

Tel. 1661-5117 www.smlab.co.kr

Report Date: 03 Jul 2025 1 of 13

Patient Name: 육순예 Primary Tumor Site: Gender: F Collection Date: N25-69

Sample Cancer Type: Gliomas, Glioneuronal Tumors, and Neuronal Tumors

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Relevant Therapy Summary	8

Report Highlights
2 Relevant Biomarkers
0 Therapies Available
7 Clinical Trials

Brain

2025.06.10

Relevant Gliomas, Glioneuronal Tumors, and Neuronal Tumors Findings

Gene	Finding		Gene	Finding
ALK	None detected		MYCN	None detected
ATRX	None detected		NTRK1	None detected
BCOR	None detected		NTRK2	None detected
BRAF	None detected		NTRK3	None detected
EGFR	None detected		PDGFRA	None detected
IDH1	None detected		PMS2	None detected
IDH2	None detected		RET	None detected
MET	None detected		ROS1	None detected
MLH1	None detected		TERT	None detected
MSH2	None detected		TP53	TP53 c.560-1G>A, TP53 deletion
MSH6	None detected			
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	2.83 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CDK4 amplification cyclin dependent kinase 4 Locus: chr12:58142242	None*	None*	7
IIC	CCND1 amplification cyclin D1 Locus: chr11:69455949	None*	None*	4

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

2 of 13

Report Date: 03 Jul 2025

Prevalent cancer biomarkers without relevant evidence based on included data sources

FGF19 amplification, FGF3 amplification, FGF4 amplification, Microsatellite stable, RPA1 deletion, TP53 c.560-1G>A, TP53 deletion, UGT1A1 p.(G71R) c.211G>A, NQ01 p.(P187S) c.559C>T, GPS2 deletion, H3-3B amplification, RPTOR amplification, Tumor Mutational Burden

Variant Details

DNA S	DNA Sequence Variants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
TP53	p.(?)	c.560-1G>A		chr17:7578290	77.99%	NM_000546.6	unknown
UGT1A1	p.(G71R)	c.211G>A	COSM4415616	chr2:234669144	51.30%	NM_000463.3	missense
NQ01	p.(P187S)	c.559C>T		chr16:69745145	99.10%	NM_000903.3	missense
RPTN	p.(L33M)	c.97T>A		chr1:152130269	48.72%	NM_001122965.1	missense
OR2L13	p.(L184F)	c.552G>T		chr1:248263229	4.82%	NM_175911.3	missense
PECR	p.(E149D)	c.447G>C		chr2:216923677	48.86%	NM_018441.6	missense
FANCI	p.(Q961_F962insWQ)	c.2884_2885insGGCAA T	١.	chr15:89843611	46.06%	NM_001113378.2	nonframeshift Insertion

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
CDK4	chr12:58142242	85.38	17.67		
CCND1	chr11:69455949	326.27	65.86		
FGF19	chr11:69513948	331.78	66.96		
FGF3	chr11:69625020	393.3	79.26		
FGF4	chr11:69588019	302	61.0		
RPA1	chr17:1733385	0.1	0.62		
TP53	chr17:7572848	0.4	0.68		
GPS2	chr17:7216071	0.23	0.65		
H3-3B	chr17:73772413	5.25	1.65		
RPTOR	chr17:78519448	5.65	1.73		
FGFR3	chr4:1801456	0	0.57		
FANCA	chr16:89804984	4.55	1.51		
AXIN2	chr17:63526027	5.15	1.63		
SOX9	chr17:70117435	5.2	1.64		

Biomarker Descriptions

CDK4 amplification

cyclin dependent kinase 4

<u>Background</u>: The CDK4 gene encodes the cyclin-dependent kinase 4 protein, a homologue of CDK6. Both proteins are serine/threonine protein kinases that are involved in the regulation of the G1/S phase transition of the mitotic cell cycle^{85,98}. CDK4 kinase is activated by complex formation with D-type cyclins (e.g., CCND1, CCND2, or CCND3), which leads to the phosphorylation of retinoblastoma protein (RB), followed by E2F activation, DNA replication, and cell-cycle progression⁹⁹. Germline mutations in CDK4 are associated with familial melanoma^{100,101,102}.

