: 81.99% Locus: chr3:178952085 Transcript: NM_006218.4	inavolisib + palbociclib + hormone therapy 1/1 alpelisib + hormone therapy 1,2/II+ capivasertib + hormone therapy 1,2/II +	None*	9
IIC	MTAP deletion methylthioadenosine phosphorylase Locus: chr9:21802646	None*	None*	8
IIC	FGFR1 amplification fibroblast growth factor receptor 1 Locus: chr8:38271452	None*	None*	7
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	3
IIC	KIT amplification KIT proto-oncogene receptor tyrosine kinase Locus: chr4:55589693	None*	None*	3

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Report Date: 10 Jul 2025 2 of 22

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	ARID1A p.(Q944*) c.2830C>T AT-rich interaction domain 1A Allele Frequency: 26.14% Locus: chr1:27092809 Transcript: NM_006015.6	None*	None*	1
IIC	CDKN2B deletion cyclin dependent kinase inhibitor 2B Locus: chr9:22005728	None*	None*	1
IIC	PDGFRA amplification platelet derived growth factor receptor alpha Locus: chr4:55131078	None*	None*	1
IIC	TP53 p.(R273H) c.818G>A tumor protein p53 Allele Frequency: 67.14% Locus: chr17:7577120 Transcript: NM_000546.6	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

MDM2 amplification, Microsatellite stable, PPP2R2A deletion, UGT1A1 p.(G71R) c.211G>A, JAK2 deletion, NQ01 p.(P187S) c.559C>T, GNA13 amplification, Tumor Mutational Burden

Variant Details

DNA Sequence Variants							
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
PIK3CA	p.(H1047R)	c.3140A>G	COSM775	chr3:178952085	81.99%	NM_006218.4	missense
ARID1A	p.(Q944*)	c.2830C>T		chr1:27092809	26.14%	NM_006015.6	nonsense
TP53	p.(R273H)	c.818G>A	COSM10660	chr17:7577120	67.14%	NM_000546.6	missense
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	99.05%	NM_000463.3	missense
NQ01	p.(P187S)	c.559C>T		chr16:69745145	28.08%	NM_000903.3	missense
RAF1	p.(E503Q)	c.1507G>C		chr3:12627209	55.02%	NM_002880.4	missense
HCN1	p.(M660I)	c.1980G>A		chr5:45262716	30.86%	NM_021072.4	missense
HLA-C	p.([L324=;G325R])	c.972_973delTGinsAA		chr6:31237785	7.27%	NM_001243042.1	synonymous, missense
KMT2C	p.(I1659S)	c.4976T>G		chr7:151884379	5.74%	NM_170606.3	missense
FZD6	p.(G336S)	c.1006G>A		chr8:104337340	26.00%	NM_001164615.2	missense
CSMD3	p.(S885T)	c.2654G>C		chr8:113694694	40.01%	NM_198123.2	missense
PTCH1	p.(R13G)	c.37C>G		chr9:98270607	80.82%	NM_000264.5	missense

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Variant Details (continued)

DNA Sequence Variants (continued)

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
NCOR1	p.(P94T)	c.280C>A		chr17:16075272	69.46%		missense
USP9X	p.(?)	c.1161+3G>C		chrX:41000687	53.49%	NM_001039590.3	unknown
ZNF41	p.(L137P)	c.410T>C		chrX:47308759	32.65%	NM_153380.3	missense

Copy Number Variations							
Gene	Locus	Copy Number	CNV Ratio				
MTAP	chr9:21802646	1	0.63				
FGFR1	chr8:38271452	8.03	3.26				
CDKN2A	chr9:21968178	0.87	0.57				
KIT	chr4:55589693	4.72	2.02				
CDKN2B	chr9:22005728	0.92	0.59				
PDGFRA	chr4:55131078	4.77	2.04				
MDM2	chr12:69202958	7.48	3.06				
PPP2R2A	chr8:26149298	1.07	0.65				
JAK2	chr9:5021954	0.99	0.62				
GNA13	chr17:63010302	6.4	2.65				
CD274	chr9:5456050	1.12	0.67				
PDCD1LG2	chr9:5522530	1.07	0.65				
WT1	chr11:32410528	14.12	5.54				
AXIN2	chr17:63526027	7.17	2.94				
PRKAR1A	chr17:66511464	4.76	2.04				
SOX9	chr17:70117435	4.71	2.01				
DSC3	chr18:28574139	8.84	3.56				
DSC1	chr18:28710424	7.47	3.05				

Biomarker Descriptions

PIK3CA p.(H1047R) c.3140A>G

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹⁶⁶. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{167,168}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively¹⁶⁷. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{169,170}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{169,170,171,172}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/

Biomarker Descriptions (continued)

MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{173,174,175}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{18,19}. Activating mutations in PIK3CA commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being untranslated)^{176,177}. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047) domains, each having distinct mechanisms of activation^{178,179,180}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{18,19}.

Potential relevance: The PI3K inhibitor, alpelisib¹8¹, is FDA-approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer showed the clinical benefit rate, defined as lack of disease progression ≥ 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors¹8². Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations¹8². However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations¹8³. The FDA also approved the kinase inhibitor, capivasertib (2023)¹8⁴ in combination with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment. The kinase inhibitor, inavolisib¹8⁵, is also FDA-approved (2024) in combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, HR-positive, and HER2-negative breast cancer. Case studies with mTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers¹86,¹87.

MTAP deletion

methylthioadenosine phosphorylase

<u>Background</u>: The MTAP gene encodes methylthioadenosine phosphorylase¹. Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate^{55,56}. Loss of MTAP function is commonly observed in cancer due to deletion or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation⁵⁶.

