

Tel. 1661-5117 www.smlab.co.kr

Report Date: 10 Jul 2025 1 of 10

Patient Name: 정정아 Gender: Sample ID: N25-79

Primary Tumor Site: kidney 20250619 **Collection Date:**

Sample Cancer Type: Kidney Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	6

Report Highlights 3 Relevant Biomarkers 0 Therapies Available 5 Clinical Trials

Relevant Kidney Cancer Findings

Gene	Finding	
ALK	None detected	
BRAF	None detected	
NTRK1	None detected	
NTRK2	None detected	
NTRK3	None detected	
RET	None detected	
SMARCB1	None detected	
Genomic Alter	ation	Finding
Tumor Muta	ational Burden	0.95 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	3
IIC	CHEK2 deletion checkpoint kinase 2 Locus: chr22:29083868	None*	None*	1
IIC	NF2 p.(H195Qfs*17) c.577_584dup neurofibromin 2 Allele Frequency: 15.50% Locus: chr22:30051642 Transcript: NM_000268.4	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO Line of therapy: I: First-line therapy, II+: Other line of therapy

Report Date: 10 Jul 2025

Prevalent cancer biomarkers without relevant evidence based on included data sources

CIC p.(S1104T) c.3310T>A, Microsatellite stable, RAD51B deletion, HLA-B deletion, Tumor Mutational Burden

Variant Details

DNA	Sequence Varian	ts					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
NF2	p.(H195Qfs*17)	c.577_584dup		chr22:30051642	15.50%	NM_000268.4	frameshift Insertion
CIC	p.(S1104T)	c.3310T>A		chr19:42796852	53.60%	NM_015125.5	missense
HLA-C	p.([V328=;T329A;A330 V;M331V;M332V])	c.984_994delCACCGC TATGAinsGGCTGTTGT GG		chr6:31237764	4.44%	NM_001243042.1	synonymous, missense, missense, missense
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT CA		chr6:31324208	86.03%	NM_005514.8	missense, missense
PARP4	p.(G1644R)	c.4930G>A		chr13:25000653	45.67%	NM_006437.4	missense

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
CDKN2A	chr9:21968178	0.58	0.64		
CHEK2	chr22:29083868	1	0.92		
RAD51B	chr14:68290164	1	0.93		
HLA-B	chr6:31322252	0.62	0.66		

Biomarker Descriptions

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)⁵⁹. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{60,61,62}. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions⁶³. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation¹,63,64</sup>. CDKN2A aberrations commonly co-occur with CDKN2B⁵⁹. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation⁶⁵. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{66,67}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations⁶⁸. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{8,9}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and

Report Date: 10 Jul 2025

Biomarker Descriptions (continued)

cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{8,9}. Alterations in CDKN2A are also observed in pediatric cancers⁹. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors⁹. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)⁹.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{12,69,70}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma⁷¹. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{72,73,74}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme⁷⁵. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{76,77,78,79}.

CHEK2 deletion

checkpoint kinase 2

<u>Background</u>: The CHEK2 gene encodes the checkpoint kinase-2 serine/threonine kinase, which is a cell-cycle checkpoint regulator. In response to DNA damage, CHEK2 is phosphorylated by ATM and subsequently phosphorylates and negatively regulates CDC25C to prevent entry into mitosis⁵¹. CHEK2 also stabilizes p53, leading to cell-cycle arrest in G1 phase, and is capable of phosphorylating BRCA1 and promoting DNA repair including homologous recombination repair (HRR)^{52,53,54}. Germline mutations in the CHEK2 gene are associated with Li-Fraumeni syndrome and inherited risk of breast cancer^{55,56,57}.

Alterations and prevalence: Consistent with its role as a tumor suppressor, CHEK2 is enriched for deleterious truncating mutations. Somatic mutations in CHEK2 are common (2-6%) in uterine carcinoma, bladder carcinoma, and lung adenocarcinoma^{8,9}. CHEK2 gene deletions are observed in adrenocortical carcinoma, thymoma, and prostate cancer^{8,9}.

Potential relevance: The PARP inhibitor, olaparib²¹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes CHEK2. Additionally, talazoparib⁵⁸ in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes CHEK2. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex²², for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

NF2 p.(H195Qfs*17) c.577_584dup

neurofibromin 2

Background: The NF2 gene encodes the cytoskeletal Merlin (Moesin-ezrin-radixin-like) protein. NF2 is also known as Schwannomin due to its prevalence in neuronal Schwann cells. NF2 is structurally and functionally related to the Ezrin, Radixin, Moesin (ERM) family which is known to control plasma membrane function, thereby influencing cell shape, adhesion, and growth^{23,24,25}. NF2 regulates several cellular pathways including the RAS/RAF/MEK/ERK, PI3K/AKT, and Hippo-YAP pathways, thus impacting cell motility, adhesion, invasion, proliferation, and apoptosis^{23,24,25,26}. NF2 functions as a tumor suppressor wherein loss of function mutations are shown to confer a predisposition to tumor development^{24,25,27}. Specifically, deleterious germline mutations or deletion of NF2 leading to loss of heterozygosity (LOH) is causal of neurofibromatosis type 2, a tumor prone disorder characterized by early age onset of multiple Schwannomas and meningiomas^{24,25,27}.