Alterations and prevalence: Recurrent somatic mutations of CDK4 codon K22 and R24 are observed in melanoma (1-2%) and lung cancer (approximately 0.1%). Codons K22 and R24 are necessary for binding and inhibition by p16/CDKN2A^{103,104,105}. CDK4 is recurrently amplified in several cancer types, most notably in sarcomas (15-20%), glioma (10-15%), adrenocortical carcinoma (5%), lung adenocarcinoma (5%), and melanoma (3%)^{10,16,106,107}.

Potential relevance: Currently, no therapies are approved for CDK4 aberrations. Amplification of region 12q14-15, which includes CDK4, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/welldifferentiated liposarcoma (ALT/WDLS)¹⁰⁸. Small molecule inhibitors targeting CDK4/6 including palbociclib (2015), abemaciclib (2017), and ribociclib (2017), are FDA approved in combination with an aromatase inhibitor or fulvestrant for the treatment of hormone receptor-positive, HER2-negative advanced or metastatic breast cancer.

CCND1 amplification

cyclin D1

Background: The CCND1 gene encodes the cyclin D1 protein, a member of the highly conserved D-cyclin family that also includes CCND2 and CCND3^{85,86,87}. D-type cyclins are known to regulate cell cycle progression by binding to and activating cyclin dependent kinases (CDKs), specifically CDK4 and CDK6, which leads to the phosphorylation and inactivation of the retinoblastoma (RB1) protein^{85,86}. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition thereby resulting in cell cycle progression, a common event observed in tumorigenesis^{85,86,88}. Aberrations in the D-type cyclins have been observed to promote tumor progression suggesting an oncogenic role for CCND1^{87,89}.

Alterations and prevalence: Recurrent somatic alterations to CCND1, including mutations, amplifications, and chromosomal translocations, are observed in many cancer types. A common mechanism of these alterations is to increase the expression and nuclear localization of the cyclin D1 protein. Recurrent somatic mutations include missense mutations at codons T286 and P287 and c-terminal truncating mutations that are enriched in about 33% of uterine cancer, and missense mutations at Y44 that are enriched in about 50% of Mantle cell lymphoma (MCL)^{10,16,90,91}. These mutations block phosphorylation-dependent nuclear export and proteolysis^{92,93,94,95}. CCND1 is recurrently amplified in many cancer types, including up to 35% of esophageal cancer, 20-30% of head and neck cancer, and 10-20% of breast, squamous lung, and bladder cancers^{10,16,18}. MCL is genetically characterized by the t(11;14) (q13;q13) translocation, a rearrangement that juxtaposes CCND1 to the immunoglobulin heavy (IgH) chain gene. This rearrangement leads to constitutive expression of cyclin D1 and plays an important role in MCL pathogenesis^{96,97}.

<u>Potential relevance</u>: Currently, no therapies are approved for CCND1 aberrations. The t(11;14) translocation involving CCND1 can be used to help diagnose some lymphoma subtypes including non-gastric MALT lymphoma, splenic marginal cell lymphoma, and mantle cell lymphoma³⁷.

FGF19 amplification

fibroblast growth factor 19

Background: The FGF19 gene encodes the fibroblast growth factor 19 protein, a member of the FGF protein family composed of twenty-two members^{1,2}. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases^{1,2}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways thereby influencing cell proliferation, migration, and survival^{3,4,5}. FGF19 is specifically observed to bind FGFR4 with increased affinity in the presence of the transmembrane protein klotho beta (KLB) which functions as a cofactor in FGF19 mediated FGFR4 activation^{39,40}. FGF19-mediated aberrant signaling has been identified as an oncogenic driver in hepatocellular carcinoma^{39,41}.

Alterations and prevalence: FGF19 amplification is observed in about 35% of esophageal cancer, 23% of head and neck cancer, 10-15% of invasive breast carcinoma, cholangiocarcinoma, squamous lung, and bladder cancers as well as 5-7% of melanoma, liver, ovarian, and stomach cancers¹⁰. FGF19 overexpression is correlated with the development and tumor progression in hepatocellular carcinoma⁴².