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be codeleted with CDKN2A in numerous solid and hematological cancers^{56,57}. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21% of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma^{18,19}. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma^{18,19}.

<u>Potential relevance:</u> Currently, no therapies are approved for MTAP aberrations.

FGFR1 amplification

fibroblast growth factor receptor 1

Background: The FGFR1 gene encodes fibroblast growth receptor 1, a member of the fibroblast growth factor receptor (FGFR) family that also includes FGFR2, 3, and 4¹. These proteins are single transmembrane receptors composed of three extracellular immunoglobulin (Ig)-type domains and an intracellular kinase domain¹. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLCγ/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{97,98,99}.

Alterations and prevalence: Recurrent somatic alterations common to the FGFR family include gene amplification, mutation, and chromosomal translocations leading to FGFR fusions¹⁰⁰. Amplification of FGFR1 is observed in 17% of lung squamous cell carcinoma, 11% of breast invasive carcinoma, 8% of bladder urothelial carcinoma, 7% of uterine carcinosarcoma and head and neck squamous cell carcinoma, 6% of esophageal adenocarcinoma, 5% of sarcoma, 4% of colorectal adenocarcinoma and pancreatic adenocarcinoma, 3% of prostate adenocarcinoma, ovarian serous cystadenocarcinoma, and lung adenocarcinoma, and 2% of uterine corpus endometrial carcinoma^{18,19,101,102,103}. The most common recurrent mutations, N546K and K656E, are relatively infrequent (<1%); they activate mutations in the kinase domain and are distributed in diverse cancer types¹⁰⁴. Somatic mutations in FGFR1 are observed in 7% of skin cutaneous melanoma, 6% of uterine corpus endometrial carcinoma, and 3% of stomach adenocarcinoma and colorectal

Biomarker Descriptions (continued)

adenocarcinoma^{18,19}. FGFR1 translocations giving rise to expressed fusions are common in certain hematological cancers, but are less common in solid tumors^{105,106,107}. Alterations in FGFR1 are rare in pediatric cancers^{18,19}. Amplification of FGFR1 is observed in less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases). Somatic mutations in FGFR1 are observed in 6% of non-Hodgkin Lymphoma, 3% of soft tissue sarcoma, 2% of glioma, and less than 1% of embryonal tumors (2 in 332 cases), B-lymphoblastic leukemia/lymphoma (1 in 252 cases), Wilms tumor (2 in 710 cases), and peripheral nervous system cancers (1 in 1158 cases)^{18,19}.

Potential relevance: The FGFR kinase inhibitor, pemigatinib¹⁰⁸ (2022) is approved for the treatment of adults with relapsed/refractory myeloid/lymphoid neoplasms (MLNs) with FGFR1 rearrangement. Additionally, the FDA granted fast-track designation to Debio 1347¹⁰⁹ (2018) for solid tumors harboring aberrations in FGFR1, FGFR2, or FGFR3. FDA has approved multi-kinase inhibitors, including regorafenib, ponatinib, lenvatinib, nintedanib, and pazopanib, that are known to inhibit FGFR family members¹¹⁰. These inhibitors have demonstrated anti-tumor activity in select cancer types with FGFR alterations^{111,112,113,114,115,116,117}. In a phase II clinical trial, dovitinib, a multi-tyrosine kinase inhibitor (TKI), exhibited an overall response rate (ORR) of 11.5% and a disease control rate (DCR) of 50% in patients with advanced squamous cell lung cancer possessing FGFR1 amplification¹¹⁸. The patients had a median overall survival (OS) of 5 months and progression-free survival (PFS) of 2.9 months¹¹⁸. Likewise, in a phase Ib study testing the FGFR inhibitor AZD4547, the median OS was 4.9 months in patients with FGFR1-amplified advanced squamous cell lung cancer. One of 13 (8%) patients achieved a partial response, 4 (31%) exhibited stable disease, and 2 (13.3%) demonstrated PFS at 12 weeks¹¹⁹. Rearrangements in FGFR1 are associated with poor risk pediatric and adult acute lymphoblastic leukemia^{23,120,121}.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁶⁴. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{65,66,67}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions⁶⁸. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation¹,68,69</sup>. CDKN2A aberrations commonly co-occur with CDKN2B⁶⁴. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation⁷⁰. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{71,72}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁷³. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{18,19}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{18,19}. Alterations in CDKN2A are also observed in pediatric cancers¹⁹. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors¹⁹. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)¹⁹.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{54,74,75}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma⁷⁶. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{77,78,79}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme⁸⁰. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{81,82,83,84}.

KIT amplification

KIT proto-oncogene receptor tyrosine kinase

Background: The KIT gene, also known as CD117, encodes the KIT proto-oncogene receptor tyrosine kinase (c-KIT), a member of the PDGF receptor type III receptor tyrosine kinase family, which includes PDGFRA, PDGFRB, CSF1R, FLT1, FLT3, FLT4 and KDR^{25,26}. KIT

Biomarker Descriptions (continued)

is a receptor for stem cell factor, important in regulating growth and development of hematopoietic cells²⁷. The KIT gene is flanked by the PDGFRA and KDR genes on chromosome 4q12. Ligand binding to KIT results in kinase activation and stimulation of downstream pathways including the RAS/RAF/MEK/ERK and PI3K/AKT/MTOR pathways, promoting cell proliferation and survival²⁸.

