

삼광의료재단 서울특별시 서초구 바우뫼로41길 58 (양재동, 선화빌딩) 검사기관 11365200

Tel. 1661-5117 www.smlab.co.kr

Report Date: 27 Jun 2025 1 of 10

Patient Name: 한기후 Primary Tumor Site: Unknown Gender: M Collection Date: 2025.06.05 Sample ID: N25-60

Sample Cancer Type: Unknown Primary Origin

Table of Contents	Page
Variant Details	1
Biomarker Descriptions	2
Relevant Therapy Summary	6

Report Highlights 1 Relevant Biomarkers 0 Therapies Available

7 Clinical Trials

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CCND1 amplification	None*	None*	7
	cyclin D1			
	Locus: chr11:69455949			

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

FGF19 amplification, FGF3 amplification, FGF4 amplification, TP53 p.(A138V) c.413C>T, CDH10 p.(R472C) c.1414C>T, RASA1 c.829-9G>A, HLA-A deletion, KLF5 amplification, NQ01 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
TP53	p.(A138V)	c.413C>T	COSM43818	chr17:7578517	45.42%	NM_000546.6	missense
CDH10	p.(R472C)	c.1414C>T	COSM337943	chr5:24498608	52.97%	NM_006727.5	missense
RASA1	p.(?)	c.829-9G>A		chr5:86629075	34.60%	NM_002890.3	unknown
NQ01	p.(P187S)	c.559C>T		chr16:69745145	67.62%	NM_000903.3	missense
RSRP1	p.(P237S)	c.709C>T		chr1:25570088	67.34%	NM_020317.5	missense
PARP4	p.(?)	c.3285_3285+5delinsA GT		chr13:25021149	100.00%	NM_006437.4	unknown

Copy Number Variations

Gene	Locus	Copy Number	CNV Ratio
CCND1	chr11:69455949	37.98	8.91

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Variant Details (continued)

Copy Number Variations (continued)						
Gene	Locus	Copy Number	CNV Ratio			
FGF19	chr11:69513948	73.77	16.79			
FGF3	chr11:69625020	73.8	16.79			
FGF4	chr11:69588019	57.45	13.2			
HLA-A	chr6:29910229	0.27	0.62			
KLF5	chr13:73633435	13.5	3.53			
RAD54L	chr1:46714017	2	0.99			
ATM	chr11:108098341	2	0.95			
CHEK1	chr11:125496639	2	1.01			
BRCA2	chr13:32890491	3	1.26			
RAD51B	chr14:68290164	2	0.99			
PALB2	chr16:23614759	3	1.09			
ERCC2	chr19:45854865	16.93	4.28			

Biomarker Descriptions

CCND1 amplification

cyclin D1

Background: The CCND1 gene encodes the cyclin D1 protein, a member of the highly conserved D-cyclin family that also includes CCND2 and CCND3^{57,58,59}. D-type cyclins are known to regulate cell cycle progression by binding to and activating cyclin dependent kinases (CDKs), specifically CDK4 and CDK6, which leads to the phosphorylation and inactivation of the retinoblastoma (RB1) protein^{57,58}. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition thereby resulting in cell cycle progression, a common event observed in tumorigenesis^{57,58,60}. Aberrations in the D-type cyclins have been observed to promote tumor progression suggesting an oncogenic role for CCND1^{59,61}.

Alterations and prevalence: Recurrent somatic alterations to CCND1, including mutations, amplifications, and chromosomal translocations, are observed in many cancer types. A common mechanism of these alterations is to increase the expression and nuclear localization of the cyclin D1 protein. Recurrent somatic mutations include missense mutations at codons T286 and P287 and c-terminal truncating mutations that are enriched in about 33% of uterine cancer, and missense mutations at Y44 that are enriched in about 50% of Mantle cell lymphoma (MCL)^{5,6,62,63}. These mutations block phosphorylation-dependent nuclear export and proteolysis^{64,65,66,67}. CCND1 is recurrently amplified in many cancer types, including up to 35% of esophageal cancer, 20-30% of head and neck cancer, and 10-20% of breast, squamous lung, and bladder cancers^{5,6,27}. MCL is genetically characterized by the t(11;14) (q13;q13) translocation, a rearrangement that juxtaposes CCND1 to the immunoglobulin heavy (lgH) chain gene. This rearrangement leads to constitutive expression of cyclin D1 and plays an important role in MCL pathogenesis^{68,69}.

