

Tel. 1661-5117 www.smlab.co.kr



**Report Date**: 03 Jul 2025 1 of 23

Patient Name: 양유석 Gender: M Sample ID: N25-71 **Primary Tumor Site:** Bronchus **Collection Date:** 2025.06.13

# Sample Cancer Type: Non-Small Cell Lung Cancer

| Table of Contents        | Page |
|--------------------------|------|
| Variant Details          | 2    |
| Biomarker Descriptions   | 3    |
| Alert Details            | 7    |
| Relevant Therapy Summary | 11   |

Report Highlights 2 Relevant Biomarkers 52 Therapies Available 77 Clinical Trials

# **Relevant Non-Small Cell Lung Cancer Findings**

| Gene        | Finding          |                      | Gene  | Finding       |  |
|-------------|------------------|----------------------|-------|---------------|--|
| ALK         | None detected    |                      | MET   | None detected |  |
| BRAF        | None detected    |                      | NRG1  | None detected |  |
| EGFR        | None detected    |                      | NTRK1 | None detected |  |
| ERBB2       | ERBB2 amplif     | ication              | NTRK2 | None detected |  |
| FGFR1       | None detected    |                      | NTRK3 | None detected |  |
| FGFR2       | None detected    |                      | RET   | None detected |  |
| FGFR3       | None detected    |                      | ROS1  | None detected |  |
| KRAS        | None detected    |                      |       |               |  |
| Genomic Alt | eration          | Finding              |       |               |  |
| Tumor Mu    | ıtational Burden | 0.94 Mut/Mb measured |       |               |  |

## **Relevant Biomarkers**

| Tier | Genomic Alteration                                                          | Relevant Therapies<br>(In this cancer type) | Relevant Therapies<br>(In other cancer type)                                                                                                                                                                                                                                                                                                                                            | Clinical Trials |
|------|-----------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| IA   | ERBB2 amplification erb-b2 receptor tyrosine kinase 2 Locus: chr17:37863255 | trastuzumab deruxtecan 1 / II+              | lapatinib + hormone therapy 1,2/l,   + lapatinib + trastuzumab 2/l,   + pertuzumab + trastuzumab + chemotherapy 1,2/l,   + trastuzumab + tucatinib 1/l,   + trastuzumab deruxtecan 1,2/l,   + trastuzumab deruxtecan 1,2/l,   + trastuzumab + chemotherapy 2/l,   + pembrolizumab + trastuzumab + chemotherapy 1,2/l ado-trastuzumab emtansine 1,2/  + lapatinib + chemotherapy 1,2/  + |                 |

<sup>\*</sup> Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

**Tier Reference:** Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

<sup>\*</sup> Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

<sup>†</sup> Includes biosimilars/generics

Report Date: 03 Jul 2025 2 of 23

# **Relevant Biomarkers (continued)**

| Tier | Genomic Alteration                                                                                                         | Relevant Therapies<br>(In this cancer type) | Relevant Therapies<br>(In other cancer type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clinical Trials |
|------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|      |                                                                                                                            |                                             | margetuximab + chemotherapy 1/  + neratinib 1,2/  + neratinib + chemotherapy 1/  + trastuzumab + tucatinib + chemotherapy 1,2/  + trastuzumab†1,2/  + zanidatamab 1/  + pertuzumab/trastuzumab/ hyaluronidase-zzxf + chemotherapy 1,2 trastuzumab and hyaluronidase-oysi                                                                                                                                                                                                                                                                 |                 |
|      |                                                                                                                            |                                             | trastuzumab and hyaluronidase-oysi + chemotherapy 1 pertuzumab + trastuzumab + hormone therapy           lapatinib + trastuzumab + hormone therapy         abemaciclib + trastuzumab + hormone therapy       abemaciclib + trastuzumab + hormone therapy       ado-trastuzumab emtansine + hormone therapy       hormone therapy         hormone therapy         hormone therapy       trastuzumab + trastuzumab + hormone therapy       trastuzumab + hormone therapy + chemotherapy       trastuzumab + hormone therapy + chemotherapy |                 |
| IIC  | TP53 p.(R175H) c.524G>A<br>tumor protein p53<br>Allele Frequency: 9.10%<br>Locus: chr17:7578406<br>Transcript: NM_000546.6 | None*                                       | None*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3               |

- $\hbox{* Public data sources included in relevant the rapies: FDA1, NCCN, EMA2, ESMO}$
- \* Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

† Includes biosimilars/generics

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🛕 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🗳 Breakthrough, 🔼 Fast Track

A CT-0508 1, CT-0525 1 ERBB2 amplification

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

## Prevalent cancer biomarkers without relevant evidence based on included data sources

ESR1 p.(R555H) c.1664G>A, Microsatellite stable, ZFHX3 p.(S1644\*) c.4929\_4929delCinsTT, Tumor Mutational Burden

## **Variant Details**

# **DNA Sequence Variants**

| Allele |                   |          |            |               |           |             |                |
|--------|-------------------|----------|------------|---------------|-----------|-------------|----------------|
| Gene   | Amino Acid Change | Coding   | Variant ID | Locus         | Frequency | Transcript  | Variant Effect |
| TP53   | p.(R175H)         | c.524G>A | COSM10648  | chr17:7578406 | 9.10%     | NM_000546.6 | missense       |

3 of 23

Report Date: 03 Jul 2025

# **Variant Details (continued)**

## **DNA Sequence Variants (continued)**

| Gene   | Amino Acid Change | Coding                    | Variant ID | Locus          | Allele<br>Frequency | Transcript     | Variant Effect          |
|--------|-------------------|---------------------------|------------|----------------|---------------------|----------------|-------------------------|
| ESR1   | p.(R555H)         | c.1664G>A                 |            | chr6:152419977 | 40.64%              | NM_001122740.2 | missense                |
| ZFHX3  | p.(S1644*)        | c.4929_4929delCinsTT      |            | chr16:72831652 | 5.50%               | NM_006885.4    | nonsense                |
| MAP3K1 | p.([A117=;S118C]) | c.351_352delGAinsCT       |            | chr5:56111751  | 45.80%              | NM_005921.2    | synonymous,<br>missense |
| LAMA2  | p.(L2595V)        | c.7783C>G                 |            | chr6:129807652 | 7.76%               | NM_000426.4    | missense                |
| BRIP1  | p.([E879=;S880P]) | c.2637_2638delATinsG<br>C | · .        | chr17:59763464 | 5.56%               | NM_032043.3    | synonymous,<br>missense |

| Copy Number Variations |                |             |           |  |  |  |  |  |
|------------------------|----------------|-------------|-----------|--|--|--|--|--|
| Gene                   | Locus          | Copy Number | CNV Ratio |  |  |  |  |  |
| EDDD0                  | obr17:270622EE | 6 F 6       | 10.70     |  |  |  |  |  |