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for FGF19 aberrations. Selective, irreversible FGFR4 inhibitors, including fisogatinib (BLU-554), are under current clinical trial evaluation. In a phase-I clinical study of fisogatinib in patients with advanced hepatocellular carcinoma, 63% of the 115 patients enrolled were FGF19-positive by IHC⁴³. Additionally, in 53 patients with tissue available for evaluation, 96% also exhibited mRNA-expression of FGFR4 and KLB. The total overall response rate observed for fisogatinib in FGF19-positive patients evaluable for response was 17% (11/66)⁴³.

FGF3 amplification

fibroblast growth factor 3

Background: The FGF3 gene encodes the fibroblast growth factor 3 protein, a member of the FGF protein family composed of twenty-two members^{1,2}. With the exception of four non-signaling FGF memebers (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases^{1,2}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways thereby influencing cell proliferation, migration, and survival^{3,4,5}. Specifically, FGF3 has been shown to bind to both FGFR1 and FGFR2^{6,7}. Overexpression of FGF3 has been associated with certain tumor types including lung and liver cancers^{8,9}. Additionally, constitutive ectopic expression has been suggested to promote tumorigenesis in vitro, supporting an oncogenic role for FGF3⁷.

Alterations and prevalence: FGF3 amplification is observed in about 35% of esophageal cancer, 24% of head and neck cancer, 10-15% of invasive breast carcinoma, squamous lung, and bladder cancers as well as 5-10% of cholangiocarcinoma, melanoma, liver, ovarian and stomach cancers¹⁰. FGF3 overexpression is correlated with non-small cell lung cancer (NSCLC) development as well as tumor metastasis and recurrence in hepatocellular carcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for FGF3 aberrations.

FGF4 amplification

fibroblast growth factor 4

Background: The FGF4 gene encodes the fibroblast growth factor 4 protein, a member of the FGF protein family, which is composed of 22 members^{2,11}. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases^{1,2}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways, thereby influencing cell proliferation, migration, and survival^{3,4,5}.

Alterations and prevalence: Amplifications in FGF4 are observed in various tumor types, but most frequently are found in up to 35% of esophageal adenocarcinoma, 24% of head and neck squamous cell carcinoma, 14% of breast invasive carcinoma, 12% of lung squamous cell carcinoma, 11% of cholangiocarcinoma, 10% of bladder urothelial carcinoma, 7% of stomach adenocarcinoma, and 5% of liver hepatocellular carcinoma^{10,16}. FGF4 overexpression has been associated with Kaposi sarcoma lesions as well as testicular cancer^{44,45}.

Potential relevance: Currently, no therapies are approved for FGF4 aberrations.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁵¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{52,53}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁵⁴. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁵⁵. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁵⁵. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{56,57,58,59,60}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁵³. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{52,53,57,61}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{52,53,62,63}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{62,63}.

Biomarker Descriptions (continued)

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁶⁴ (2014) and nivolumab⁶⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁶⁴ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁶⁴. Dostarlimab⁶⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{58,67}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁶⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{58,69,70}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁷⁰. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{71,72}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{71,72}.

RPA1 deletion

replication protein A1

Background: The RPA1 gene encodes replication protein A1¹¹. Replication protein A (RPA) is a heterotrimeric complex composed of RPA1 (RPA70), RPA2 (RPA32), and RPA3 (RPA14)⁷³. RPA is involved in multiple DNA repair processes including base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination repair (HRR)⁷³. RPA is known to participate in DNA damage recognition by binding single stranded DNA (ssDNA) and interacting with several proteins involved in DNA repair processes including XPA, ERCC5, RAD52, RAD51, BRCA1, and BRCA2, thereby promoting DNA replication and repair⁷³.

Alterations and prevalence: Somatic mutations in RPA1 are observed in 3% of uterine corpus endometrial carcinoma, and 2% of colorectal adenocarcinoma, cervical squamous cell carcinoma, uterine carcinosarcoma, esophageal adenocarcinoma, and skin cutaneous melanoma^{10,16}. Biallelic deletions in RPA1 are observed in 2% of adrenocortical carcinoma, liver hepatocellular carcinoma, diffuse large B-cell lymphoma (DLBCL), and lung adenocarcinoma^{10,16}.