Potential relevance: Currently, no therapies are approved for CCND1 aberrations. The t(11;14) translocation involving CCND1 can be used to help diagnose some lymphoma subtypes including non-gastric MALT lymphoma, splenic marginal cell lymphoma, and mantle cell lymphoma⁴⁶.

FGF19 amplification

fibroblast growth factor 19

<u>Background:</u> The FGF19 gene encodes the fibroblast growth factor 19 protein, a member of the FGF protein family composed of twenty-two members^{13,14}. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases^{13,14}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways thereby influencing cell proliferation, migration, and survival^{15,16,17}. FGF19 is specifically observed to bind FGFR4 with

Biomarker Descriptions (continued)

increased affinity in the presence of the transmembrane protein klotho beta (KLB) which functions as a cofactor in FGF19 mediated FGFR4 activation^{48,49}. FGF19-mediated aberrant signaling has been identified as an oncogenic driver in hepatocellular carcinoma^{48,50}.

Alterations and prevalence: FGF19 amplification is observed in about 35% of esophageal cancer, 23% of head and neck cancer, 10-15% of invasive breast carcinoma, cholangiocarcinoma, squamous lung, and bladder cancers as well as 5-7% of melanoma, liver, ovarian, and stomach cancers⁵. FGF19 overexpression is correlated with the development and tumor progression in hepatocellular carcinoma⁵¹.

Potential relevance: Currently, no therapies are approved for FGF19 aberrations. Selective, irreversible FGFR4 inhibitors, including fisogatinib (BLU-554), are under current clinical trial evaluation. In a phase-I clinical study of fisogatinib in patients with advanced hepatocellular carcinoma, 63% of the 115 patients enrolled were FGF19-positive by IHC⁵². Additionally, in 53 patients with tissue available for evaluation, 96% also exhibited mRNA-expression of FGFR4 and KLB. The total overall response rate observed for fisogatinib in FGF19-positive patients evaluable for response was 17% (11/66)⁵².

FGF3 amplification

fibroblast growth factor 3

Background: The FGF3 gene encodes the fibroblast growth factor 3 protein, a member of the FGF protein family composed of twenty-two members ^{13,14}. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases ^{13,14}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways thereby influencing cell proliferation, migration, and survival ^{15,16,17}. Specifically, FGF3 has been shown to bind to both FGFR1 and FGFR2 ^{18,19}. Overexpression of FGF3 has been associated with certain tumor types including lung and liver cancers ^{20,21}. Additionally, constitutive ectopic expression has been suggested to promote tumorigenesis in vitro, supporting an oncogenic role for FGF3 ¹⁹.

Alterations and prevalence: FGF3 amplification is observed in about 35% of esophageal cancer, 24% of head and neck cancer, 10-15% of invasive breast carcinoma, squamous lung, and bladder cancers as well as 5-10% of cholangiocarcinoma, melanoma, liver, ovarian and stomach cancers⁵. FGF3 overexpression is correlated with non-small cell lung cancer (NSCLC) development as well as tumor metastasis and recurrence in hepatocellular carcinoma^{20,21}.

Potential relevance: Currently, no therapies are approved for FGF3 aberrations.

