

Tel. 1661-5117 www.smlab.co.kr

Report Date: 03 Jul 2025 1 of 16

Patient Name: 박병옥 Gender: M Sample ID: N25-64 Primary Tumor Site: Lung
Collection Date: 20250610

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Alert Details	7
Relevant Therapy Summary	8

Report Highlights
3 Relevant Biomarkers
5 Therapies Available
121 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	None detected		NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	EGFR p.(L861	Q) c.2582T>A	NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	None detected		ROS1	None detected
MET	None detected			
Genomic Alt	teration	Finding		
Tumor Mu	utational Burden	3.79 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L861Q) c.2582T>A epidermal growth factor receptor Allele Frequency: 9.50% Locus: chr7:55259524 Transcript: NM_005228.5	afatinib 1,2/1,11+ gefitinib 2/1,11+ dacomitinib 1,11+ erlotinib 1,11+ osimertinib 1,11+	None*	120
IIC	TP53 c.96+1G>A tumor protein p53 Allele Frequency: 15.35% Locus: chr17:7579699 Transcript: NM_000546.6	None*	None*	4

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Report Date: 03 Jul 2025 2 of 16

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	NBN p.(S509Ifs*2) c.1523_1524insT nibrin Allele Frequency: 49.04% Locus: chr8:90965793	None*	None*	1
	Transcript: NM_002485.5			

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🔼 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🗳 Breakthrough, 🗚 Fast Track

EGFR p.(L861Q) c.2582T>A

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, TPMT p.(Y240C) c.719A>G, HDAC9 p.(A625Qfs*19) c.1872delA, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA S	Sequence Variar	nts					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
EGFR	p.(L861Q)	c.2582T>A	COSM6213	chr7:55259524	9.50%	NM_005228.5	missense
TP53	p.(?)	c.96+1G>A		chr17:7579699	15.35%	NM_000546.6	unknown
NBN	p.(S509lfs*2)	c.1523_1524insT		chr8:90965793	49.04%	NM_002485.5	frameshift Insertion
TPMT	p.(Y240C)	c.719A>G	COSM4986703	chr6:18130918	49.68%	NM_000367.5	missense
HDAC9	p.(A625Qfs*19)	c.1872delA		chr7:18767342	4.94%	NM_178425.3	frameshift Deletion
NQ01	p.(P187S)	c.559C>T		chr16:69745145	45.75%	NM_000903.3	missense
ARID1A	p.(E2250Q)	c.6748G>C		chr1:27107137	5.26%	NM_006015.6	missense
MSH3	p.(A57_A62del)	c.162_179delTGCAGC GGCCGCAGCGGC		chr5:79950707	52.77%	NM_002439.5	nonframeshift Deletion
PARP4	p.(?)	c.3285_3285+5delinsA GT		chr13:25021149	93.75%	NM_006437.4	unknown

Biomarker Descriptions

EGFR p.(L861Q) c.2582T>A

epidermal growth factor receptor

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR), a member of the ERBB/human epidermal growth factor receptor (HER) tyrosine kinase family1. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Biomarker Descriptions (continued)

ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4⁷⁰. EGFR ligand-induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways, including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways⁷¹. Activation of these pathways promotes cell proliferation, differentiation, and survival^{72,73}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{6,7,74,75}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 2176. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer⁷⁶. A second group of less prevalent activating mutations includes E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 2077,78,79,80. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations⁸¹. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain includes R108K, A289V and G598V and are primarily observed in glioblastoma^{76,82}. Amplification of EGFR is observed in several cancer types including 44% of glioblastoma multiforme, 12% of esophageal adenocarcinoma, 10% of head and neck squamous cell carcinoma, 8% of brain lower grade glioma, 6% of lung squamous cell carcinoma, 5% of bladder urothelial carcinoma cancer, lung adenocarcinoma, and stomach adenocarcinoma, 3% of cholangiocarcinoma, and 2% of cervical squamous cell carcinoma, sarcoma, and breast invasive carcinoma^{6,7,9,75,82}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{83,84,85}. Alterations in EGFR are rare in pediatric cancers^{6,7}. Somatic mutations are observed in 2% of bone cancer and glioma, 1% of leukemia (4 in 354 cases), and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 252 cases), peripheral nervous system cancers (1 in 1158 cases), and embryonal tumors (3 in 332 cases)^{6,7}. Amplification of EGFR is observed in 2% of bone cancer and less than 1% of Wilms tumor (1 in 136 cases), B-lymphoblastic leukemia/lymphoma (2 in 731 cases), and leukemia (1 in 250 cases)6,7.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib86 (2004) and gefitinib87 (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations88. Second-generation TKIs afatinib89 (2013) and dacomitinib90 (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{91,92,93,94}. However, BDTX-189⁹⁵ was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)⁹⁶ and sunvozertinib⁹⁷, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance98. The primary resistance mutation that emerges following treatment with firstgeneration TKI is T790M, accounting for 50-60% of resistant cases⁷⁶. Third generation TKIs were developed to maintain sensitivity in the presence of T790M98. Osimertinib99 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like firstgeneration TKIs, treatment with osimertinib is associated with acquired resistance, specifically the C797S mutation, which occurs in 22-44% of cases98. The T790M and C797S mutations may be each selected following seguential treatment with a first-generation TKI followed by a third-generation TKI or vice versa¹⁰⁰. T790M and C797S can occur in either cis or trans allelic orientation¹⁰⁰. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs¹⁰⁰. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{100,101}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs¹⁰⁰. Fourth-generation TKIs are in development to overcome acquired resistance mutations after osimertinib treatment, including BDTX-1535¹⁰² (2024), a CNS-penetrating small molecule inhibitor, that received fast track designation from the FDA for the treatment of patients with EGFR C797S-positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR-targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations¹⁰³. The bispecific antibody, amivantamab¹⁰⁴ (2021), targeting EGFR and MET was approved for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib¹⁰⁵ (2024), was approved in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-801106 received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-42107, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, also received fast track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated non-small cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301108 (2023) received a fast track designation from the FDA for the treatment of EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd-generation EGFR inhibitors, including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid109 (2020), in combination with osimertinib, received fast track designation from the FDA for NSCLC tumors harboring EGFR

Report Date: 03 Jul 2025 4 of 16

Biomarker Descriptions (continued)

mutations that progressed on osimertinib alone. Amplification and mutations of EGFR commonly occur in H3-wild type IDH-wild type diffuse pediatric high-grade glioma^{110,111,112}.

TP53 c.96+1G>A

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis². Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential³. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{4,5}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{6,7,8,9,10,11}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{6,7}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{12,13,14,15}. Alterations in TP53 are also observed in pediatric cancers^{6,7}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{6,7}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{6,7}.

Potential relevance: The small molecule p53 reactivator, PC14586¹6 (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt¹7, (2019) and breakthrough designation¹8 (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation¹9,20. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma²¹. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)²²,²²,²4,²5,²6,²². In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant²². Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system²²9.

NBN p.(S509lfs*2) c.1523_1524insT

nibrin

Background: The NBN gene encodes nibrin, a nuclear protein that is part of the multisubunit MRE11/RAD50/NBN (MRN) protein complex, which is necessary for the maintenance of genomic stability^{52,53}. The MRN complex is involved in repair of double-stranded breaks (DSB) by homologous recombination repair (HRR) and non-homologous end joining (NHEJ)^{54,55,56}. Specifically, NBN contains a nuclear localization signaling motif responsible for translocation of the MRN complex into the nucleus and contributes to DNA repair by mediating protein-protein interactions at the site of DNA damage⁵². NBN is a tumor suppressor gene. Loss of function mutations in NBN are implicated in the BRCAness phenotype, which is characterized by a defect in the HRR pathway, mimicking BRCA1 or BRCA2 loss^{57,58}. Germline mutations in NBN are associated with Nijmegen breakage syndrome, an autosomal recessive disorder resulting in microcephaly at birth, immunodeficiency, radiosensitivity, and cancer predisposition^{59,60}.

Alterations and prevalence: Somatic mutations in NBN are observed in 7-8% of uterine cancer and 2-4% of melanoma, colorectal, esophageal, bladder and stomach cancers⁷.