Alterations and prevalence: Recurrent somatic KIT alterations are observed in both solid and hematological cancers and include activating mutations such as single nucleotide variants, small duplications, and complex in-frame insertions or deletions (indels). Mutations in KIT exons 8, 9, 11, and 17 disrupt auto-inhibitory mechanisms and lead to constitutive activity²⁹. Gain of function mutations are found in up to 70% of mast cell tumors, 17% of nasal T-cell lymphomas, and 9% of dysgerminoma³⁰. Somatic mutations in exon 11 occur in 60-70% of all gastrointestinal stromal tumor (GIST), whereas alterations in exons 8 and 17 are more common in myeloid cancers^{19,29,30}. A common kinase domain mutation that causes ligand-independent constitutive activation, D816V, occurs in 80-93% of aggressive forms of mastocytosis^{31,32}.

Potential relevance: Imatinib³³ (2001) is approved for KIT positive unresectable or metastatic GIST and adult patients with aggressive systemic mastocytosis (SM) who do not have the D816V c-Kit mutation or whose c-Kit mutational status is unknown. Imatinib is also recommended for activating mutations, including KIT P577_W582delinsPYD and KIT V560D in melanoma and exon 9 and 11 sensitizing mutations in GIST^{34,35,36,37}. Mutations in exon 17 have been identified to confer resistance to imatinib and sunitinib³⁸. Additionally, detection of activating mutations in KIT is useful as an ancillary technique in the diagnosis of GIST³⁶. Patients with acute myeloid leukemia (AML) that harbor KIT activating mutations with t(8;21) and inv(16) have an increased risk of relapse³⁹. KIT D816V mutation is associated with the diagnosis of SM and aggressiveness of the disease^{40,41}.

ARID1A p.(Q944*) c.2830C>T

AT-rich interaction domain 1A

Background: The ARID1A gene encodes the AT-rich interaction domain 1A tumor suppressor protein¹. ARID1A, also known as BAF250A, belongs to the ARID1 subfamily that also includes AR1D1B^{1,58}. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin-remodeling complex^{58,59}. The BAF complex is a multisubunit protein that consists of SMARCB1/IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B⁵⁹. The BAF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression^{59,60}. ARID1A binds to transcription factors and coactivator/corepressor complexes to alter transcription⁵⁸. Recurrent inactivating mutations in BAF complex subunits, including ARID1A, lead to transcriptional dysfunction thereby, altering its tumor suppressor function⁵⁸.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors⁶⁰. The majority of ARID1A inactivating mutations are nonsense or frameshift mutations⁵⁸. Somatic mutations in ARID1A have been identified in 50% of ovarian clear cell carcinoma, 30% of endometrioid carcinoma, and 24-43% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma^{18,19,59}. In microsatellite stable (MSS) colorectal cancer, mutations in ARID1A have been observed to correlate with increased tumor mutational burden (TMB) and expression of genes involved in the immune response⁶¹.

Potential relevance: Currently, no therapies are approved for ARID1A aberrations. However, the FDA has granted fast track designation (2022) to HSF1 pathway inhibitor, NXP-80062, for the treatment of platinum resistant ARID1A-mutated ovarian carcinoma. Tulmimetostat63, dual inhibitor of EZH2 and EZH1, was also granted a fast track designation (2023) for the treatment of patients with advanced, recurrent or metastatic endometrial cancer harboring ARID1A mutations and who have progressed on at least one prior line of treatment.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression^{1,64}. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁶⁴. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{65,66,67}. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A⁶⁴. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma^{1,85,86}.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma, 11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma, breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{18,19}. Somatic mutations in CDKN2B are observed in 2% of uterine carcinosarcoma^{18,19}. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of

Biomarker Descriptions (continued)

childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14% of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers^{18,19}. Somatic mutations in CDKN2B are observed in less than 1% of bone cancer (1 in 327 cases)^{18,19}.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular marker used in staging grade 4 pediatric IDH-mutant astrocytoma⁷⁶.

PDGFRA amplification

platelet derived growth factor receptor alpha

Background: The PDGFRA gene encodes the platelet derived growth factor receptor alpha, a member of the PDGF receptor type III receptor tyrosine kinase family, which includes PDGFRB, CSF1R, FLT1, FLT3, FLT4, KDR, and KIT^{25,26}. PDGFRA is a receptor for platelet derived growth factors, which are mitogens for cells of mesenchymal origin¹⁸⁸. PDGFRA may function as a homodimer or heterodimer with PDGFRB depending on the ligand¹⁸⁹. The PDGFRA gene is physically adjacent to KIT and KDR on chromosome 4q12, and all 3 tyrosine kinases are often co-amplified in cancer¹⁹⁰. Ligand binding to PDGFRA results in kinase activation and stimulation of downstream pathways, including the RAS/RAF/MEK/ERK and PI3K/AKT/MTOR pathways, which promotes cell proliferation and survival¹⁹¹.

Alterations and prevalence: Recurrent somatic PDGFRA alterations are observed in both solid and hematological cancers and include activating mutations, gene amplification, and translocations generating PDGFRA gene fusions. Recurrent PDGFRA activating mutations, including D842V, V561D, N659K, and in-frame deletions in exon 18, are common in 30-40% of KIT negative gastrointestinal stromal tumors (GISTs) and approximately 7% overall^{192,193,194,195}. PDGFRA recurrent mutations are also observed in 9% of skin cutaneous melanoma and uterine corpus endometrial carcinoma, 7% of lung adenocarcinoma, 5% of colorectal adenocarcinoma, 4% of lung squamous cell carcinoma, glioblastoma multiforme, and bladder urothelial carcinoma, 3% of stomach adenocarcinoma and head and neck squamous cell carcinoma, and 2% of cervical squamous cell carcinoma, liver hepatocellular carcinoma, brain lower grade glioma, and ovarian serous cystadenocarcinoma^{18,19}. PDGFRA amplification is observed in 13% of glioblastoma multiforme, 5% of lung squamous cell carcinoma, 4% of brain lower grade glioma, 3% of sarcoma and skin cutaneous melanoma, and 2% of esophageal adenocarcinoma, testicular germ cell tumors, lung adenocarcinoma, uterine carcinosarcoma, and bladder urothelial carcinoma^{18,19}. PDGFRA fusions are observed in gliomas and glioblastomas as well as eosinophilic leukemias, of which the FIP1L1::PDGFRA fusion defines approximately half of patients with hypereosinophilic syndrome^{196,197,198}. Alterations of PDGFRA are rare in pediatric cancers^{18,19}. Somatic mutations are observed in 2% of glioma, and less than 1% of embryonal tumors (3 in 332 cases), bone cancer (2 in 327 cases), and leukemia (1 in 354 cases)^{18,19}. PDGFRA is amplified in 5% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases)^{18,19}.