## **Biomarker Descriptions**

#### **ERBB2** amplification

erb-b2 receptor tyrosine kinase 2

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor (HER) family. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family<sup>89</sup>. All ERBB/HER proteins encode transmembrane receptor tyrosine kinases. However, ERBB2/HER2 is an orphan receptor with no known ligand. ERBB2 preferentially binds other ligand bound ERBB/HER family members to form hetero-dimers resulting in the activation of ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which promote cell proliferation, differentiation, and survival<sup>90</sup>. Recurrent focal amplification of the ERBB2 gene leads to increased expression in several cancer types. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and activation without ligand binding<sup>91,92,93</sup>.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-20% of breast, esophageal, and gastric cancers, 5-10% of bladder, cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers<sup>6,7,94,95,96,97,98,99</sup>. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types<sup>6,100,101</sup>. In breast, bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include in-frame exon 20 insertions, particularly Y772\_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER2<sup>102,103</sup>. Trastuzumab<sup>104</sup> was FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for HER2-positive breast cancer including pertuzumab 105 (2012), a humanized monoclonal antibody that inhibits HER2 dimerization, and ado-trastuzumab emtansine106 (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer<sup>43</sup>. In addition to monoclonal antibodies, the small molecule inhibitor lapatinib107, with specificity for both EGFR and ERBB2, was FDA approved (2007) for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including trastuzumab. In 2017, the FDA approved the use of neratinib108, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4, for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved neratinib<sup>108</sup> in combination with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2directed therapies. Also in 2020, the TKI irbinitinib109 was FDA approved for HER2 overexpressing or amplified breast cancer in combination with trastuzumab and capecitabine. In 2021, the PD-1 blocking antibody, pembrolizumab, in combination with trastuzumab, fluoropyrimidine- and platinum-based chemotherapy, was approved for HER2 amplified gastric or gastroesophageal (GEJ) adenocarcinoma in the first line80. In 2024, a bispecific HER2 antibody, zanidatamab110, was approved for the treatment of adults with previously treated, unresectable or metastatic ERBB2 overexpressing biliary tract cancer. The vaccine, nelipepimut-S111, was

# **Biomarker Descriptions (continued)**

granted fast track designation by the FDA (2016) in patients with low to intermediate HER2 expressing (IHC score 1+ or 2+) breast cancer. In 2018 fast track designation was granted to the monoclonal antibody margetuximab<sup>112</sup> in patients with ERBB2 positive breast cancer previously treated with an anti-HER2 therapy. In 2019, fast track designation was granted to the HER2-targeting antibody drug conjugate, amcenestrant<sup>113</sup>, for HER2-positive advanced or metastatic breast cancer after one or more prior anti-HER2 based regimens. Additionally, in 2019, zanidatamab<sup>114</sup>, received fast track designation in combination with standard chemotherapy for patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA). In 2020, BDTX-189<sup>115</sup> received fast track designation for adult patients with solid tumors harboring an allosteric human ERBB2 mutation or exon 20 insertion, and the humanized anti-HER2 antibody drug conjugate disitamab vedotin received breakthrough designation for adult patients with HER2-positive urothelial cancer after previous platinum-chemotherapy treatment<sup>116</sup>. In 2021, the antibody-drug conjugate ARX788<sup>117</sup> received fast track designation as a monotherapy for advanced or metastatic HER2-positive breast cancer that have progressed on one or more anti-HER2 regimens. Additionally, fast track designation was granted to HER2-targeted chimeric antigen receptor macrophage (CAR-M) (2019), CT-0508118, and to ex vivo gene-modified autologous chimeric antigen receptor-monocyte (CAR-Monocyte) cellular therapy (2024), CT-0525119, for HER2-overexpressing solid tumors. In 2024, a small molecule inhibitor, BAY-2927088120, received breakthrough designation for the treatment of NSCLC patients with ERBB2 activating mutations. Certain activating mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacomitinib in early and ongoing clinical studies 121,122,123,124,125. ERBB2 kinase domain mutations R896G and V659E both showed response to afatinib in two NSCLC case studies<sup>126,127</sup>. Additionally, acquired HER2 mutations in estrogen receptor-positive (ER+) breast cancer have been shown to confer resistance to hormone therapy<sup>128</sup>. However, this was shown to be overcome by neratinib in combination with therapies targeting ER<sup>128</sup>. Additionally, in 2024, FDA granted fast track designation to zongertinib<sup>129</sup>, an irreversible ERBB2 tyrosine kinase inhibitor, for HER2-mutant NSCLC tumors that have progressed on or after platinum-based therapy.

#### TP53 p.(R175H) c.524G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis². Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential³. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers<sup>4,5</sup>.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)<sup>6,7,8,9,10,11</sup>. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282<sup>6,7</sup>. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes<sup>12,13,14,15</sup>. Alterations in TP53 are also observed in pediatric cancers<sup>6,7</sup>. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)<sup>6,7</sup>. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)<sup>6,7</sup>.

Potential relevance: The small molecule p53 reactivator, PC14586¹6 (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt¹7, (2019) and breakthrough designation¹8 (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation¹9,20. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma²¹. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)²²,²²,²²,²²,²²,². In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant²8. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system²9.

#### ESR1 p.(R555H) c.1664G>A

estrogen receptor 1

Background: The ESR1 gene encodes estrogen receptor 1 (ER $\alpha$ ), which is a member of the superfamily of nuclear receptors which convert extracellular signals into transcriptional responses. A related gene, ESR2, encodes the cognate ER $\beta$  protein. ER $\alpha$  is a ligand-activated transcription factor regulated by the hormone estrogen<sup>30,31</sup>. Estrogen binding to ER $\alpha$  results in receptor dimerization, nuclear

# **Biomarker Descriptions (continued)**

translocation, and target gene transcription. In addition, estrogen binding to the ERa results in the activation of the RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, cAMP/PKA and PLC/PKC signaling pathways and cell proliferation and survival<sup>32</sup>.

Alterations and prevalence: Approximately 70% of breast cancers express ER $\alpha$  and ER $\beta$  positivity. Mutations in the ER $\alpha$  ligand binding domain, including S463P, Y537S, and D538G, result in endocrine-independent constitutive receptor activation, which is a common mechanism of endocrine resistance<sup>33,34,35,36</sup>. ESR1 gene fusions and ESR1 copy number gains have also been observed and are associated with advanced endocrine resistant disease<sup>37,38,39,40,41</sup>.

Potential relevance: The FDA has approved elacestrant<sup>42</sup> (2023) for the treatment of postmenopausal women or adult men with ERpositive/ERBB2-negative, ESR1-mutated advanced or metastatic breast cancer<sup>43</sup>. The FDA has also granted fast track designations to the following therapies: AC699<sup>44</sup> (2024) and lasofoxifene<sup>45</sup> (2019) for ESR1-mutated, ER-positive/ERBB2-negative metastatic breast cancer, camizaestrant<sup>46</sup> for ESR1-mutated, HR-positive/ERBB2-negative metastatic breast cancer, and seviteronel<sup>47</sup> (2016) for ER-positive breast cancer. Anti-estrogen (endocrine) treatments such as tamoxifen<sup>48</sup> (1977), fulvestrant<sup>49</sup> (2002), letrozole<sup>50</sup> (1995), and exemestane<sup>51</sup> (2005) are FDA approved for ER-positive metastatic breast cancer s<sup>52,53</sup>. Although ERα and ERβ positivity predicts response to endocrine therapies, about a quarter of patients with primary breast cancer and almost all patients with metastatic disease will develop endocrine resistance<sup>54,55,56</sup>.

#### Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome<sup>67</sup>. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue<sup>68,69</sup>. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2<sup>70</sup>. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250<sup>71</sup>. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)<sup>71</sup>. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS<sup>72,73,74,75,76</sup>. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes<sup>69</sup>. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer <sup>68,69,73,77</sup>.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma<sup>68,69,78,79</sup>. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers<sup>78,79</sup>.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab<sup>80</sup> (2014) and nivolumab<sup>81</sup> (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab<sup>80</sup> is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication<sup>80</sup>. Dostarlimab<sup>82</sup> (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer<sup>74,83</sup>. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab<sup>84</sup> (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location<sup>74,85,86</sup>. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients<sup>86</sup>. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors<sup>87,88</sup>. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers<sup>87,88</sup>.