Potential relevance: The PARP inhibitor, talazoparib⁶¹ in combination with enzalutamide is approved (2023) for metastatic castration-resistant prostate cancer (mCRPC) with mutations in HRR genes that includes BRCA2. Loss of function mutations in one or more HRR genes, including NBN, may confer sensitivity to platinum agents and PARP inhibitors^{57,58,62}. NBN overexpression has been shown to be associated with poor prognosis in uveal melanoma, head and neck cancer, and ovarian cancer^{63,64,65,66}.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome³⁰. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{31,32}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2³³. Mutations and loss of expression in MMR genes,

Biomarker Descriptions (continued)

known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250³⁴. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)³⁴. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{35,36,37,38,39}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes³². LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{31,32,36,40}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{31,32,41,42}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{41,42}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁴³ (2014) and nivolumab⁴⁴ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁴³ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁴³. Dostarlimab⁴⁵ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{37,46}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁴⁷ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{37,48,49}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁴⁹. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{50,51}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{50,51}.

TPMT p.(Y240C) c.719A>G

thiopurine S-methyltransferase

<u>Background:</u> The TPMT gene encodes thiopurine S-methyltransferase, a cytosolic enzyme that methylates aromatic and heterocyclic sulfhydryl compounds such as thiopurines^{1,67,68}. TPMT is the major enzyme responsible for the metabolic inactivation of thiopurine chemotherapeutic drugs used in the treatment of acute lymphoblastic leukemia (ALL), including, 6-mercaptopurine, 6-thioguanine, and azathioprine^{67,68,69}. Inherited TPMT polymorphisms, including TPMT*2, TPMT*3A, TPMT*3B, TPMT*3C, and TPMT*8, can result in TPMT deficiency, which is characterized by impaired enzymatic activity and confers an increased risk of severe toxicity to thiopurine drugs due to an increase in systemic drug exposure^{67,69}.

Alterations and prevalence: Somatic mutations in TPMT are observed in 2% of uterine corpus endometrial carcinoma and colorectal adenocarcinoma^{6,7}. Biallelic loss of TPMT is observed in 1% of stomach adenocarcinoma, esophageal adenocarcinoma, and adrenocortical carcinoma^{6,7}. Amplification of TPMT is observed in 7% of ovarian serous cystadenocarcinoma, 6% of bladder urothelial carcinoma, 4% of diffuse large B-cell lymphoma, uveal melanoma, uterine carcinosarcoma, and skin cutaneous melanoma, 3% of cholangiocarcinoma, and 2% of breast invasive carcinoma, uterine corpus endometrial carcinoma, and liver hepatocellular carcinoma^{6,7}.

<u>Potential relevance:</u> Currently, no therapies are approved for TPMT aberrations.

HDAC9 p.(A625Qfs*19) c.1872delA

histone deacetylase 9

<u>Background</u>: The HDAC9 gene encodes the histone deacetylase 9 protein¹. HDAC9 is part of the histone deacetylase (HDAC) family consisting of 18 different isoforms categorized into four classes (I-IV)¹¹³. HDACs, including HDAC9, function by removing acetyl groups on histone lysines resulting in chromatin condensation, transcriptional repression, and regulation of cell proliferation and differentiation^{113,114}. HDAC9 functions in neurological function, brain development, and maintains regulatory T-cell homeostasis¹¹³. HDAC deregulation, including overexpression, is observed in a variety of tumor types, which is proposed to affect the expression of genes involved in cellular regulation and promote tumor development^{113,115}.

Report Date: 03 Jul 2025 6 of 16

Biomarker Descriptions (continued)

Alterations and prevalence: Somatic mutations in HDAC9 are observed in 16% of skin cutaneous melanoma, 8% of lung adenocarcinoma, 7% of colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma and lung squamous cell carcinoma, and 4% of esophageal adenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for HDAC9 aberrations. Although not approved for specific HDAC2 alterations, the pan-HDAC inhibitor vorinostat (2006) is approved for the treatment of progressive, persistent, or recurrent cutaneous T-cell lymphoma (CTCL) following treatment with two systemic therapies¹¹⁶. The pan-HDAC inhibitor, romidepsin (2009), is approved for the treatment of CTCL and peripheral T-cell lymphoma (PTCL) having received at least one prior systemic therapy¹¹⁷. The pan-HDAC inhibitor, belinostat (2014), is approved for the treatment of relapsed or refractory PTCL¹¹⁸. The pan-HDAC inhibitor, panobinostat (2015), is approved for the treatment of multiple myeloma in combination of bortezomib and dexamethasone having received at least 2 prior regimens¹¹⁹.