Potential relevance: Avapritinib¹⁹⁹ (2020) is a tyrosine kinase inhibitor (TKI) that is approved by the FDA for metastatic or unresectable gastrointestinal stromal tumors (GISTs) harboring PDGFRA exon 18 mutations, including PDGFRA D842V mutation. The FDA has granted fast track designation to crenolanib²⁰⁰ (2017) for harboring PDGFRA D842V mutation. Imatinib³³ (2001) is a TKI approved for patients diagnosed with chronic eosinophilic leukemia harboring the FIP1L1::PDGFRA fusion. Additionally, imatinib is recommended for the treatment of GISTs harboring PDGFRA exon 18 mutations, with the exception of D842V³⁶. Amplification of PDGFRA is a diagnostic marker of H3-wildtype and IDH-wildtype diffuse pediatric-type high-grade glioma^{201,202}. PDGFRA rearrangements are associated with poor risk in pediatric acute lymphoblastic leukemia^{120,203}.

TP53 p.(R273H) c.818G>A

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis¹²². Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹²³. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{124,125}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{18,19,101,126,127,128}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{18,19}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{129,130,131,132}. Alterations in TP53 are also observed in pediatric cancers^{18,19}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases) ^{18,19}. Biallelic

Biomarker Descriptions (continued)

loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases) 18,19.

Potential relevance: The small molecule p53 reactivator, PC14586133 (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt134, (2019) and breakthrough designation135 (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation136,137. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma138. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)20,23,39,139,140,141. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant142. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system143.

MDM2 amplification

MDM2 proto-oncogene

Background: The MDM2 gene encodes the murine double minute 2 proto-oncogene. MDM2 is structurally related to murine double minute 4 (MDM4), with both proteins containing an N-terminal domain that binds p53, a zinc-finger domain, and a C-terminal RING domain⁴⁹. MDM2 and MDM4 are oncogenes that function as negative regulators of the tumor suppressor TP53, and can homo- or heterodimerize with p53 through their RING domains⁴⁹. Specifically, the MDM2 RING domain functions as an E3 ubiquitin ligase and is responsible for the polyubiquitination and degradation of the p53 protein when MDM2 is present at high levels⁵⁰. Alternately, low levels of MDM2 activity promote mono-ubiquitination and nuclear export of p53⁵⁰. MDM2 amplification and overexpression disrupt the p53 protein function, thereby contributing to tumorigenesis and supporting an oncogenic role for MDM2⁵⁰.

Alterations and prevalence: MDM2 is amplified in up to 13% of sarcoma, 8% of bladder urothelial carcinoma, glioblastoma, and 7% of adrenal cortical carcinoma^{18,19}. MDM2 overexpression is observed in lung, breast, liver, esophagogastric, and colorectal cancers⁵¹. The most common co-occurring aberrations with MDM2 amplification or overexpression are CDK4 amplification and TP53 mutation^{52,53}.

Potential relevance: Currently, no therapies are approved for MDM2 aberrations. Amplification of region 12q13-15, which includes MDM2, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/well differentiated liposarcoma (ALT/WDLS) and dedifferentiated liposarcoma⁵⁴.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹⁴⁴. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{145,146}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2¹⁴⁷. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹⁴⁸. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹⁴⁸. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{149,150,151,152,153}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes¹⁴⁶. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{145,146,150,154}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{145,146,155,156}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{155,156}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹⁵⁷ (2014) and nivolumab¹⁵⁸ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹⁵⁷ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹⁵⁷. Dostarlimab¹⁵⁹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{151,160}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody,

Biomarker Descriptions (continued)

ipilimumab¹⁶¹ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{151,162,163}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹⁶³. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{164,165}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{164,165}.

PPP2R2A deletion

protein phosphatase 2 regulatory subunit Balpha

Background: The PPP2R2A gene encodes the protein phosphatase 2 regulatory subunit B alpha, a member of a large heterotrimeric serine/threonine phosphatase 2A (PP2A) family. Proteins of the PP2A family includes 3 subunits—the structural A subunit (includes PPP2R1A and PPP2R1B), the regulatory B subunit (includes PPP2R2A, PPP2R3, and STRN), and the catalytic C subunit (PPPP2CA and PPP2CB)^{42,43}. PPA2 proteins are essential tumor suppressor genes that regulate cell division and possess proapoptotic activity through negative regulation of the PI3K/AKT pathway⁴⁴. Specifically, PPP2R2A modulates ATM phosphorylation which is critical in the regulation of the homologous recombination repair (HRR) pathway⁴².