#### ZFHX3 p.(S1644\*) c.4929\_4929delCinsTT

zinc finger homeobox 3

Background: ZFHX3 encodes zinc finger homeobox 3, a large transcription factor composed of several DNA binding domains, including seventeen zinc finger domains and four homeodomains $^{1,57,58}$ . Functionally, ZFHX3 is found to be necessary for neuronal and myogenic differentiation $^{58,59}$ . ZFHX3 is capable of binding and repressing transcription of  $\alpha$ -fetoprotein (AFP), thereby negatively regulating the expression of MYB and cancer cell growth $^{60,61,62,63,64}$ . In addition, ZFHX3 has been observed to be altered in several cancer types, supporting a tumor suppressor role for ZFHX3 $^{60,63,65,66}$ .

**Report Date**: 03 Jul 2025 6 of 23

# **Biomarker Descriptions (continued)**

Alterations and prevalence: Somatic mutations in ZFHX3 are observed in 24% of uterine corpus endometrial carcinoma, 14% of skin cutaneous melanoma, 10% of colorectal adenocarcinoma, 9% of stomach adenocarcinoma, 8% of lung squamous cell carcinoma, 6% of cervical squamous cell carcinoma, 5% of uterine carcinosarcoma, bladder urothelial carcinoma, and lung adenocarcinoma, 3% of head and neck squamous cell carcinoma, adrenocortical carcinoma, cholangiocarcinoma, esophageal adenocarcinoma, and prostate adenocarcinoma, and 2% of diffuse large B-cell lymphoma, glioblastoma multiforme, pancreatic adenocarcinoma, liver hepatocellular carcinoma, thyroid carcinoma, breast invasive carcinoma, ovarian serous cystadenocarcinoma, thymoma, sarcoma, and acute myeloid leukemia<sup>6,7</sup>. Biallelic loss of ZFHX3 is observed in 6% of prostate adenocarcinoma, 4% of uterine carcinosarcoma, 3% of ovarian serous cystadenocarcinoma, and 2% of uterine corpus endometrial carcinoma, breast invasive carcinoma, and esophageal adenocarcinoma<sup>6,7</sup>.

Potential relevance: Currently, no therapies are approved for ZFHX3 aberrations.

Report Date: 03 Jul 2025 7 of 23

# **Alerts Informed By Public Data Sources**

#### **Current FDA Information**

Contraindicated



Not recommended



Resistance



Breakthrough



Fast Track

FDA information is current as of 2025-04-16. For the most up-to-date information, search www.fda.gov.

## **ERBB2** amplification

## trastuzumab pamirtecan

Cancer type: Endometrial Carcinoma

Variant class: ERBB2 overexpression

#### **Supporting Statement:**

The FDA has granted Breakthrough Therapy designation to antibody-drug conjugate, trastuzumab pamirtecan (DB-1303), for the treatment of patients with HER2-expressing advanced endometrial cancer.

#### Reference:

https://investors.biontech.de//news-releases/news-release-details/biontech-and-dualitybio-receive-fda-breakthrough-therapy

## disitamab vedotinaide

Cancer type: Bladder Urothelial Carcinoma

#### Variant class: ERBB2 positive

#### **Supporting Statement:**

The FDA has granted Breakthrough Therapy designation to the humanized anti-HER2 antibody drug conjugate (ADC), disitamab vedotin, for the second-line treatment of HER2 positive locally advanced or metastatic urothelial cancer (UC) after previous platinum-containing chemotherapy treatment.

#### Reference:

https://www.prnewswire.com/news-releases/remegen-announces-us-fda-has-granted-breakthrough-therapy-designation-fordisitamab-vedotin-rc48-in-urothelial-cancer-301138315.html

## **A** CT-0508

Cancer type: Solid Tumor

Variant class: ERBB2 overexpression

### Supporting Statement:

The FDA has granted Fast Track designation to the HER2 targeted chimeric antigen receptor macrophage (CAR-M), CT-0508, for HER2-overexpressing solid tumors.

### Reference:

https://www.prnewswire.com/news-releases/carisma-therapeutics-announces-us-food-and-drug-administration-grants-fast-trackdesignation-to-ct-0508-for-the-treatment-of-patients-with-solid-tumors-301381843.html

Report Date: 03 Jul 2025 8 of 23

## **ERBB2** amplification (continued)

## A CT-0525

Cancer type: Solid Tumor

Variant class: ERBB2 overexpression

#### Supporting Statement:

The FDA has granted Fast Track designation to the ex vivo gene-modified autologous chimeric antigen receptor-monocyte (CAR-Monocyte) cellular therapy, CT-0525, for the treatment of patients with human epidermal growth factor receptor 2 (HER2) overexpressing solid tumours.

#### Reference:

https://www.prnewswire.com/news-releases/carisma-therapeutics-granted-fda-fast-track-designation-for-ct-0525-for-the-treatment-of-her2overexpressing-solid-tumors-302180804.html

## zanidatamab + chemotherapy

Cancer type: Gastroesophageal Junction

Adenocarcinoma

Variant class: ERBB2 overexpression

### Supporting Statement:

The FDA has granted Fast Track designation to the HER2 targeted bispecific antibody, zanidatamab, for HER2-overexpressing gastroesophageal adenocarcinoma (GEA) to be used in combination with standard-of-care chemotherapy.

#### Reference:

https://www.targetedonc.com/view/her2targeted-antibody-zw25-earns-fda-fast-track-designation-in-gea

## anvatabart opadotin

Cancer type: Breast Cancer Variant class: ERBB2 positive

### **Supporting Statement:**

The FDA has granted Fast Track designation to the HER2-targeting antibody drug conjugate, anvatabart opadotin (ARX-788), for HER2-positive metastatic breast cancer.

## Reference:

https://ir.ambrx.com/news/news-details/2023/ACE-Breast-02-Pivotal-Phase-3-Study-of-Ambrxs-ARX788-for-the-Treatment-of-HER2-Positive-Metastatic-Breast-Cancer-Achieves-Positive-Results/default.aspx

### A CYNK-101 + pembrolizumab + trastuzumab + chemotherapy

Cancer type: Gastric Cancer,

Gastroesophageal Junction Adenocarcinoma

Variant class: ERBB2 positive

### **Supporting Statement:**

The FDA has granted Fast Track designation to the genetically modified cryopreserved human placental hematopoietic stem cell-derived natural killer (NK) cell therapy, CYNK-101, in combination with standard chemotherapy, trastuzumab, and pembrolizumab for the treatment of HER2/neu positive gastric or gastroesophageal junction (G/GEJ) adenocarcinoma.

### Reference:

https://celularity.com/celularity-receives-fast-track-designation-from-u-s-fda-for-its-nk-cell-therapy-cynk-101/

**Report Date**: 03 Jul 2025 9 of 23

# **ERBB2** amplification (continued)

## **A** evorpacept

Cancer type: Gastric Cancer, Gastroesophageal Junction Adenocarcinoma

#### **Supporting Statement:**

The FDA has granted Fast Track designation to the CD47 checkpoint inhibitor, ALX148, for the second-line treatment of patients with HER2-positive gastric or gastroesophageal junction carcinoma.

#### Reference:

https://www.targetedonc.com/view/two-fda-fast-track-designations-granted-to-alx 148-for-hnscc-and-gastric gejadeno carcino mas

#### **Current ESMO Information**

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

Variant class: ERBB2 positive

ESMO information is current as of 2025-04-01. For the most up-to-date information, search www.esmo.org.