Report Date: 03 Jul 2025 7 of 16

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

FDA information is current as of 2025-04-16. For the most up-to-date information, search www.fda.gov.

EGFR p.(L861Q) c.2582T>A

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR L861Q mutation or EGFRi sensitizing mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD. PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

FGFR n (18610) c 2582T>A

In this cancer type	O In other cancer type	In this cancer type and other cancer types	No evidence
---------------------	------------------------	--	-------------

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
afatinib					×
gefitinib	×			×	×
osimertinib	×		×		(II)
dacomitinib	×		×	×	(II)
erlotinib	×		×	×	×
adebrelimab, bevacizumab, chemotherapy	×	×	×	×	(IV)
afatinib, bevacizumab, chemotherapy	×	×	×	×	(IV)
befotertinib	×	×	×	×	(IV)
bevacizumab, almonertinib, chemotherapy	×	×	×	×	(IV)
catequentinib, toripalimab	×	×	×	×	(IV)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type
In ot

O In other cancer type

In this cancer type and other cancer types

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
EGFR tyrosine kinase inhibitor	×	×	×	×	(IV)
gefitinib, chemotherapy	×	×	×	×	(IV)
gefitinib, endostatin	×	×	×	×	(IV)
almonertinib	×	×	×	×	(III)
almonertinib, apatinib	×	×	×	×	(III)
almonertinib, catequentinib	×	×	×	×	(III)
almonertinib, radiation therapy, chemotherapy	×	×	×	×	(III)
bevacizumab, osimertinib	×	×	×	×	(III)
BL-B01D1	×	×	×	×	(III)
BL-B01D1, osimertinib	×	×	×	×	(III)
CK-101, gefitinib	×	×	×	×	(III)
datopotamab deruxtecan, osimertinib	×	×	×	×	(III)
FHND9041, afatinib	×	×	×	×	(III)
furmonertinib	×	×	×	×	(III)
furmonertinib, osimertinib, chemotherapy	×	×	×	×	(III)
gefitinib, afatinib, erlotinib, metformin hydrochloride	×	×	×	×	(III)
icotinib hydrochloride, chemotherapy	×	×	×	×	(III)
JMT-101, osimertinib	×	×	×	×	(III)
osimertinib, bevacizumab	×	×	×	×	(III)
sacituzumab tirumotecan	×	×	×	×	(III)
sacituzumab tirumotecan, osimertinib	×	×	×	×	(III)
savolitinib, osimertinib	×	×	×	×	(III)
TY-9591, osimertinib	×	×	×	×	(III)
afatinib, bevacizumab	×	×	×	×	(II)
almonertinib, adebrelimab, chemotherapy	×	×	×	×	(II)
almonertinib, chemoradiation therapy	×	×	×	×	(II)
almonertinib, chemotherapy	×	×	×	×	(II)
almonertinib, dacomitinib	×	×	×	×	(II)
almonertinib, radiation therapy	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 03 Jul 2025 10 of 16