Alterations and prevalence: Copy number loss and downregulation of PPP2R2A is commonly observed in solid tumors including breast and non-small cell lung cancer and define an aggressive subgroup of luminal-like breast cancer^{42,43,45,46}. Biallelic loss of PPP2R2A is observed in 4-8% of breast invasive carcinoma, lung, colorectal, bladder, liver, and prostate cancers, as well as 4% of diffuse large B-cell lymphoma¹⁸.

Potential relevance: Currently no therapies are approved for PPP2R2A aberrations. However, in 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex⁴⁷, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Loss of PPP2R2A in pre-clinical and xenograft models have been shown to inhibit homologous recombination DNA directed repair and may predict sensitivity to PARP inhibitors such as veliparib⁴². Olaparib treatment in prostate cancer with PPP2R2A mutations is not recommended due to unfavorable risk benefit⁴⁸.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{1,87}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{87,88}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance⁸⁹. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{89,90,91,92}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38⁹³.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{18,19}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

JAK2 deletion

Janus kinase 2

Background: The JAK2 gene encodes Janus kinase 2, a non-receptor protein tyrosine kinase (PTK)^{1,2}. JAK2 is a member of the Janus kinase (JAK) family, which includes JAK1, JAK2, JAK3, and TYK2². Janus kinases are characterized by the presence of a second phosphotransferase-related or pseudokinase domain immediately N-terminal to the PTK domain³. JAK kinases function with signal transducer and activator of transcription (STAT) proteins to facilitate intracellular signal transduction required for cytokine receptor and interferon-alpha/beta/gamma signaling^{3,4,5}. Since JAK2 functions in interferon receptor signaling, inactivation of JAK2 is proposed to inhibit the presentation of tumor antigens and contribute to immune evasion^{6,7}.

Biomarker Descriptions (continued)

Alterations and prevalence: Clonal expansion of hematopoietic cells in myeloproliferative neoplasms (MPNs) is associated with loss of heterozygosity on chromosome 9p and subsequently the acquisition of a dominant somatic gain-of-function V617F mutation in the pseudokinase domain of JAK2^{8,9}. The JAK2 V617F mutation is rarely observed in acute myeloid leukemia (AML)^{10,11}. Mutations in the pseudokinase domain of JAK2, including R683G, have been detected in 8% of ALL^{12,13}. JAK2 fusions are observed in myeloid and lymphoid leukemias with partner genes including TEL, PCM1, and BCR^{14,15,16,17}. JAK2 fusions are infrequently observed in solid tumors¹⁸. As with JAK1, truncating mutations in JAK2 are common in solid tumors and particularly enriched in uterine cancers¹⁸. JAK2 is amplified in 4% of sarcoma, diffuse large B-cell lymphoma, and head and neck squamous cell carcinoma, 3% of ovarian serous cystadenocarcinoma, and 2% of esophageal adenocarcinoma, uterine corpus endometrial carcinoma, stomach adenocarcinoma, bladder urothelial carcinoma, and uterine carcinosarcoma^{18,19}. Alterations in JAK2 are also observed in pediatric cancers^{18,19}. Somatic mutations are observed in 6% of B-lymphoblastic leukemia/lymphoma, 3% of soft tissue sarcoma, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of leukemia (3 in 354 cases), bone cancer (2 in 327 cases), glioma (1 in 297 cases), Wilms tumor (1 in 710 cases), and peripheral nervous system tumors (1 in 1158 cases)^{18,19}. JAK2 fusions are observed in 10% of B-lymphoblastic leukemia/lymphoma and 1% of leukemia (1 in 107 cases)^{18,19}. JAK2 is amplified in 1% of Wilms tumor (2 in 136 cases) and less than 1% of B-lymphoblastic leukemia/lymphoma (4 in 731 cases)^{18,19}.

Potential relevance: Currently, no therapies are approved for JAK2 aberrations. JAK2 V617F and JAK2 exon 12 mutations are considered major diagnostic criteria of polycythemia vera (PV)^{20,21}. Ruxolitinib²² (2011) is a JAK1/2 inhibitor FDA approved for PMF and PV, although specific JAK2 alterations are not indicated. Other JAK inhibitors including tofacitinib (2012) and baricitinib (2018) are approved for the treatment of rheumatoid arthritis. JAK2 mutations and fusions are associated with poor risk in acute lymphoblastic leukemia²³. Clinical cases associated with high tumor mutational burden (TMB) but failure to respond to anti-PD1 therapy were associated with loss of function mutations in JAK1/2²⁴. Some case studies report efficacy with ruxolitinib in myeloid and lymphoid leukemias, although duration of complete response was limited^{14,15,16,17}.

GNA13 amplification

G protein subunit alpha 13

Background: The GNA13 gene encodes the G protein subunit α 13. GNA13 functions as the α subunit of heterotrimeric G proteins, which are responsible for binding guanine nucleotide, hydrolyzing GTP, and interacting with specific receptor and effector molecules⁹⁴. Specifically, GNA13 mediated signaling is observed to impact several cellular processes including the regulation of cell growth, transformation, cell adhesion, and migration⁹⁵. GNA13 deregulation, including overexpression, has been observed to result in increased levels of chemokines which can promote cell proliferation⁹⁴. In contrast, mutations in GNA13 leading to inactivation result in B-cell release from germinal centers of lymphoid tissues to peripheral blood and may promote lymphomagenesis in germinal center diffuse large B-cell and Burkitt's lymphomas⁹⁶.

Alterations and prevalence: Somatic mutations in GNA13 are observed in 5% of DLBCL, 4% of uterine and 3% of bladder cancer^{18,19}. Homozygous deletions are observed in 6% of DLBCL^{18,19}. GNA13 is the most frequently mutated gene in germinal center derived B-cell lymphomas, including 25% of Burkitt lymphoma⁹⁶. The majority of such mutations are predicted to result in loss of protein function⁹⁶.