Potential relevance: Currently, no therapies are approved for RPA1 aberrations.

TP53 c.560-1G>A, TP53 deletion

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis¹². Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential¹³. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{14,15}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{10,16,17,18,19,20}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{10,16}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{21,22,23,24}. Alterations in TP53 are also observed in pediatric cancers^{10,16}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases) ^{10,16}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{10,16}.

Potential relevance: The small molecule p53 reactivator, PC14586²⁵ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt²⁶, (2019) and breakthrough designation²⁷ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{28,29}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma³⁰. TP53 mutations confer poor prognosis and poor

Biomarker Descriptions (continued)

risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{31,32,33,34,35,36}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant³⁷. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system³⁸.

UGT1A1 p.(G71R) c.211G>A

UDP glucuronosyltransferase family 1 member A1

Background: The UGT1A1 gene encodes UDP glucuronosyltransferase family 1 member A1, a member of the UDP-glucuronosyltransferase 1A (UGT1A) subfamily of the UGT protein superfamily^{11,109}. UGTs are microsomal membrane-bound enzymes that catalyze the glucuronidation of endogenous and xenobiotic compounds and transform the lipophilic molecules into excretable, hydrophilic metabolites^{109,110}. UGTs play an important role in drug metabolism, detoxification, and metabolite homeostasis. Differential expression of UGTs can promote cancer development, disease progression, as well as drug resistance¹¹¹. Specifically, elevated expression of UGT1As are associated with resistance to many anti-cancer drugs due to drug inactivation and lower active drug concentrations. However, reduced expression and downregulation of UGT1As are implicated in bladder and hepatocellular tumorigenesis and progression due to toxin accumulation^{111,112,113,114}. Furthermore, UGT1A1 polymorphisms, such as UGT1A1*28, UGT1A1*93, and UGT1A1*6, confer an increased risk of severe toxicity to irinotecan-based chemotherapy treatment of solid tumors, due to reduced glucuronidation of the irinotecan metabolite, SN-38¹¹⁵.

Alterations and prevalence: Biallelic deletion of UGT1A1 has been observed in 6% of sarcoma, 3% of brain lower grade glioma and uveal melanoma, and 2% of thymoma, cervical squamous cell carcinoma, bladder urothelial carcinoma, head and neck squamous cell carcinoma, and esophageal adenocarcinoma^{10,16}.

Potential relevance: Currently, no therapies are approved for UGT1A1 aberrations.

GPS2 deletion

G protein pathway suppressor 2

<u>Background</u>: GPS2 encodes G protein pathway suppressor 2¹¹. GPS2 is a core subunit regulating transcription and suppresses G protein-activated MAPK signaling⁷⁹. GPS2 plays a role in several cellular processes including transcriptional regulation, cell cycle regulation, metabolism, proliferation, apoptosis, cytoskeleton architecture, DNA repair, and brain development^{79,80}. Dysregulation of GPS2 through decreased expression, somatic mutation, and deletion is associated with oncogenic pathway activation and tumorigenesis, supporting a tumor suppressor role for GPS2^{81,82,83}.

Alterations and prevalence: Somatic mutations in GPS2 are predominantly splice site or truncating mutations and have been observed in 3% of cholangiocarcinoma, and 2% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and colorectal adenocarcinoma^{10,16}. Biallelic loss of GPS2 is observed in 4% of prostate adenocarcinoma, and 2% of liver hepatocellular carcinoma and diffuse large B-cell lymphoma^{10,16}. Isolated GSP2 fusions have been reported in cancer with various fusion partners^{10,16,84}. In one case, MLL4::GPS2 fusion was observed to drive anchorage independent growth in a spindle cell sarcoma⁸⁴.

Potential relevance: Currently, no therapies are approved for GPS2 aberrations.