FGF4 amplification

fibroblast growth factor 4

<u>Background</u>: The FGF4 gene encodes the fibroblast growth factor 4 protein, a member of the FGF protein family, which is composed of 22 members^{1,14}. With the exception of four non-signaling FGF members (FGF11-14), FGF proteins function as ligands and mediate the activation of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases^{13,14}. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways, thereby influencing cell proliferation, migration, and survival^{15,16,17}.

Alterations and prevalence: Amplifications in FGF4 are observed in various tumor types, but most frequently are found in up to 35% of esophageal adenocarcinoma, 24% of head and neck squamous cell carcinoma, 14% of breast invasive carcinoma, 12% of lung squamous cell carcinoma, 11% of cholangiocarcinoma, 10% of bladder urothelial carcinoma, 7% of stomach adenocarcinoma, and 5% of liver hepatocellular carcinoma^{5,6}. FGF4 overexpression has been associated with Kaposi sarcoma lesions as well as testicular cancer^{53,54}.

Potential relevance: Currently, no therapies are approved for FGF4 aberrations.

TP53 p.(A138V) c.413C>T

tumor protein p53

<u>Background</u>: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis²². Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential²³. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{24,25}.

Biomarker Descriptions (continued)

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{5,6,26,27,28,29}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R282^{5,6}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{30,31,32,33}. Alterations in TP53 are also observed in pediatric cancers^{5,6}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases)^{5,6}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{5,6}.

Potential relevance: The small molecule p53 reactivator, PC14586³⁴ (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt³⁵, (2019) and breakthrough designation³⁶ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{37,38}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma³⁹. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{40,41,42,43,44,45}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁴⁶. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁴⁷.

CDH10 p.(R472C) c.1414C>T

cadherin 10

<u>Background</u>: The CDH10 gene encodes cadherin 10, a type II classical cadherin and member of the cadherin superfamily¹. Cadherins are important in calcium-dependent cell-cell adhesion, and are known to mediate cell recognition, cell movement, and maintain structural and functional cell and tissue polarity². CDH10 is classified as an atypical type II cadherin due to its lack of a histidine-alanine-valine (HAV) cell adhesion recognition motif, a hallmark characteristic to type I cadherins^{1,2}. Abnormal expression of cadherins results in increased tumor cell invasion, which precedes metastasis of tumors^{3,4}.

Alterations and prevalence: Somatic mutations of CDH10 are observed in 20% of lung squamous cell carcinoma, 16% of lung adenocarcinoma, 13% of skin cutaneous melanoma, 12% of uterine corpus endometrial carcinoma, 8% of stomach adenocarcinoma, and colorectal adenocarcinoma, 6% of head and neck squamous cell carcinoma, 4% of bladder urothelial carcinoma and esophageal adenocarcinoma, 3% of cervical squamous cell carcinoma, and 2% of pancreatic adenocarcinoma, ovarian serous cystadenocarcinoma, uterine carcinosarcoma, and sarcoma^{5,6}. Amplification of CDH10 is observed in 10% of lung squamous cell carcinoma, 7% of lung adenocarcinoma and esophageal adenocarcinoma, 6% of bladder urothelial carcinoma, 5% of ovarian serous cystadenocarcinoma and cervical squamous cell carcinoma, 4% of sarcoma, 3% of stomach adenocarcinoma and head and neck squamous cell carcinoma, and 2% uterine corpus endometrial carcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for CDH10 aberrations.

RASA1 c.829-9G>A

RAS p21 protein activator 1

Background: The RASA1 gene encodes the Ras p21 protein activator 1¹. RASA1 is a member of the RasGAP family, which includes RASA2^{55,56}. RASA1 functions as a dual-specificity GTPase activating protein (GAP) by accelerating RAS and RAP GTPase activity and promoting the inactive GDP-bound form⁵⁵. RASA1 activity is influential in several cellular processes including in growth, proliferation, differentiation, and apoptosis⁵⁵. In tumorigenesis, loss of RASA1 function inhibits RAS regulation, leading to activation of the MAPK/ MEK/ERK or PI3K/AKT pathways⁵⁵. Mutations or epigenetic inactivation of RASA1 have been observed in diverse cancer types⁵⁵.