Potential relevance: Currently, no therapies are approved for GNA13 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Report Date: 10 Jul 2025 11 of 22

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

In this cancer type

O In other cancer type

• In this cancer type and other cancer types

X No evidence

PIK3CA p.(H1047R) c.3140A>G

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fulvestrant	•	•	•		×
capivasertib + fulvestrant	•	•	•	×	×
inavolisib + palbociclib + fulvestrant	•	•	×	×	×
alpelisib, hormone therapy	×	×	×	×	(II)
alpelisib, hormone therapy, dapagliflozin	×	×	×	×	(II)
HTL-0039732, atezolizumab	×	×	×	×	(/)
ipatasertib, atezolizumab	×	×	×	×	(/)
STX-478, hormone therapy	×	×	×	×	(I/II)
JS-105	×	×	×	×	(I)
OKI-219, hormone therapy	×	×	×	×	(I)
RLY-2608	×	×	×	×	(I)
SNV-4818, hormone therapy	×	×	×	×	(I)

MTAP deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AMG 193	×	×	×	×	(1/11)
MRTX-1719	×	×	×	×	(1/11)
TNG-456, abemaciclib	×	×	×	×	(1/11)
TNG-462	×	×	×	×	(1/11)
GTA-182	×	×	×	×	(l)
ISM-3412	×	×	×	×	(l)
S-095035	×	×	×	×	(I)
SYH-2039	×	×	×	×	(I)

FGFR1 amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
hormone therapy, catequentinib	×	×	×	×	(II)
pemigatinib	×	×	×	×	(II)
regorafenib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Jul 2025 13 of 22

Relevant Therapy Summary (continued)

EGER1 amplification (continued)

CDKN2A deletion

CDKN2B deletion

refrest amplification (continued)						
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*	
sunitinib	×	×	×	×	(II)	
BBI-355, futibatinib	×	×	×	×	(1/11)	
ARSK-121	~	~	~	~	(()	

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	×	×	×	×	(II)
palbociclib, abemaciclib	×	×	×	×	(II)
AMG 193	×	×	×	×	(/)

KIT amplification					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
nilotinib, pazopanib	×	×	×	×	(II)
regorafenib	×	×	×	×	(II)
sunitinib, regorafenib	×	×	×	×	(II)

ARID1A p.(Q944*) c.2830C>T					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
talazoparib	×	×	×	×	(II)

ODITIVED deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib, abemaciclib	×	×	×	×	(II)

PDGFRA amplification					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
nilotinib, pazopanib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Jul 2025 14 of 22

Relevant Therapy Summary (continued)

TP53 n (R273H) c 818G>A

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

π σο β.(π27 στη) σ.σ το σε τ					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
TP53-EphA-2-CAR-DC, anti-PD-1	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	25.07%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Eshaq et al. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel). 2024 Aug 2;16(15). PMID: 39123481
- 3. Babon et al. The molecular regulation of Janus kinase (JAK) activation. Biochem. J. 2014 Aug 15;462(1):1-13. PMID: 25057888
- 4. Müller et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993 Nov 11;366(6451):129-35. PMID: 8232552
- 5. Ren et al. JAK1 truncating mutations in gynecologic cancer define new role of cancer-associated protein tyrosine kinase aberrations. Sci Rep. 2013 Oct 24;3:3042. PMID: 24154688
- 6. Zaretsky et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 2016 Sep 1;375(9):819-29. PMID: 27433843
- 7. Garcia-Diaz et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017 May 9;19(6):1189-1201. PMID: 28494868
- 8. Baxter et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005 Mar 19-25;365(9464):1054-61. PMID: 15781101
- Kralovics et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005 Apr 28;352(17):1779-90. PMID: 15858187
- 10. Hidalgo-López et al. Morphologic and Molecular Characteristics of De Novo AML With JAK2 V617F Mutation. J Natl Compr Canc Netw. 2017 Jun;15(6):790-796. PMID: 28596259
- 11. Aynardi et al. JAK2 V617F-positive acute myeloid leukaemia (AML): a comparison between de novo AML and secondary AML transformed from an underlying myeloproliferative neoplasm. A study from the Bone Marrow Pathology Group. Br. J. Haematol. 2018 Jul;182(1):78-85. PMID: 29767839
- 12. Mullighan et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. U.S.A. 2009 Jun 9;106(23):9414-8. PMID: 19470474
- 13. Scott. Lymphoid malignancies: Another face to the Janus kinases. Blood Rev. 2013 Mar;27(2):63-70. PMID: 23340138
- Chase et al. Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements. Haematologica. 2013 Mar;98(3):404-8. PMID: 22875628
- 15. Rumi et al. Efficacy of ruxolitinib in chronic eosinophilic leukemia associated with a PCM1-JAK2 fusion gene. J. Clin. Oncol. 2013 Jun 10;31(17):e269-71. PMID: 23630205
- 16. Schwaab et al. Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann. Hematol. 2015 Feb;94(2):233-8. PMID: 25260694
- 17. Rumi et al. Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Ann. Hematol. 2015 Nov;94(11):1927-8. PMID: 26202607
- 18. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 19. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 20. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 21. Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. PMID: 35732831
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202192s028lbl.pdf
- 23. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 24. Shin et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov. 2017 Feb;7(2):188-201. PMID: 27903500
- 25. Ségaliny et al. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Mar;4(1):1-12. PMID: 26579483
- 26. Berenstein. Class III Receptor Tyrosine Kinases in Acute Leukemia Biological Functions and Modern Laboratory Analysis. Biomark Insights. 2015;10(Suppl 3):1-14. PMID: 26309392
- 27. Ashman. The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell Biol. 1999 Oct;31(10):1037-51. PMID: 10582338
- 28. Cardoso et al. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Mol. Reprod. Dev. 2014 Dec;81(12):1064-79. PMID: 25359157