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
amivantamab, chemotherapy	×	×	×	×	(II)
AMX-3009	×	×	×	×	(II)
atezolizumab, bevacizumab, tiragolumab	×	×	×	×	(II)
befotertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
befotertinib, icotinib hydrochloride	×	×	×	×	(II)
bevacizumab, afatinib	×	×	×	×	(II)
bevacizumab, furmonertinib	×	×	×	×	(II)
cadonilimab, chemotherapy, catequentinib	×	×	×	×	(II)
capmatinib, osimertinib, ramucirumab	×	×	×	×	(II)
catequentinib, almonertinib	×	×	×	×	(II)
chemotherapy, atezolizumab, bevacizumab	×	×	×	×	(II)
dacomitinib, osimertinib	×	×	×	×	(II)
EGFR tyrosine kinase inhibitor, radiation therapy	×	×	×	×	(II)
erlotinib, chemotherapy	×	×	×	×	(II)
gefitinib, bevacizumab, chemotherapy	×	×	×	×	(II)
icotinib hydrochloride, osimertinib	×	×	×	×	(II)
lazertinib	×	×	×	×	(II)
lazertinib, chemotherapy	×	×	×	×	● (II)
osimertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
osimertinib, chemotherapy	×	×	×	×	(II)
sacituzumab govitecan	×	×	×	×	(II)
sacituzumab tirumotecan, chemotherapy, osimertinib	×	×	×	×	● (II)
sunvozertinib	×	×	×	×	(II)
sunvozertinib, catequentinib	×	×	×	×	(II)
sunvozertinib, golidocitinib	×	×	×	×	● (II)
tislelizumab, chemotherapy, bevacizumab	×	×	×	×	(II)
toripalimab	×	×	×	×	(II)
toripalimab, bevacizumab, Clostridium butyricum, chemotherapy	×	×	×	×	(II)
zorifertinib, pirotinib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 03 Jul 2025 11 of 16

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AFM-24_I, atezolizumab	×	×	×	×	(1/11)
almonertinib, icotinib hydrochloride	×	×	×	×	(1/11)
BEBT-908, BEBT-109	×	×	×	×	(1/11)
benmelstobart, catequentinib	×	×	×	×	(1/11)
BH-30643	×	×	×	×	(1/11)
bozitinib, osimertinib	×	×	×	×	(I/II)
BPI-361175	×	×	×	×	(1/11)
DAJH-1050766	×	×	×	×	(I/II)
DB-1310, osimertinib	×	×	×	×	(I/II)
dositinib	×	×	×	×	(/)
FWD-1509	×	×	×	×	(I/II)
H-002	×	×	×	×	(/)
ifebemtinib, furmonertinib	×	×	×	×	(1/11)
MRTX0902	×	×	×	×	(/)
quaratusugene ozeplasmid, osimertinib	×	×	×	×	(1/11)
RC-108, furmonertinib, toripalimab	×	×	×	×	(I/II)
sotiburafusp alfa, HB-0030	×	×	×	×	(I/II)
sunvozertinib, chemotherapy	×	×	×	×	(/)
TAS-3351	×	×	×	×	(1/11)
TQ-B3525, osimertinib	×	×	×	×	(I/II)
TRX-221	×	×	×	×	(1/11)
YK-029A	×	×	×	×	(/)
afatinib, chemotherapy	×	×	×	×	(I)
BG-60366	×	×	×	×	(I)
BPI-1178, osimertinib	×	×	×	×	(I)
catequentinib, gefitinib, metformin hydrochloride	×	×	×	×	(I)
cemiplimab, sarilumab	×	×	×	×	(I)
genolimzumab, fruquintinib	×	×	×	×	(I)
IBI-318, lenvatinib	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 03 Jul 2025 12 of 16

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

In this cancer type and other cancer types

No evidence

EGFR p.(L861Q) c.2582T>A (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
KQB-198, osimertinib	×	×	×	×	(l)
LAVA-1223	×	×	×	×	(l)
MRX-2843, osimertinib	×	×	×	×	(l)
osimertinib, carotuximab	×	×	×	×	(l)
patritumab deruxtecan	×	×	×	×	(l)
repotrectinib, osimertinib	×	×	×	×	(l)
WJ13404	×	×	×	×	(l)
WSD-0922	×	×	×	×	(I)

TP53 c.96+1G>A

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
almonertinib, catequentinib	×	×	×	×	(III)
osimertinib, bevacizumab, chemotherapy	×	×	×	×	(II)
sunvozertinib, catequentinib	×	×	×	×	(II)

NBN p.(S509Ifs*2) c.1523_1524insT

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
talazoparib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	0.0%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most upto-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 3. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 4. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 5. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 8. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 9. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 10. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 11. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 12. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 13. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 14. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 15. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 16. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 17. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 18. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 19. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 20. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 21. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 22. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 23. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 24. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 25. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 26. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 27. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 28. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 29. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 30. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011

Report Date: 03 Jul 2025 14 of 16

References (continued)