Alterations and prevalence: Somatic mutations in RASA1 are observed in 11% of uterine corpus endometrial carcinoma, 6% of lung squamous cell carcinoma, 5% of stomach adenocarcinoma and of skin cutaneous melanoma, 4% of colorectal adenocarcinoma, head and neck squamous cell carcinoma, colorectal carcinoma, and uterine carcinosarcoma, and 3% of esophageal adenocarcinoma^{5,6}. Biallelic deletions are observed in 4% of ovarian serous cystadenocarcinoma, and 2% of skin cutaneous melanoma^{5,6}.

Potential relevance: Currently, no therapies are approved for RASA1 aberrations.

Biomarker Descriptions (continued)

HLA-A deletion

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A1. MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells⁷. MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M8. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{9,10,11}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A¹².

<u>Alterations and prevalence:</u> Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{5,6}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{5,6}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

KLF5 amplification

Kruppel like factor 5

<u>Background:</u> The KLF5 gene encodes the Kruppel like factor 5 protein, a member of the Kruppel-like factor (KLF) subfamily of zinc finger transcription factors within group 2, along with KLF1, KLF2, KLF4, KLF7, and KLF6^{1,70}. KLF proteins are known for their role in the reprogramming of somatic cells into inducible pluripotent stem cells and impact several biological processes including the regulation of proliferation, differentiation, and apoptosis⁷⁰. KLF5 regulates a variety of target genes including PDGFa, cyclin D1, p21, and p27, and is known to contribute to the regulation of cell proliferation, differentiation, angiogenesis, and migration^{71,72}.

Alterations and prevalence: Somatic mutations in KLF5 are observed in 5% of bladder urothelial carcinoma, 3% of cervical squamous cell carcinoma, 2% of lung squamous cell carcinoma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma^{5,6}. Amplifications in KLF5 are observed in 4% of stomach adenocarcinoma and uterine carcinosarcoma, and 3% of bladder urothelial carcinoma, esophageal adenocarcinoma, head and neck squamous cell carcinoma, and colorectal adenocarcinoma^{5,6}.

Potential relevance: Currently, no therapies are approved for KLF5 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4,

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, F0XA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer type and other cancer types		ncer types	No evidence		
CCND1 amplific	cation						
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*	
abemaciclib		×	×	×	×	(II)	
palbociclib		×	×	×	×	(II)	
PF-07220060, midaz	olam	×	×	×	×	(1/11)	
ribociclib, everolimus	1	×	×	×	×	O (II)	

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 27 Jun 2025 7 of 10

Relevant Therapy Summary (continued)

CCND1 amplification (continued)					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
zotatifin, hormone therapy	×	×	×	×	O (I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Jinawath et al. Alterations of type II classical cadherin, cadherin-10 (CDH10), is associated with pancreatic ductal adenocarcinomas. Genes Chromosomes Cancer. 2017 May;56(5):427-435. PMID: 28124395
- 3. Paredes et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta. 2012 Dec;1826(2):297-311. PMID: 22613680
- 4. Cavallaro et al. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004 Feb;4(2):118-32. PMID: 14964308
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 8. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 10. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 11. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 12. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 13. Beenken et al. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009 Mar;8(3):235-53. PMID: 19247306
- 14. Ornitz et al. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol . May-Jun 2015;4(3):215-66. doi: 10.1002/wdev.176. PMID: 25772309
- 15. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 16. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 17. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
- 18. Itoh et al. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004 Nov;20(11):563-9. PMID: 15475116
- 19. Mathieu et al. Receptor binding and mitogenic properties of mouse fibroblast growth factor 3. Modulation of response by heparin. J. Biol. Chem. 1995 Oct 13;270(41):24197-203. PMID: 7592624
- 20. Tai et al. Co-overexpression of fibroblast growth factor 3 and epidermal growth factor receptor is correlated with the development of nonsmall cell lung carcinoma. Cancer. 2006 Jan 1;106(1):146-55. PMID: 16329133
- 21. Hu et al. Up-regulation of fibroblast growth factor 3 is associated with tumor metastasis and recurrence in human hepatocellular carcinoma. Cancer Lett. 2007 Jul 8;252(1):36-42. PMID: 17215076
- 22. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 23. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 24. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 25. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 26. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 27. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 28. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780