## **ERBB2** amplification

## trastuzumab

Cancer type: Gastric Cancer Variant class: ERBB2 overexpression

## Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

■ "Treatment with trastuzumab is not recommended after first-line therapy in HER2-positive advanced gastric cancer [I, D]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Gastric Cancer [Ann Oncol (2022), doi: https://doi.org/10.1016/j.annonc.2022.07.004.]

## hormone therapy

Cancer type: Breast Cancer Variant class: ERBB2 positive

Other criteria: Hormone receptor positive

ESMO Level of Evidence/Grade of Recommendation: III / C

### Summary:

ESMO™ Clinical Practice Guidelines include the following supporting statement:

■ "The use of single-agent ET without a HER2-targeted therapy is not routinely recommended unless cardiac disease precludes the safe use of HER2-directed therapies [III, C]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Breast Cancer [Ann Oncol (2021) VOLUME 32, ISSUE 12, P1475-1495, DECEMBER 01, 2021; DOI:https://doi.org/10.1016/j.annonc.2021.09.019]

## **Genes Assayed**

## Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

## Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

## Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

## Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

# **Relevant Therapy Summary**

| trastuzumab deruxtecan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relevant Therapy                                | FDA | NCCN | EMA | ESMO | Clinical Trials |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----|------|-----|------|-----------------|
| lapatinib + capecitabine OOOO Pertuzumab + trastuzumab + chemotherapy OOOOO Pertuzumab + trastuzumab + docetaxel OOOOOO Pertuzumab + trastuzumab + docetaxel OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trastuzumab deruxtecan                          | •   | •    | 0   | 0    | <b>(II)</b>     |
| neratinib  O O O SA  pertuzumab + trastuzumab + chemotherapy O O O SA  pertuzumab + trastuzumab + docetaxel O O O SA  trastuzumab + paclitaxel O O O SA  trastuzumab + paclitaxel O O O SA  trastuzumab + tucatinib + capecitabine O O O SA  trastuzumab + carpecitabine + cisplatin O O SA  trastuzumab + carpecitabine + cisplatin O O SA  trastuzumab + carpecitabine + docetaxel O O SA  trastuzumab + carpecitabine + fluorouracil O O SA  trastuzumab + cisplatin + fluorouracil O O SA  trastuzumab + tucatinib O SA  pembrolizumab + trastuzumab + chemotherapy + fluoropyrimidine  pertuzumab/trastuzumab/hyaluronidase-zzxf + O SA  cyclophosphamide + doxorubicin  pertuzumab/trastuzumab/hyaluronidase-zzxf + O SA  cyclophosphamide + doxorubicin  pertuzumab/trastuzumab/hyaluronidase-zzxf + O SA  cyclophosphamide + doxorubicin  pertuzumab (Biocon) + carpoplatin + docetaxel O SA  trastuzumab (Biocon) + carpoplatin + fluorouracil O SA  trastuzumab (Biocon) + cisplatin + fluorouracil O SA  trastuzumab (Biocon) + cisplatin + fluorouracil O SA  trastuzumab (Biocon) + docetaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ado-trastuzumab emtansine                       | 0   | 0    | 0   | 0    | <b>(II)</b>     |
| pertuzumab + trastuzumab + chemotherapy  pertuzumab + trastuzumab + docetaxel  pertuzumab + trastuzumab + docetaxel  OOOO  xtrastuzumab + docetaxel OOOOO  xtrastuzumab + paclitaxel OOOOO  xtrastuzumab + tucatinib + capecitabine OOOOO  xtrastuzumab  trastuzumab  trastuzumab + capecitabine + cisplatin OOOO  xtrastuzumab + capecitabine + cisplatin OOOOO  xtrastuzumab + capecitabine + cisplatin OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lapatinib + capecitabine                        | 0   | 0    | 0   | 0    | ×               |
| pertuzumab + trastuzumab + docetaxel         O         O         X           trastuzumab + docetaxel         O         O         O         X           trastuzumab + paclitaxel         O         O         O         X           trastuzumab + paclitaxel         O         O         O         X           trastuzumab + tucatinib + capecitabine         O         O         X         (II)           trastuzumab + capecitabine + cisplatin         O         O         X         X           trastuzumab + capecitabine + cisplatin + fluorouracil         O         O         X         X           trastuzumab + cisplatin + fluorouracil         O         O         X         X           apartinib + capecitabine         O         X         X         X           trastuzumab + tucatinib         O         X         X         X           lapatinib + letrozole         O         X         X         X           pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin         O         X         X           pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin         O         X         X           trastuzumab (Biocon) + capecitabine + cisplatin         O         X         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | neratinib                                       | 0   | 0    | 0   | 0    | ×               |
| trastuzumab + docetaxel O O O O X  trastuzumab + paclitaxel O O O O X  trastuzumab + paclitaxel O O O O X  trastuzumab + tucatinib + capecitabine O O O X  trastuzumab + capecitabine + cisplatin O O X  trastuzumab + carboplatin + docetaxel O O X  trastuzumab + capecitabine + cisplatin O O X  trastuzumab + carboplatin + fluorouracil O O X  zanidatamab O O X  zanidatamab O O X  trastuzumab + tucatinib O X  lapatinib + capecitabine O X  lapatinib + letrozole O X  permbrolizumab + trastuzumab + chemotherapy + fluoropyrimidine  pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin O X  pertuzumab/trastuzumab/hyaluronidase-zzxf + O X  trastuzumab (Biocon) + capecitabine + cisplatin O X  trastuzumab (Biocon) + carboplatin + docetaxel O X  trastuzumab (Biocon) + carboplatin + fluorouracil O X  trastuzumab (Biocon) + cisplatin + fluorouracil O X  trastuzumab (Biocon) + docetaxel O X  trastuzumab (B | pertuzumab + trastuzumab + chemotherapy         | 0   | 0    | 0   | 0    | ×               |
| trastuzumab + paclitaxel  trastuzumab + tucatinib + capecitabine  trastuzumab + tucatinib + capecitabine  trastuzumab + capecitabine + cisplatin  trastuzumab + carboplatin + docetaxel  trastuzumab + carboplatin + fluorouracil  canidatamab  capecitabine   | pertuzumab + trastuzumab + docetaxel            | 0   | 0    | 0   | 0    | ×               |
| trastuzumab + tucatinib + capecitabine  O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trastuzumab + docetaxel                         | 0   | 0    | 0   | 0    | ×               |
| trastuzumab  trastuzumab + capecitabine + cisplatin  trastuzumab + carboplatin + docetaxel  trastuzumab + cisplatin + fluorouracil  capidatamab  cap | trastuzumab + paclitaxel                        | 0   | 0    | 0   | 0    | ×               |
| trastuzumab + capecitabine + cisplatin O O O X X X Trastuzumab + carboplatin + docetaxel O O O X X X Trastuzumab + cisplatin + fluorouracil O O O X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trastuzumab + tucatinib + capecitabine          | 0   | 0    | 0   | 0    | ×               |
| trastuzumab + carboplatin + docetaxel OOOOX  trastuzumab + cisplatin + fluorouracil OOOOX  zanidatamab OOOX  neratinib + capecitabine OOX  trastuzumab + tucatinib OOX  lapatinib + letrozole OOX  pembrolizumab + trastuzumab + chemotherapy + fluoropyrimidine OOX  pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin OOX  pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin OOX  trastuzumab (Biocon) + capecitabine + cisplatin OOX  trastuzumab (Biocon) + capecitabine + cisplatin OOX  trastuzumab (Biocon) + capecitabin + fluorouracil OOX  trastuzumab (Biocon) + cisplatin + fluorouracil OOX  trastuzumab (Biocon) + docetaxel OOX  tras | trastuzumab                                     | 0   | 0    | 0   | ×    | <b>(II)</b>     |
| trastuzumab + cisplatin + fluorouracil OOOOXXXX  zanidatamab OOOXXOO(II) neratinib + capecitabine OOXXXXX  trastuzumab + tucatinib OOXXXXX  lapatinib + letrozole OXXOOXXX  pembrolizumab + trastuzumab + chemotherapy + fluoropyrimidine OXXOOXX  pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin OXXOOXX  pertuzumab/trastuzumab/hyaluronidase-zzxf + OXXOOXXX  trastuzumab (Biocon) + capecitabine + cisplatin OXXOOXXX  trastuzumab (Biocon) + carboplatin + docetaxel OXXOOXXX  trastuzumab (Biocon) + cisplatin + fluorouracil OXXOOXXX  trastuzumab (Biocon) + cisplatin + fluorouracil OXXOOXXX  trastuzumab (Biocon) + docetaxel OXXOOXXX  trastuzumab (Bi | trastuzumab + capecitabine + cisplatin          | 0   | 0    | 0   | ×    | ×               |
| zanidatamab OOOXONIONIONIONIONIONIONIONIONIONIONIONIONIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trastuzumab + carboplatin + docetaxel           | 0   | 0    | 0   | ×    | ×               |
| neratinib + capecitabine  O O X X X  trastuzumab + tucatinib O O X X X  lapatinib + letrozole O X O X X  pembrolizumab + trastuzumab + chemotherapy + fluoropyrimidine O X O X  pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin O X O X  pertuzumab/trastuzumab/hyaluronidase-zzxf + O X O X  trastuzumab (Biocon) O X O X X  trastuzumab (Biocon) + capecitabine + cisplatin O X O X X  trastuzumab (Biocon) + carboplatin + docetaxel O X O X X  trastuzumab (Biocon) + cisplatin + fluorouracil O X O X X  trastuzumab (Biocon) + cisplatin + fluorouracil O X O X X  trastuzumab (Biocon) + docetaxel O X O X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trastuzumab + cisplatin + fluorouracil          | 0   | 0    | 0   | ×    | ×               |
| trastuzumab + tucatinib  O O X X  Iapatinib + letrozole O X O X  Pembrolizumab + trastuzumab + chemotherapy + fluoropyrimidine O X O X  Pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin O X O X  Pertuzumab/trastuzumab/hyaluronidase-zzxf + O C X  C X  C X  C X  C X  C X  C X  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zanidatamab                                     | 0   | 0    | ×   | 0    | (II)            |
| lapatinib + letrozole  O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | neratinib + capecitabine                        | 0   | 0    | ×   | ×    | ×               |
| pembrolizumab + trastuzumab + chemotherapy + fluoropyrimidine  Pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin  Pertuzumab/trastuzumab/hyaluronidase-zzxf + docetaxel  Pertuzumab/trastuzumab/hyaluronidase-zzxf + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trastuzumab + tucatinib                         | 0   | 0    | ×   | ×    | ×               |
| fluoropyrimidine  pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin  cyclophosphamide + cisplatin  cy | lapatinib + letrozole                           | 0   | ×    | 0   | ×    | ×               |
| cyclophosphamide + doxorubicin  pertuzumab/trastuzumab/hyaluronidase-zzxf + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon)  trastuzumab (Biocon) + capecitabine + cisplatin  trastuzumab (Biocon) + carboplatin + docetaxel  trastuzumab (Biocon) + cisplatin + fluorouracil  trastuzumab (Biocon) + docetaxel  Trastuzumab (Biocon) + docetaxel  Trastuzumab (Biocon) + docetaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon) + capecitabine + cisplatin O X O X X trastuzumab (Biocon) + carboplatin + docetaxel O X O X X trastuzumab (Biocon) + cisplatin + fluorouracil O X O X X trastuzumab (Biocon) + docetaxel O X O X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon) + carboplatin + docetaxel O X O X X trastuzumab (Biocon) + cisplatin + fluorouracil O X O X X trastuzumab (Biocon) + docetaxel O X O X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trastuzumab (Biocon)                            | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon) + cisplatin + fluorouracil O X O X X trastuzumab (Biocon) + docetaxel O X O X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trastuzumab (Biocon) + capecitabine + cisplatin | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon) + docetaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trastuzumab (Biocon) + carboplatin + docetaxel  | 0   | ×    | 0   | ×    | ×               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trastuzumab (Biocon) + cisplatin + fluorouracil | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon) + paclitaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trastuzumab (Biocon) + docetaxel                | 0   | ×    | 0   | ×    | ×               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trastuzumab (Biocon) + paclitaxel               | 0   | ×    | 0   | ×    | ×               |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