Alterations and prevalence: Somatic mutations in NF2 are predominantly misssense or truncating and are observed in about 23% of mesothelioma, 5% of cholangiocarcinoma and uterine cancer, and about 3% of papillary renal cell carcinoma (pRCC), bladder, and cervical cancers⁸. Biallelic loss of NF2 is also observed in approximately 8% of mesothelioma cases⁸.

<u>Potential relevance:</u> Currently, no therapies are approved for NF2 aberrations. However, the FDA granted Fast Track designation (2022) to the novel TEAD inhibitor, IK-930, for unresectable NF2-deficient malignant pleural mesothelioma (MPM)²⁸.

CIC p.(S1104T) c.3310T>A

capicua transcriptional repressor

Background: The CIC gene encodes the capicua transcriptional repressor, a member of the high mobility group (HMG)-box superfamily^{1,10}. The HMG-box domain mediates CIC binding to an octameric consensus sequence at the promoters of target genes^{1,10}. CIC interacts with the HDAC complex and SWI/SNF to transcriptionally repress target genes, which include members of the E-

Biomarker Descriptions (continued)

Twenty Six (ETS) oncogene family ETV1, ETV4 and ETV5¹⁰. CIC aberrations lead to increased RTK/MAPK signaling and oncogenesis, supporting a tumor suppressor role for CIC¹⁰.

Alterations and prevalence: Somatic mutations in CIC are observed in 21% of brain lower grade glioma, 11% of uterine corpus endometrial carcinoma, 8% of skin cutaneous melanoma, 7% of stomach adenocarcinoma, and 6% of colorectal adenocarcinoma^{8,9}. Biallelic loss of CIC is observed 2% of prostate adenocarcinoma and diffuse large B-cell lymphoma (DLBCL)^{8,9}. Recurrent CIC fusions are found in Ewing-like sarcoma (ELS) (CIC::DUX4 and CIC::FOXO4), angiosarcoma (CIC::LEUTX), peripheral neuroectodermal tumors (CIC::NUTM1) and oligodendroglioma^{10,11}.

Potential relevance: Currently, no therapies are approved for CIC aberrations. CIC fusions, including CIC::DUX4 fusion, t(10;19)(q26;q13) and t(4;19)(q35;q13), are ancillary diagnostic markers for CIC-Rearranged Sarcoma^{12,13}.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome²⁹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{30,31}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2³². Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250³³. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)³³. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{34,35,36,37,38}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes³¹. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{30,31,35,39}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{30,31,40,41}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{40,41}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁴² (2014) and nivolumab⁴³ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁴² is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁴². Dostarlimab⁴⁴ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{36,45}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁴⁶ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{36,47,48}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁴⁸. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{49,50}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{49,50}.

RAD51B deletion

RAD51 paralog B

Background: The RAD51B gene encodes the RAD51 paralog B protein, a member of the RAD51 recombinase family that also includes RAD51, RAD51C (RAD51L2), RAD51D (RAD51L3), XRCC2, and XRCC3 paralogs. The RAD51 family of proteins are involved in homologous recombination repair (HRR) and DNA repair of double-strand breaks (DSB)¹⁴. RAD51B associates with other RAD51 paralogs to form RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex¹⁵. The BCDX2 complex binds single- and double-stranded DNA to hydrolyze ATP¹⁶. RAD51B is a tumor suppressor gene. Loss of function mutations in RAD51B are implicated in the BRCAness phenotype, which is characterized by a defect in HRR mimicking BRCA1 or BRCA2 loss^{17,18}. Biallelic expression of RAD51B is required for chromosomal integrity and haploinsufficiency leads to aberrant HRR resulting in centrosome fragmentation, aneuploidy, and mild hypersensitivity to DNA-damaging agents¹⁹. Genetic variation within the RAD51B locus on 14q24.1 is significantly associated with familial breast cancer risk²⁰.

Report Date: 10 Jul 2025 5 of 10

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in RAD51B are observed in up to 3% of uterine cancer^{8,9}. Loss of function mutations in RAD51B are rare, but variation within the RAD51B locus is significantly associated with familial breast cancer risk²⁰.