- 29. Abbaspour et al. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells. Drug Des Devel Ther. 2016;10:2443-59. PMID: 27536065
- 30. Liang et al. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int. J. Biol. Sci. 2013;9(5):435-43. PMID: 23678293
- 31. Garcia-Montero et al. KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood. 2006 Oct 1;108(7):2366-72. PMID: 16741248
- 32. Chatterjee et al. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder. Oncotarget. 2015 Jul 30;6(21):18250-64. PMID: 26158763
- 33. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/021588s062lbl.pdf
- 34. NCCN Guidelines® NCCN-Cutaneous Melanoma [Version 2.2025]
- 35. F. et al. Imatinib for Melanomas Harboring Mutationally Activated or Amplified KIT Arising on Mucosal, Acral, and Chronically Sun-Damaged Skin. Journal of Clinical Oncology. PMID: 23775962
- 36. NCCN Guidelines® NCCN-Gastrointestinal Stromal Tumor [Version 2.2024]
- 37. Casali et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018 Oct 1;29(Supplement_4):iv68-iv78. PMID: 29846513
- 38. Jonathan. KIT Oncogenic Mutations: Biologic Insights, Therapeutic Advances, and Future Directions. Cancer Res. 2016 Nov 1;76(21):6140-6142. PMID: 27803101
- 39. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 40. Lim et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood. 2009 Jun 4;113(23):5727-36. PMID: 19363219
- 41. Verstovsek. Advanced systemic mastocytosis: the impact of KIT mutations in diagnosis, treatment, and progression. Eur. J. Haematol. 2013 Feb;90(2):89-98. PMID: 23181448
- 42. Kalev et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012 Dec 15;72(24):6414-24. PMID: 23087057
- 43. Álvarez-Fernández et al. Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death Differ. 2018 May;25(5):828-840. PMID: 29229993
- 44. Perrotti et al. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013 May;14(6):e229-38. PMID: 23639323
- Beca et al. Altered PPP2R2A and Cyclin D1 Expression Defines a Subgroup of Aggressive Luminal-Like Breast Cancer. BMC Cancer. 2015 Apr 15;15:285. doi: 10.1186/s12885-015-1266-1. PMID: 25879784
- 46. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012 Apr 18;486(7403):346-52. PMID: 22522925
- 47. https://www.senhwabio.com//en/news/20220125
- 48. NCCN Guidelines® NCCN-Prostate Cancer [Version 1.2025]
- 49. Toledo et al. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 2007;39(7-8):1476-82. PMID: 17499002
- 50. Zhao et al. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin. (Shanghai). 2014 Mar:46(3):180-9. PMID: 24389645
- 51. Helei et al. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell International volume 19, Article number: 216 (2019). PMID: 31440117
- 52. Dembla et al. Prevalence of MDM2 amplification and coalterations in 523 advanced cancer patients in the MD Anderson phase 1 clinic. Oncotarget. 2018 Sep 4;9(69):33232-33243. PMID: 30237864
- 53. Momand et al. The MDM2 gene amplification database. Nucleic Acids Res. 1998 Aug 1;26(15):3453-9. PMID: 9671804
- 54. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 55. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia. 2002 Sep;16(9):1799-807. PMID: 12200696
- 56. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther. 2011 Apr 1;11(7):627-32. PMID: 21301207
- Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. 10.1146/annurevcancerbio-030419-033444

17 of 22

Report Date: 10 Jul 2025

- 58. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013 Jan;3(1):35-43. PMID: 23208470
- 59. Wilson et al. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011 Jun 9;11(7):481-92. PMID: 21654818
- 60. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. Nat Commun. 8;14648. PMID: 28262751
- 61. Mehrvarz et al. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res. 2021 Mar 15;27(6):1663-1670. PMID: 33414133
- 62. https://nuvectis.com/press-release-view/?i=114174
- 63. https://www.morphosys.com/en/news/morphosys-receives-us-fda-fast-track-designation-tulmimetostat-endometrial-cancer
- 64. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 65. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 66. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 67. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 68. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 69. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 70. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 71. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 72. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 73. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 74. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 75. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 76. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 77. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 78. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 79. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 80. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 81. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 82. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10:32(35):3930-8. PMID: 25267748
- 83. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 84. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 85. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. . Cancer Discov.2015 Jul;5(7):723-9. PMID: 25873077
- 86. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018 Jan 4;37(1):128-138. PMID: 28892048

- 87. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 2014;8:349. PMID: 25389387
- 88. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1659-72. PMID: 16550166
- 89. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020 Apr;122(9):1277-1287. PMID: 32047295
- 90. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. Mol Carcinog. 2014 Apr;53(4):314-24. PMID: 23143693
- 91. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. Oncotarget. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
- 92. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PLoS One. 2015;10(5):e0127524. PMID: 26010150
- 93. Karas et al. JCO Oncol Pract. 2021 Dec 3:0P2100624. PMID: 34860573
- 94. Zhang et al. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells. Cancer Med. 2018 Nov;7(11):5611-5620. PMID: 30267476
- 95. Worzfeld et al. G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci. 2008 Nov;29(11):582-9. PMID: 18814923
- 96. Healy et al. GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo. Blood. 2016 Jun 2;127(22):2723-31. PMID: 26989201
- 97. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 98. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 99. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
- 100. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016 Jan 1;22(1):259-67. PMID: 26373574
- 101. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 102. Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 103. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 104. Lew et al. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009 Feb 17;2(58):ra6. PMID: 19224897
- 105. Jackson et al. 8p11 myeloproliferative syndrome: a review. Hum. Pathol. 2010 Apr;41(4):461-76. PMID: 20226962
- 106. Li et al. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer. 2012 Sep;51(9):890-7. PMID: 22619110
- 107. Wasag et al. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica. 2011 Jun;96(6):922-6. PMID: 21330321
- 108. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213736s002lbl.pdf
- 109. https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fgfr-gene-alteration/
- 110. Helsten et al. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev. 2015 Sep;34(3):479-96. PMID: 26224133
- 111. Cha et al. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro. Mol Oncol. 2018 Jun;12(7):993-1003. PMID: 29573334
- 112. Chae et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017 Feb 28;8(9):16052-16074. PMID: 28030802
- 113. Porta et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol. 2017 May;113:256-267. PMID: 28427515