**Report Date**: 03 Jul 2025 12 of 23

# **Relevant Therapy Summary (continued)**

| Relevant Therapy                                             | FDA | NCCN | EMA | ESMO | Clinical Trials |
|--------------------------------------------------------------|-----|------|-----|------|-----------------|
| trastuzumab (Celltrion) + capecitabine + cisplatin           | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Celltrion) + carboplatin + docetaxel            | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Celltrion) + cisplatin + fluorouracil           | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Celltrion) + docetaxel                          | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Celltrion) + paclitaxel                         | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Henlius)                                        | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Pfizer)                                         | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Pfizer) + capecitabine + cisplatin              | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Pfizer) + carboplatin + docetaxel               | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Pfizer) + cisplatin + fluorouracil              | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Pfizer) + docetaxel                             | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Pfizer) + paclitaxel                            | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Samsung Bioepis)                                | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Samsung Bioepis) + capecitabine + cisplatin     | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Samsung Bioepis) + carboplatin + docetaxel      | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Samsung Bioepis) + cisplatin + fluorouracil     | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Samsung Bioepis) + docetaxel                    | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Samsung Bioepis) + paclitaxel                   | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Synthon)                                        | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Synthon) + capecitabine + cisplatin             | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Synthon) + carboplatin + docetaxel              | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Synthon) + cisplatin + fluorouracil             | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Synthon) + docetaxel                            | 0   | ×    | 0   | ×    | ×               |
| trastuzumab (Synthon) + paclitaxel                           | 0   | ×    | 0   | ×    | ×               |
| margetuximab + chemotherapy                                  | 0   | ×    | ×   | 0    | ×               |
| trastuzumab and hyaluronidase-oysk                           | 0   | ×    | ×   | ×    | ×               |
| trastuzumab and hyaluronidase-oysk + carboplatin + docetaxel | 0   | ×    | ×   | ×    | ×               |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