H3-3B amplification

H3.3 histone B

Background: The H3-3B gene encodes the H3.3 histone B protein, also known as H3F3B, a sequence variant member of the histone H3 family^{11,74}. Specifically, H3-3B is expressed independently of DNA replication in non-dividing or terminally differentiated cells⁷⁵. Histone H3, along with histones H4, H2A, and H2B form the nucleosome, which is a component of chromatin⁷⁶. Histones play a role in transcriptional regulation, DNA repair, replication, and chromosomal stability⁷⁶. Mutations in H3 have been observed to impact global histone methylation and gene transcription, which may promote tumorigenesis⁷⁷.

Alterations and prevalence: Somatic mutations in H3-3B are observed in 1% of bladder urothelial carcinoma, skin cutaneous melanoma, mesothelioma, and uterine corpus endometrial carcinoma^{10,16}. H3-3B amplifications are observed in 4% of breast invasive carcinoma, uterine carcinosarcoma and liver hepatocellular carcinoma, 3% of mesothelioma, uterine corpus endometrial carcinoma, skin cutaneous melanoma, esophageal adenocarcinoma and cervical squamous cell carcinoma^{10,16}.

Potential relevance: Currently, no therapies are approved for H3-3B aberrations. The FDA has granted fast track designation to ONC201 for the treatment of adult high-grade glioma harboring a H3 K27M mutation⁷⁸.

Biomarker Descriptions (continued)

RPTOR amplification

regulatory associated protein of MTOR complex 1

Background: The RPTOR gene encodes the regulatory associated protein of MTOR complex 1¹¹. RPTOR, also known as RAPTOR, functions as a scaffolding protein and is part of the mTORC1 complex along with MTOR and mLST8⁴⁶. The mTORC1 complex is a downstream effector of the PI3K/AKT/MTOR signaling pathway and facilitates integration of the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK signaling pathways^{47,48}. mTORC1 phosphorylates and activates RPS6KB1 (S6K), which, once activated, enhances translation of target mRNAs, including metabolic enzymes and metabolism transcription factors^{46,47}. The upregulation, including overexpression, of RPTOR in cancer is observed to promote mTORC1 signaling and tumor cell proliferation, supporting an oncogenic role for RPTOR^{49,50}.

Alterations and prevalence: Somatic mutations in RPTOR are observed in 7% of skin cutaneous melanoma, 6% of uterine corpus endometrial carcinoma, 4% of stomach adenocarcinoma, and 3% of colorectal adenocarcinoma, bladder urothelial carcinoma, and cervical squamous cell carcinoma^{10,16}. RPTOR amplification is observed in 5% of uterine carcinosarcoma, 4% of liver hepatocellular carcinoma, breast invasive carcinoma, ovarian serous cystadenocarcinoma, and skin cutaneous melanoma, and 3% mesothelioma, cholangiocarcinoma, and uveal melanoma^{10,16}.

Potential relevance: Currently, no therapies are approved for RPTOR aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed (continued)

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

■ In this cancer type ■ In other cancer type ■ In this cancer type and other cancer types ■ No evidence

FDA	NCCN	EMA	ESMO	Clinical Trials*
×	×	×	×	(II)
×	×	×	×	(II)
×	×	×	×	(II)
×	×	×	×	(II)
×	×	×	×	(I/II)
	× × ×	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	X

CCND1 amplification					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
abemaciclib	×	×	×	×	(II)
palbociclib	×	×	×	×	(II)
ribociclib, everolimus	×	×	×	×	(II)
PF-07220060, midazolam	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 03 Jul 2025 9 of 13