- 31. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 32. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 33. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 34. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 35. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 36. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 37. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]
- 38. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 39. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 40. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 41. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 42. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 44. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 45. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 46. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 47. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 48. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 49. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 50. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 51. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 52. Lamarche et al. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 2010 Sep 10;584(17):3682-95. PMID: 20655309
- 53. Stracker et al. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 2011 Feb;12(2):90-103. PMID: 21252998
- 54. Bartkova et al. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol. 2008 Dec;2(4):296-316. PMID: 19383352
- 55. Rupnik et al. The MRN complex. Curr. Biol. 2008 Jun 3;18(11):R455-7. PMID: 18522810
- 56. Assenmacher et al. MRE11/RAD50/NBS1: complex activities. Chromosoma. 2004 Oct;113(4):157-66. PMID: 15309560
- 57. Lim et al. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocr. Relat. Cancer. 2016 Jun;23(6):R267-85. PMID: 27226207
- 58. Lord et al. BRCAness revisited. Nat. Rev. Cancer. 2016 Feb;16(2):110-20. PMID: 26775620
- 59. Chrzanowska et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012 Feb 28;7:13. doi: 10.1186/1750-1172-7-13. PMID: 22373003
- 60. Watanabe et al. Mutational inactivation of the nijmegen breakage syndrome gene (NBS1) in glioblastomas is associated with multiple TP53 mutations. J. Neuropathol. Exp. Neurol. 2009 Feb;68(2):210-5. PMID: 19151620
- 61. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf

Report Date: 03 Jul 2025 15 of 16

References (continued)

- 62. Pennington et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014 Feb 1;20(3):764-75. PMID: 24240112
- 63. Ehlers et al. NBS1 expression as a prognostic marker in uveal melanoma. Clin. Cancer Res. 2005 Mar 1;11(5):1849-53. PMID: 15756009
- 64. Hsu et al. Identification of increased NBS1 expression as a prognostic marker of squamous cell carcinoma of the oral cavity. Cancer Sci. 2010 Apr;101(4):1029-37. PMID: 20175780
- 65. Yang et al. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin. Cancer Res. 2006 Jan 15;12(2):507-15. PMID: 16428493
- 66. Lee et al. Clinicopathological values of NBS1 and DNA damage response genes in epithelial ovarian cancers. Exp. Mol. Med. 2015 Nov 20:47:e195. PMID: 26584681
- 67. Katara et al. TPMT Polymorphism: When Shield Becomes Weakness. Interdiscip Sci. 2016 Jun;8(2):150-155. PMID: 26297310
- 68. Yong et al. The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol. 2006 Jul;62(1):35-46. PMID: 16842377
- 69. McLeod et al. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 2000 Apr;14(4):567-72. PMID: 10764140
- 70. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 71. Liu et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018 Feb 19;17(1):53. PMID: 29455669
- 72. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 73. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 74. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 75. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 76. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 77. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 78. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 79. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 80. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 81. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 82. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 83. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 84. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 85. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 86. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 87. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 88. Riely et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):839-44. PMID: 16467097
- 89. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 90. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 91. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]

Report Date: 03 Jul 2025 16 of 16

References (continued)

- 92. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 93. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 94. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 95. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 96. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 97. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 98. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 99. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
- 100. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 101. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 102. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announces-corporate-update-and
- 103. Ciardiello et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev. 2024 Jan;122:102664. PMID: 38064878
- 104. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/761210s007lbl.pdf
- 105. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbledt.pdf
- 106. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 107. https://iis.aastocks.com/20231227/11015917-0.PDF
- 108. http://iis.aastocks.com/20230612/10770455-0.PDF
- 109. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 110. NCCN Guidelines® NCCN-Pediatric Central Nervous System Cancers [Version 2.2025]
- 111. Buccoliero et al. Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes (Basel). 2022 Mar 31;13(4). PMID: 35456430
- 112. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 113. Falkenberg et al. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014 Sep;13(9):673-91. PMID: 25131830
- 114. Li et al. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016 Dec;84:284-290. PMID: 27665474
- 115. Li et al. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10). PMID: 27599530
- 116. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021991s009lbl.pdf
- 117. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022393s017lbl.pdf
- 118. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/2062560rig1s006lbl.pdf
- 119. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205353s000lbl.pdf