**Report Date**: 03 Jul 2025 13 of 23

# **Relevant Therapy Summary (continued)**

| ERBB2 amplification (continued)                           |     |      |     |      |                  |
|-----------------------------------------------------------|-----|------|-----|------|------------------|
| Relevant Therapy                                          | FDA | NCCN | EMA | ESMO | Clinical Trials  |
| trastuzumab and hyaluronidase-oysk + docetaxel            | 0   | ×    | ×   | ×    | ×                |
| trastuzumab and hyaluronidase-oysk + paclitaxel           | 0   | ×    | ×   | ×    | ×                |
| lapatinib + trastuzumab                                   | ×   | 0    | 0   | 0    | ×                |
| pertuzumab + trastuzumab                                  | ×   | 0    | ×   | 0    | <b>(</b>   /   ) |
| pertuzumab + trastuzumab + hormone therapy                | ×   | 0    | ×   | 0    | ×                |
| pertuzumab + trastuzumab + paclitaxel                     | ×   | 0    | ×   | 0    | ×                |
| trastuzumab + chemotherapy                                | ×   | 0    | ×   | 0    | ×                |
| trastuzumab + hormone therapy                             | ×   | 0    | ×   | 0    | ×                |
| abemaciclib + trastuzumab + fulvestrant                   | ×   | 0    | ×   | ×    | ×                |
| aromatase inhibitor                                       | ×   | 0    | ×   | ×    | ×                |
| fulvestrant                                               | ×   | 0    | ×   | ×    | ×                |
| hormone therapy                                           | ×   | 0    | ×   | ×    | ×                |
| lapatinib + aromatase inhibitor                           | ×   | 0    | ×   | ×    | ×                |
| lapatinib + trastuzumab + aromatase inhibitor             | ×   | 0    | ×   | ×    | ×                |
| margetuximab + capecitabine                               | ×   | 0    | ×   | ×    | ×                |
| margetuximab + eribulin                                   | ×   | 0    | ×   | ×    | ×                |
| margetuximab + gemcitabine                                | ×   | 0    | ×   | ×    | ×                |
| margetuximab + vinorelbine                                | ×   | 0    | ×   | ×    | ×                |
| neratinib + paclitaxel                                    | ×   | 0    | ×   | ×    | ×                |
| pembrolizumab + trastuzumab + capecitabine + cisplatin    | ×   | 0    | ×   | ×    | ×                |
| pembrolizumab + trastuzumab + capecitabine + oxaliplatin  | ×   | 0    | ×   | ×    | ×                |
| pembrolizumab + trastuzumab + cisplatin + fluorouracil    | ×   | 0    | ×   | ×    | ×                |
| pembrolizumab + trastuzumab + fluorouracil + oxaliplatin  | ×   | 0    | ×   | ×    | ×                |
| pertuzumab + trastuzumab + carboplatin + docetaxel        | ×   | 0    | ×   | ×    | ×                |
| pertuzumab + trastuzumab + carboplatin + paclitaxel       | ×   | 0    | ×   | ×    | ×                |
| pertuzumab + trastuzumab + hormone therapy + chemotherapy | ×   | 0    | ×   | ×    | ×                |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

**Report Date**: 03 Jul 2025 14 of 23

# **Relevant Therapy Summary (continued)**

| Relevant Therapy                                                                          | FDA | NCCN | EMA | ESMO | Clinical Trials |
|-------------------------------------------------------------------------------------------|-----|------|-----|------|-----------------|
| tamoxifen                                                                                 | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + aromatase inhibitor                                                         | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + capecitabine                                                                | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + capecitabine + oxaliplatin                                                  | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + carboplatin + paclitaxel                                                    | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + chemotherapy (non-anthracycline)                                            | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + cisplatin + docetaxel                                                       | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + cisplatin + docetaxel + fluorouracil                                        | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + cisplatin + paclitaxel                                                      | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + cyclophosphamide + docetaxel                                                | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + docetaxel + fluorouracil + oxaliplatin                                      | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + fluorouracil                                                                | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + fluorouracil + irinotecan                                                   | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + fluorouracil + oxaliplatin                                                  | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + fulvestrant                                                                 | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + hormone therapy + chemotherapy                                              | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + tamoxifen                                                                   | ×   | 0    | ×   | ×    | ×               |
| trastuzumab + vinorelbine                                                                 | ×   | 0    | ×   | ×    | ×               |
| pertuzumab/trastuzumab/hyaluronidase-zzxf + carboplatin + docetaxel                       | ×   | ×    | 0   | ×    | ×               |
| pertuzumab/trastuzumab/hyaluronidase-zzxf + cyclophosphamide + doxorubicin + fluorouracil | ×   | ×    | 0   | ×    | ×               |
| pertuzumab/trastuzumab/hyaluronidase-zzxf +<br>cyclophosphamide + epirubicin              | ×   | ×    | 0   | ×    | ×               |
| pertuzumab/trastuzumab/hyaluronidase-zzxf + paclitaxel                                    | ×   | ×    | 0   | ×    | ×               |
| trastuzumab (Biocon) + anastrozole                                                        | ×   | ×    | 0   | ×    | ×               |
| trastuzumab (Celltrion) + anastrozole                                                     | ×   | ×    | 0   | ×    | ×               |
| trastuzumab (EirGenix)                                                                    | ×   | ×    | 0   | ×    | ×               |
| trastuzumab (EirGenix) + anastrozole                                                      | ×   | ×    | 0   | ×    | ×               |
| trastuzumab (EirGenix) + capecitabine + cisplatin                                         | ×   | ×    | 0   | ×    | ×               |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

**Report Date**: 03 Jul 2025 15 of 23

# **Relevant Therapy Summary (continued)**

| Relevant Therapy                                            | FDA | NCCN | EMA | ESMO | Clinical Trials <sup>3</sup> |
|-------------------------------------------------------------|-----|------|-----|------|------------------------------|
| trastuzumab (EirGenix) + carboplatin + docetaxel            | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (EirGenix) + cisplatin + fluorouracil           | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (EirGenix) + docetaxel                          | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (EirGenix) + paclitaxel                         | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Henlius) + anastrozole                         | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Henlius) + capecitabine + cisplatin            | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Henlius) + carboplatin + docetaxel             | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Henlius) + cisplatin + fluorouracil            | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Henlius) + docetaxel                           | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Henlius) + paclitaxel                          | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Pfizer) + anastrozole                          | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma)                            | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma) + anastrozole              | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma) + capecitabine + cisplatin | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma) + carboplatin + docetaxel  | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma) + cisplatin + fluorouracil | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma) + docetaxel                | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Prestige BioPharma) + paclitaxel               | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Samsung Bioepis) + anastrozole                 | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab (Synthon) + anastrozole                         | ×   | ×    | 0   | ×    | ×                            |
| trastuzumab + anastrozole                                   | ×   | ×    | 0   | ×    | ×                            |
| ado-trastuzumab emtansine + hormone therapy                 | ×   | ×    | ×   | 0    | ×                            |
| lapatinib + hormone therapy                                 | ×   | ×    | ×   | 0    | ×                            |
| lapatinib + trastuzumab + hormone therapy                   | ×   | ×    | ×   | 0    | ×                            |
| margetuximab                                                | ×   | ×    | ×   | 0    | ×                            |
| neratinib + chemotherapy                                    | ×   | ×    | ×   | 0    | ×                            |
| pertuzumab + trastuzumab + nab-paclitaxel                   | ×   | ×    | ×   | 0    | ×                            |
| pyrotinib                                                   | ×   | ×    | ×   | ×    | (IV)                         |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