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	0.0%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most upto-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. Beenken et al. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009 Mar;8(3):235-53. PMID: 19247306
- 2. Ornitz et al. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol . May-Jun 2015;4(3):215-66. doi: 10.1002/wdev.176. PMID: 25772309
- 3. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 4. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 5. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
- 6. Itoh et al. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004 Nov;20(11):563-9. PMID: 15475116
- 7. Mathieu et al. Receptor binding and mitogenic properties of mouse fibroblast growth factor 3. Modulation of response by heparin. J. Biol. Chem. 1995 Oct 13;270(41):24197-203. PMID: 7592624
- 8. Tai et al. Co-overexpression of fibroblast growth factor 3 and epidermal growth factor receptor is correlated with the development of nonsmall cell lung carcinoma. Cancer. 2006 Jan 1;106(1):146-55. PMID: 16329133
- 9. Hu et al. Up-regulation of fibroblast growth factor 3 is associated with tumor metastasis and recurrence in human hepatocellular carcinoma. Cancer Lett. 2007 Jul 8;252(1):36-42. PMID: 17215076
- 10. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 11. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 12. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 13. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 14. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 15. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 16. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 17. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 18. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 19. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 20. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 21. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 22. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 23. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 24. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 25. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 26. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 27. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 28. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534

References (continued)

- 29. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 30. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 31. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 32. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 33. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 34. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 35. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 36. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 37. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 38. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 39. Repana et al. Targeting FGF19/FGFR4 Pathway: A Novel Therapeutic Strategy for Hepatocellular Carcinoma. Diseases. 2015 Oct 28;3(4):294-305. PMID: 28943626
- Goetz et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell. Biol. 2007 May;27(9):3417-28. PMID: 17339340
- 41. Lu et al. Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Carcinoma Therapy: Advances and Prospects. J. Med. Chem. 2018 Nov 16. PMID: 30403487
- 42. Miura et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer. 2012 Feb 6;12:56. doi: 10.1186/1471-2407-12-56. PMID: 22309595
- 43. Kim et al. First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discov. 2019 Dec;9(12):1696-1707. PMID: 31575541
- 44. Kiuru-Kuhlefelt et al. FGF4 and INT2 oncogenes are amplified and expressed in Kaposi's sarcoma. Mod Pathol. 2000 Apr;13(4):433-7. PMID: 10786811
- 45. Suzuki et al. Predominant expression of fibroblast growth factor (FGF) 8, FGF4, and FGF receptor 1 in nonseminomatous and highly proliferative components of testicular germ cell tumors. Virchows Arch. 2001 Nov;439(5):616-21. PMID: 11764380
- 46. Mossmann et al. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018 Dec;18(12):744-757. PMID: 30425336
- 47. Pópulo et al. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886-918. PMID: 22408430
- 48. Faes et al. Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. Oxid Med Cell Longev. 2017;2017:1726078. Epub 2017 Feb 9. PMID: 28280521
- 49. Wang et al. RAPTOR promotes colorectal cancer proliferation by inducing mTORC1 and upregulating ribosome assembly factor URB1. Cancer Med. 2020 Feb;9(4):1529-1543. PMID: 31886628
- 50. Earwaker et al. RAPTOR up-regulation contributes to resistance of renal cancer cells to PI3K-mTOR inhibition. PLoS One. 2018;13(2):e0191890. PMID: 29389967
- 51. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 52. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 53. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 54. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 55. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 56. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 57. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 58. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]

12 of 13

Report Date: 03 Jul 2025

References (continued)