- 114. Gozgit et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther. 2012 Mar;11(3):690-9. PMID: 22238366
- 115. Yamamoto et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014 Sep 6;6:18. doi: 10.1186/2045-824X-6-18. eCollection 2014. PMID: 25197551
- 116. Kim et al. Pazopanib, a novel multitargeted kinase inhibitor, shows potent in vitro antitumor activity in gastric cancer cell lines with FGFR2 amplification. Mol. Cancer Ther. 2014 Nov;13(11):2527-36. PMID: 25249557
- 117. Hibi et al. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. Cancer Sci. 2016 Nov;107(11):1667-1676. PMID: 27581340
- 118. Lim et al. Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: A single-arm, phase 2 study. Cancer. 2016 Oct;122(19):3024-31. PMID: 27315356
- 119. Paik et al. A Phase Ib Open-Label Multicenter Study of AZD4547 in Patients with Advanced Squamous Cell Lung Cancers. Clin. Cancer Res. 2017 Sep 15;23(18):5366-5373. PMID: 28615371
- 120. NCCN Guidelines® NCCN-Pediatric Acute Lymphoblastic Leukemia [Version 3.2025]
- 121. Brown et al. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene. 2023 Jun;42(23):1875-1888. PMID: 37130917
- 122. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 123. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 124. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 125. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 126. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 127. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 128. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 129. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 130. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 131. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 132. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 133. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 134. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 135. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 136. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 137. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 138. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 139. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 140. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]

- 141. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 142. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 143. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 144. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 145. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 146. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 147. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 148. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 149. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 150. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 151. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]
- 152. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 153. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 154. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 155. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 156. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 157. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 158. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 159. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 160. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 161. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 162. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 163. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 164. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 165. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 166. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 167. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 168. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 169. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 170. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 171. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 172. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332

21 of 22

Report Date: 10 Jul 2025

- 173. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 174. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 175. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 176. Brito et al. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. Clin Med Insights Oncol. 2022;16:11795549211068804. PMID: 35023985
- 177. Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D920-4. PMID: 23161685
- 178. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 179. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 180. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 181. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212526s009lbl.pdf
- 182. Mayer et al. A Phase lb Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 183. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 184. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/218197s002lbl.pdf
- 185. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219249s000lbl.pdf
- 186. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 187. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929
- 188. Donovan et al. Platelet-derived growth factor signaling in mesenchymal cells. Front Biosci (Landmark Ed). 2013 Jan 1;18:106-19. PMID: 23276912
- 189. Roskoski. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 2018 Mar;129:65-83. PMID: 29408302
- 190. Burford et al. Distinct phenotypic differences associated with differential amplification of receptor tyrosine kinase genes at 4q12 in glioblastoma. PLoS One. 2013;8(8):e71777. PMID: 23990986
- 191. Tomuleasa et al. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther. 2024 Aug 14;9(1):201. PMID: 39138146
- 192. Lasota et al. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol. 2006 May;23(2):91-102. PMID: 17193822
- 193. Corless et al. PDGFRA Mutations in Gastrointestinal Stromal Tumors: Frequency, Spectrum and In Vitro Sensitivity to Imatinib. J Clin Oncol. 2005 Aug 10;23(23):5357-64. Epub 2005 May 31. PMID: 15928335
- 194. Heinrich et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003 Jan 31;299(5607):708-10. Epub 2003 Jan 9. PMID: 12522257
- 195. Paugh et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013 Oct 15;73(20):6219-29. PMID: 23970477
- 196. Cools et al. Detection of the FIP1L1-PDGFRA fusion in idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. Methods Mol. Med. 2006;125:177-87. PMID: 16502585
- 197. Cools. FIP1L1-PDGFR alpha, a therapeutic target for the treatment of chronic eosinophilic leukemia. Verh. K. Acad. Geneeskd. Belg. 2005;67(3):169-76. PMID: 16089297
- 198. Elling et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood. 2011 Mar 10;117(10):2935-43. doi: 10.1182/blood-2010-05-286757. Epub 2011 Jan 11. PMID: 21224473
- 199. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212608s020lbl.pdf
- 200. https://www.globenewswire.com/news-release/2017/12/01/1216122/0/en/Arog-Pharmaceuticals-Receives-FDA-Fast-Track-Designation-for-Crenolanib-in-Relapsed-or-Refractory-FLT3-Positive-AML.html
- 201. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]

Report Date: 10 Jul 2025 22 of 22

References (continued)

202. Gianno et al. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica. 2022 Dec;114(6):422-435. PMID: 36534421

203. Schwab et al. Advances in B-cell Precursor Acute Lymphoblastic Leukemia Genomics. Hemasphere. 2018 Aug;2(4):e53. PMID: 31723781