# **Relevant Therapy Summary (continued)**

| Relevant Therapy                                                                                                  | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|-------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|------------------|
| IAH-0968, chemotherapy                                                                                            | ×   | ×    | ×   | ×    | <b>(III)</b>     |
| allitinib                                                                                                         | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| disitamab vedotinaide, tislelizumab, bevacizumab                                                                  | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| FDA022-BB05                                                                                                       | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| neratinib, neratinib + palbociclib                                                                                | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| pertuzumab + trastuzumab, atezolizumab +<br>pertuzumab/trastuzumab/hyaluronidase-zzxf,<br>trastuzumab + tucatinib | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| pyrotinib, chemotherapy                                                                                           | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| trastuzumab (Samsung Bioepis), chemotherapy                                                                       | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| tucatinib, ado-trastuzumab emtansine                                                                              | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| tucatinib, trastuzumab                                                                                            | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| zongertinib                                                                                                       | ×   | ×    | ×   | ×    | <b>(II)</b>      |
| AZD-9574, trastuzumab deruxtecan                                                                                  | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| BAT-8010, BAT-1006                                                                                                | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| BL-M07D1                                                                                                          | ×   | ×    | ×   | ×    | <b>(</b> 1/11)   |
| DF-1001, nivolumab                                                                                                | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| DF-1001, sacituzumab govitecan                                                                                    | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| disitamab vedotinaide, catequentinib                                                                              | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| E01001                                                                                                            | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| HypoSti.CART-HER2, chemotherapy                                                                                   | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| IAH-0968                                                                                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| IBI-354                                                                                                           | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| JIN-A-04                                                                                                          | ×   | ×    | ×   | ×    | <b>(</b> I/II)   |
| JSKN-003                                                                                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| JSKN-033                                                                                                          | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| ST-1703                                                                                                           | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| trastuzumab deruxtecan, neratinib                                                                                 | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| trastuzumab pamirtecan, pertuzumab                                                                                | ×   | ×    | ×   | ×    | <b>(</b>  /  )   |
| YH32367                                                                                                           | ×   | ×    | ×   | ×    | (I/II)           |

 $<sup>^{\</sup>star}$  Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

# **Relevant Therapy Summary (continued)**

| Relevant Therapy                                              | FDA | NCCN | EMA | ESMO | Clinical Trials |
|---------------------------------------------------------------|-----|------|-----|------|-----------------|
| ZV-0203                                                       | ×   | ×    | ×   | ×    | <b>(</b>  /  )  |
| 177Lu-RAD202                                                  | ×   | ×    | ×   | ×    | <b>(</b> l)     |
| ado-trastuzumab emtansine (Shanghai Fosun<br>Pharma)          | ×   | ×    | ×   | ×    | <b>(</b> l)     |
| anti-HER-2 MAb (Anke Biotechnology)                           | ×   | ×    | ×   | ×    | <b>(</b> l)     |
| BC004                                                         | ×   | ×    | ×   | ×    | (I)             |
| BL-M17D1                                                      | ×   | ×    | ×   | ×    | (I)             |
| BM-230                                                        | ×   | ×    | ×   | ×    | (I)             |
| CART-HER2/PD-L1                                               | ×   | ×    | ×   | ×    | (I)             |
| ceralasertib, trastuzumab deruxtecan                          | ×   | ×    | ×   | ×    | (I)             |
| D3L-001                                                       | ×   | ×    | ×   | ×    | (I)             |
| DP-303c                                                       | ×   | ×    | ×   | ×    | (I)             |
| DS-1103a, trastuzumab deruxtecan                              | ×   | ×    | ×   | ×    | (I)             |
| DX126-262                                                     | ×   | ×    | ×   | ×    | (I)             |
| ELVN-002, ado-trastuzumab emtansine                           | ×   | ×    | ×   | ×    | (I)             |
| ELVN-002, trastuzumab                                         | ×   | ×    | ×   | ×    | (I)             |
| ENT-H-1, trastuzumab                                          | ×   | ×    | ×   | ×    | (I)             |
| GQ-1005                                                       | ×   | ×    | ×   | ×    | (I)             |
| GQ1001                                                        | ×   | ×    | ×   | ×    | (I)             |
| MBS301                                                        | ×   | ×    | ×   | ×    | ● (I)           |
| NC-18                                                         | ×   | ×    | ×   | ×    | (I)             |
| NVL-330                                                       | ×   | ×    | ×   | ×    | ● (I)           |
| SPH5030                                                       | ×   | ×    | ×   | ×    | (I)             |
| TAS0728                                                       | ×   | ×    | ×   | ×    | <b>(</b> I)     |
| TL-938                                                        | ×   | ×    | ×   | ×    | <b>(</b> I)     |
| TQB-2102                                                      | ×   | ×    | ×   | ×    | ● (I)           |
| trastuzumab deruxtecan, azenosertib                           | ×   | ×    | ×   | ×    | <b>(</b> l)     |
| trastuzumab deruxtecan, durvalumab, chemotherapy, volrustomig | ×   | ×    | ×   | ×    | (I)             |
| VVD-159642                                                    | ×   | ×    | ×   | ×    | (I)             |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 03 Jul 2025 18 of 23

# **Relevant Therapy Summary (continued)**

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

# ERBB2 amplification (continued)

| Relevant Therapy                                                                                                                 | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|----------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|------------------|
| XMT-2056                                                                                                                         | ×   | ×    | ×   | ×    | (I)              |
| ZN-A-1041, ado-trastuzumab emtansine, trastuzumab deruxtecan, trastuzumab, pertuzumab, pertuzumab/trastuzumab/hyaluronidase-zzxf | ×   | ×    | ×   | ×    | <b>(</b> I)      |

## TP53 p.(R175H) c.524G>A

| Relevant Therapy                  | FDA | NCCN | EMA | ESMO | Clinical Trials* |
|-----------------------------------|-----|------|-----|------|------------------|
| CLSP-1025                         | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| NT-175, chemotherapy, aldesleukin | ×   | ×    | ×   | ×    | <b>(</b> l)      |
| TP53-EphA-2-CAR-DC, anti-PD-1     | ×   | ×    | ×   | ×    | (I)              |

<sup>\*</sup> Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

## **HRR Details**

| Gene/Genomic Alteration | Finding        |
|-------------------------|----------------|
| LOH percentage          | 0.0%           |
| Not Detected            | Not Applicable |

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

## References

- O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 3. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 4. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 5. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 8. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 9. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 10. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 11. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 12. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 13. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 14. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 15. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 16. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 17. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 18. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 19. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 20. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 21. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 22. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 23. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 24. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 25. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 26. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 27. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 28. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 29. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 30. Paterni et al. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014 Nov;90:13-29. PMID: 24971815