- 59. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 60. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 61. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 62. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 63. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 64. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 65. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 66. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 67. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 68. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 69. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 70. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 71. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 72. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 73. Binz et al. Replication Protein A phosphorylation and the cellular response to DNA damage. DNA Repair, 01 Aug 2004, 3(8-9):1015-1024. PMID: 15279788
- 74. Draizen et al. HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants. Database (Oxford). 2016;2016. PMID: 26989147
- 75. Frank et al. Differential expression of human replacement and cell cycle dependent H3 histone genes. Gene. 2003 Jul 17;312:135-43. PMID: 12909349
- 76. Audia et al. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016 Apr 1;8(4):a019521. PMID: 27037415
- 77. Wan et al. Histone H3 Mutations in Cancer. Curr Pharmacol Rep. 2018;4(4):292-300. PMID: 30101054
- 78. https://www.chimerix.com/our-pipeline/
- 79. Cheng et al. G protein pathway suppressor 2 (GPS2) is a transcriptional corepressor important for estrogen receptor alphamediated transcriptional regulation. J Biol Chem. 2009 Dec 25;284(52):36395-36404. PMID: 19858209
- 80. Si et al. G protein pathway suppressor 2 suppresses gastric cancer by destabilizing epidermal growth factor receptor. Cancer Sci. 2021 Dec;112(12):4867-4882. PMID: 34609770
- 81. Bien-Willner et al. Mutation and expression analysis in medulloblastoma yields prognostic variants and a putative mechanism of disease for i17q tumors. Acta Neuropathol Commun. 2014 Jul 17;2:74. PMID: 25030029
- 82. Huang et al. G protein pathway suppressor 2 (GPS2) acts as a tumor suppressor in liposarcoma. Tumour Biol. 2016 Oct;37(10):13333-13343. PMID: 27460081
- 83. Chan et al. Loss of G-Protein Pathway Suppressor 2 Promotes Tumor Growth Through Activation of AKT Signaling. Front Cell Dev Biol. 2020;8:608044. PMID: 33490071
- 84. O'Meara et al. Identification of an MLL4-GPS2 fusion as an oncogenic driver of undifferentiated spindle cell sarcoma in a child. Genes Chromosomes Cancer. 2014 Dec;53(12):991-8. PMID: 25139254
- 85. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 86. Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene. 2013 Aug 15;32(33):3840-5. PMID: 22964630
- 87. Ding et al. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. Cancer Med. 2019 Jun;8(6):2717-2729. PMID: 30950241
- 88. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001 Feb 16;490(3):117-22. PMID: 11223026

Report Date: 03 Jul 2025 13 of 13

References (continued)

- 89. Shan et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett. 2017 Oct;14(4):4517-4526. PMID: 28943959
- 90. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 91. Beà et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc. Natl. Acad. Sci. U.S.A. 2013 Nov 5;110(45):18250-5. PMID: 24145436
- 92. Diehl et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998 Nov 15;12(22):3499-511. PMID: 9832503
- 93. Alt et al. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000 Dec 15;14(24):3102-14. PMID: 11124803
- 94. Moreno-Bueno et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003 Sep 4;22(38):6115-8. PMID: 12955092
- 95. Benzeno et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006 Oct 12;25(47):6291-303. PMID: 16732330
- 96. Kim et al. Nuclear cyclin D1: an oncogenic driver in human cancer. J. Cell. Physiol. 2009 Aug;220(2):292-6. PMID: 19415697
- 97. Jares et al. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat. Rev. Cancer. 2007 Oct;7(10):750-62. PMID: 17891190
- 98. Sherr et al. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016 Apr;6(4):353-67. PMID: 26658964
- 99. Weinberg. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323-30. PMID: 7736585
- 100. Rane et al. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol. 2002 Jan;22(2):644-56. PMID: 11756559
- 101. Zuo et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 1996 Jan;12(1):97-9. PMID: 8528263
- 102. Molven et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer. 2005 Sep;44(1):10-8. PMID: 15880589
- 103. Ceha et al. Several noncontiguous domains of CDK4 are involved in binding to the P16 tumor suppressor protein. Biochem. Biophys. Res. Commun. 1998 Aug 19;249(2):550-5. PMID: 9712735
- 104. Tsao et al. Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res. 1998 Jan 1;58(1):109-13. PMID: 9426066
- 105. Sotillo et al. Invasive melanoma in Cdk4-targeted mice. Proc. Natl. Acad. Sci. U.S.A. 2001 Nov 6;98(23):13312-7. PMID: 11606789
- 106. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 107. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 108. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 109. Ouzzine et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci. 2014;8:349. PMID: 25389387
- 110. Nagar et al. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1659-72. PMID: 16550166
- 111. Allain et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020 Apr;122(9):1277-1287. PMID: 32047295
- 112. Izumi et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with prognosis and regulation by estrogen. Mol Carcinog. 2014 Apr;53(4):314-24. PMID: 23143693
- 113. Sundararaghavan et al. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. Oncotarget. 2017 Jan 10;8(2):3640-3648. PMID: 27690298
- 114. Lu et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PLoS One. 2015;10(5):e0127524. PMID: 26010150
- 115. Karas et al. JCO Oncol Pract. 2021 Dec 3:0P2100624. PMID: 34860573