Potential relevance: The PARP inhibitor, olaparib²¹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes RAD51B. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex²², for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B¹. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B³.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3CA, PPP2R2A, PPP6C,

6 of 10

(II)

Report Date: 10 Jul 2025

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

pamiparib, tislelizumab

In this cancer type In other cancer type	e In this cance	r type and other car	ncer types	X No eviden	ce
CDKN2A deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	×	×	×	×	(II)
palbociclib, abemaciclib	×	×	×	×	(II)
AMG 193	×	×	×	×	(I/II)
CHEK2 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 10 Jul 2025 7 of 10

Relevant Therapy Summary (continued)

NF2 p (H1950fs*17) c 577 584dup

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

111 2 p.(11130q10 117) 0.017_00 1uup					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
IAG-933	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	18.62%
CHEK2	CNV, CN:1.0
CHEK2	LOH, 22q12.1(29083868-29130729)x1
RAD51B	CNV, CN:1.0
RAD51B	LOH, 14q24.1(68290164-69061406)x1

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

Report Date: 10 Jul 2025

References

- O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class Ilike molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 5. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 6. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Wong et al. Making heads or tails the emergence of capicua (CIC) as an important multifunctional tumour suppressor. J Pathol. 2020 Apr;250(5):532-540. PMID: 32073140
- 11. Huang et al. Recurrent CIC Gene Abnormalities in Angiosarcomas: A Molecular Study of 120 Cases With Concurrent Investigation of PLCG1, KDR, MYC, and FLT4 Gene Alterations. Am J Surg Pathol. 2016 May;40(5):645-55. PMID: 26735859
- 12. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 13. NCCN Guidelines® NCCN-Bone Cancer [Version 2.2025]
- 14. Sullivan et al. RAD-ical New Insights into RAD51 Regulation. Genes (Basel). 2018 Dec 13;9(12). PMID: 30551670
- 15. Suwaki et al. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin. Cell Dev. Biol. 2011 Oct;22(8):898-905. PMID: 21821141
- 16. Chun et al. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell. Biol. 2013 Jan;33(2):387-95. PMID: 23149936
- 17. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocr. Relat. Cancer. 2016 Jun;23(6):R267-85. PMID: 27226207
- 18. Lord et al. BRCAness revisited. Nat. Rev. Cancer. 2016 Feb;16(2):110-20. PMID: 26775620
- 19. Date et al. Haploinsufficiency of RAD51B causes centrosome fragmentation and aneuploidy in human cells. Cancer Res. 2006 Jun 15;66(12):6018-24. PMID: 16778173
- 20. Pelttari et al. RAD51B in Familial Breast Cancer. PLoS ONE. 2016;11(5):e0153788. PMID: 27149063
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208558s028lbl.pdf
- 22. https://www.senhwabio.com//en/news/20220125
- 23. Bretscher et al. ERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annu. Rev. Cell Dev. Biol. 2000;16:113-43. PMID: 11031232
- 24. Petrilli et al. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016 Feb 4;35(5):537-48. PMID: 25893302
- 25. Morrow et al. Merlin: the wizard requires protein stability to function as a tumor suppressor. Biochim. Biophys. Acta. 2012 Dec;1826(2):400-6. PMID: 22750751
- 26. Mia et al. Targeting NF2-Hippo/Yap signaling pathway for cardioprotection after ischemia/reperfusion injury. Ann Transl Med. 2016 Dec; 4(24): 545. PMID: 28149906
- 27. Evans. Neurofibromatosis Type 2 (NF2): A Clinical and Molecular Review. Orphanet J Rare Dis. 2009 Jun 19;4:16. doi: 10.1186/1750-1172-4-16. PMID: 19545378
- 28. https://ir.ikenaoncology.com//news-releases/news-release-details/ikena-oncology-receives-fda-fast-track-designation-novel-tead
- 29. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 30. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 31. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 32. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133

9 of 10

Report Date: 10 Jul 2025

References (continued)

- 33. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 34. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 35. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 36. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]
- 37. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 38. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 39. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 40. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 41. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 42. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 44. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 45. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 46. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 47. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 48. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 49. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 50. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 51. Matsuoka et al. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998 Dec 4;282(5395):1893-7. PMID: 9836640
- 52. Cai et al. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell. 2009 Sep 24;35(6):818-29. PMID: 19782031
- 53. Zhang et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell. Biol. 2004 Jan;24(2):708-18. PMID: 14701743
- 54. Huang et al. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. Mol. Cancer Ther. 2008 Jun;7(6):1440-9. PMID: 18566216
- 55. Apostolou et al. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer (Dove Med Press). 2017;9:331-335. PMID: 28553140
- 56. Nevanlinna et al. The CHEK2 gene and inherited breast cancer susceptibility. Oncogene. 2006 Sep 25;25(43):5912-9. PMID: 16998506
- 57. Näslund-Koch et al. Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J. Clin. Oncol. 2016 Apr 10;34(11):1208-16. PMID: 26884562
- 58. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf
- 59. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 60. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 61. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 62. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509

Report Date: 10 Jul 2025 10 of 10

References (continued)

- 63. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 64. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 65. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 66. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 67. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 68. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 69. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 70. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 71. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 72. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 73. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 74. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 75. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 76. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 77. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 78. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 79. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769