- 31. Dahlman-Wright et al. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 2006 Dec;58(4):773-81. PMID: 17132854
- 32. Marino et al. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics. 2006;7(8):497-508. PMID: 18369406
- 33. Chang. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012 May;20(3):256-67. PMID: 24130921
- 34. Toy et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 2013 Dec;45(12):1439-45. PMID: 24185512
- 35. Jeselsohn et al. Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor-Positive Breast Cancer. Clin. Cancer Res. 2014 Apr 1;20(7):1757-1767. PMID: 24398047
- 36. Robinson et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013 Dec;45(12):1446-51. doi: 10.1038/ng.2823. Epub 2013 Nov 3. PMID: 24185510
- 37. Hartmaier et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann. Oncol. 2018 Apr 1;29(4):872-880. PMID: 29360925
- 38. Matissek et al. Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor-Positive Breast Cancer. Cancer Discov. 2018 Mar;8(3):336-353. PMID: 29242214
- 39. Lei et al. ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer. Mol Cell Oncol. 2018;5(6):e1526005. PMID: 30525098
- 40. Lei et al. Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Rep. 2018 Aug 7;24(6):1434-1444.e7. PMID: 30089255
- 41. Basudan et al. Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Mol. Cancer Res. 2019 Feb;17(2):457-468. PMID: 30355675
- 42. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/2176390rig1s001lbl.pdf
- 43. NCCN Guidelines® NCCN-Breast Cancer [Version 3.2025]
- 44. https://www.accutarbio.com/accutar-biotechnology-receives-fda-fast-track-designation-for-ac699-in-er-her2-breast-cancer/
- 45. https://sermonixpharma.com/sermonix-receives-fda-fast-track-designation-for-investigational-drug-lasofoxifene/
- 46. https://www.astrazeneca.com/content/dam/az/PDF/2022/h1-2022/H1-2022-results-announcement.pdf
- 47. https://www.businesswire.com/news/home/20160106006206/en/Innocrin-Pharmaceuticals-Granted-Fast-Track-Designation-FDA
- 48. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2002/17970s37s44s49lbl.pdf
- 49. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/021344s044lbl.pdf
- 50. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/020726s043lbl.pdf
- 51. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/020753s025lbl.pdf
- 52. Tamoxifen--an update on current data and where it can now be used. Breast Cancer Res. Treat. 2002 Oct;75 Suppl 1:S7-12; discussion S33-5. PMID: 12353826
- 53. Kim et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer. J. Clin. Oncol. 2011 Nov 1;29(31):4160-7. PMID: 21947828
- 54. Jeselsohn et al. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015 Oct;12(10):573-83. PMID: 26122181
- 55. Angus et al. ESR1 mutations: Moving towards guiding treatment decision-making in metastatic breast cancer patients. Cancer Treat. Rev. 2017 Jan;52:33-40. PMID: 27886589
- 56. Reinert et al. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer. . Front Oncol. 2017 Mar 15;7:26. PMID: 28361033
- 57. Zhao et al. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity. J Biol Chem. 2016 Jun 10;291(24):12809-12820. PMID: 27129249
- 58. Miura et al. Cloning and characterization of an ATBF1 isoform that expresses in a neuronal differentiation-dependent manner. J Biol Chem. 1995 Nov 10;270(45):26840-8. PMID: 7592926
- 59. Berry et al. Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem. 2001 Jul 6;276(27):25057-65. PMID: 11312261
- Kataoka et al. Alpha-fetoprotein producing gastric cancer lacks transcription factor ATBF1. Oncogene. 2001 Feb 15;20(7):869-73.
   PMID: 11314020

- 61. Ninomiya et al. Regulation of the alpha-fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma. Hepatology. 2002 Jan;35(1):82-7. PMID: 11786962
- 62. Kaspar et al. Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. J Biol Chem. 1999 May 14;274(20):14422-8. PMID: 10318867
- 63. Sun et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet. 2005 Apr;37(4):407-12. PMID: 15750593
- 64. Mabuchi et al. Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochem Biophys Res Commun. 2010 Jul 23;398(2):321-5. PMID: 20599712
- 65. Sun et al. Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia. 2014 May;16(5):377-89. PMID: 24934715
- 66. Kawaguchi et al. A diagnostic marker for superficial urothelial bladder carcinoma: lack of nuclear ATBF1 (ZFHX3) by immunohistochemistry suggests malignant progression. BMC Cancer. 2016 Oct 18;16(1):805. PMID: 27756245
- 67. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 68. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 69. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 70. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 71. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 72. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 73. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 74. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]
- 75. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 76. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 77. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 78. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 79. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 80. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125514s174lbl.pdf
- 81. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/125554s127lbl.pdf
- 82. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/761174s009lbl.pdf
- 83. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 84. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2025/125377s132lbl.pdf
- 85. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 86. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 87. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 88. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 89. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089

- 90. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 91. Di et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178-82. PMID: 2885917
- 92. Hudziak et al. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 1987 Oct;84(20):7159-63. PMID: 2890160
- 93. Lonardo et al. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 1990 Nov;2(11):992-1003. PMID: 1983208
- 94. Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 95. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 96. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
- 97. Donna et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18;487(7407):330-7. PMID: 22810696
- 98. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 99. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. PMID: 21720365
- 100. Petrelli et al. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature. Breast Cancer Res. Treat. 2017 Nov;166(2):339-349. PMID: 28762010
- 101. Bose et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7. PMID: 23220880
- 102. Hudis. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 2007 Jul 5;357(1):39-51. PMID: 17611206
- 103. Slamon et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177-82. PMID: 3798106
- 104. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2024/103792s5354lbl.pdf
- 105. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2020/125409s124lbl.pdf
- 106. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2022/125427s111lbl.pdf
- 107. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2022/022059s031lbl.pdf
- 108. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2021/208051s009lbl.pdf
- 109. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/213411s004lbl.pdf
- 110. https://www.accessdata.fda.gov/drugsatfda\_docs/nda/2024/7614160rig1s000Lbl.pdf
- 111. https://www.globenewswire.com/news-release/2016/06/01/845166/0/en/Galena-Biopharma-Receives-Fast-Track-Designation-for-NeuVax-nelipepimut-S-PRESENT-Clinical-Trial.html
- 112. https://www.accessdata.fda.gov/drugsatfda\_docs/label/2023/761150s005lbl.pdf
- 113. https://www.prnewswire.com/news-releases/fda-grants-arx788-fast-track-designation-for-her2-positive-metastatic-breast-cancer-301199951.html
- 114. https://www.targetedonc.com/view/her2targeted-antibody-zw25-earns-fda-fast-track-designation-in-gea
- 115. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 116. https://www.prnewswire.com/news-releases/remegen-announces-us-fda-has-granted-breakthrough-therapy-designation-for-disitamab-vedotin-rc48-in-urothelial-cancer-301138315.html
- 117. https://ir.ambrx.com/news/news-details/2023/ACE-Breast-02-Pivotal-Phase-3-Study-of-Ambrxs-ARX788-for-the-Treatment-of-HER2-Positive-Metastatic-Breast-Cancer-Achieves-Positive-Results/default.aspx
- 118. https://www.prnewswire.com/news-releases/carisma-therapeutics-announces-us-food-and-drug-administration-grants-fast-track-designation-to-ct-0508-for-the-treatment-of-patients-with-solid-tumors-301381843.html
- 119. https://www.prnewswire.com/news-releases/carisma-therapeutics-granted-fda-fast-track-designation-for-ct-0525-for-the-treatment-of-her2overexpressing-solid-tumors-302180804.html

Report Date: 03 Jul 2025 23 of 23

- 120. https://www.biospace.com/article/releases/bayer-receives-u-s-fda-breakthrough-therapy-designation-for-bay-2927088-for-non-small-cell-lung-cancer-harboring-her2-activating-mutations
- 121. Ma et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin. Cancer Res. 2017 Oct 1;23(19):5687-5695. PMID: 28679771
- 122. De et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012 Apr;76(1):123-7. PMID: 22325357
- 123. Kris et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015 Jul;26(7):1421-7. PMID: 25899785
- 124. Falchook et al. Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment. J Thorac Oncol. 2013 Feb;8(2):e19-20. PMID: 23328556
- 125. David et al. Neratinib in HER2- or HER3-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 'basket' study. AACR 2017. Abstract CT001
- 126. Lin et al. Response to Afatinib in a Patient with Non-Small Cell Lung Cancer Harboring HER2 R896G Mutation: A Case Report. Onco Targets Ther. 2019;12:10897-10902. PMID: 31849493
- 127. Chang et al. Sustained Partial Response to Afatinib in a Patient With Lung Adenocarcinoma Harboring HER2V659E Mutation. JCO Precis Oncol. 2020 Aug; 912-915. DOI: 10.1200/PO.20.00114
- 128. Nayar et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 2019 Feb;51(2):207-216. PMID: 30531871
- 129. https://www.boehringer-ingelheim.com/us/human-health/cancer/why-cancer-care-personal-us