References (continued)

- 29. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 30. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 31. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 32. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 33. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 34. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 35. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 36. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/ fonc.2015.00288. eCollection 2015. PMID: 26732534
- 38. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 39. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 40. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 41. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 42. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 43. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 44. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 45. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 46. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 47. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 48. Repana et al. Targeting FGF19/FGFR4 Pathway: A Novel Therapeutic Strategy for Hepatocellular Carcinoma. Diseases. 2015 Oct 28;3(4):294-305. PMID: 28943626
- 49. Goetz et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell. Biol. 2007 May;27(9):3417-28. PMID: 17339340
- 50. Lu et al. Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Carcinoma Therapy: Advances and Prospects. J. Med. Chem. 2018 Nov 16. PMID: 30403487
- 51. Miura et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer. 2012 Feb 6;12:56. doi: 10.1186/1471-2407-12-56. PMID: 22309595
- 52. Kim et al. First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discov. 2019 Dec;9(12):1696-1707. PMID: 31575541
- 53. Kiuru-Kuhlefelt et al. FGF4 and INT2 oncogenes are amplified and expressed in Kaposi's sarcoma. Mod Pathol. 2000 Apr;13(4):433-7. PMID: 10786811
- 54. Suzuki et al. Predominant expression of fibroblast growth factor (FGF) 8, FGF4, and FGF receptor 1 in nonseminomatous and highly proliferative components of testicular germ cell tumors. Virchows Arch. 2001 Nov;439(5):616-21. PMID: 11764380
- 55. Zhang et al. Role of RASA1 in cancer: A review and update (Review). Oncol Rep. 2020 Dec;44(6):2386-2396. PMID: 33125148
- 56. King et al. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal. 2013 Feb 26;6(264):re1. PMID: 23443682
- 57. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 58. Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene. 2013 Aug 15;32(33):3840-5. PMID: 22964630

10 of 10

Report Date: 27 Jun 2025

References (continued)

- 59. Ding et al. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. Cancer Med. 2019 Jun;8(6):2717-2729. PMID: 30950241
- 60. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001 Feb 16;490(3):117-22. PMID: 11223026
- 61. Shan et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett. 2017 Oct;14(4):4517-4526. PMID: 28943959
- 62. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 63. Beà et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc. Natl. Acad. Sci. U.S.A. 2013 Nov 5;110(45):18250-5. PMID: 24145436
- 64. Diehl et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998 Nov 15;12(22):3499-511. PMID: 9832503
- 65. Alt et al. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000 Dec 15;14(24):3102-14. PMID: 11124803
- 66. Moreno-Bueno et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003 Sep 4;22(38):6115-8. PMID: 12955092
- 67. Benzeno et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006 Oct 12;25(47):6291-303. PMID: 16732330
- 68. Kim et al. Nuclear cyclin D1: an oncogenic driver in human cancer. J. Cell. Physiol. 2009 Aug;220(2):292-6. PMID: 19415697
- 69. Jares et al. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat. Rev. Cancer. 2007 Oct;7(10):750-62. PMID: 17891190
- 70. McConnell et al. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010 Oct;90(4):1337-81. PMID: 20959618
- 71. Ma et al. KLF5 promotes cervical cancer proliferation, migration and invasion in a manner partly dependent on TNFRSF11a expression. Sci Rep. 2017 Nov 16;7(1):15683. PMID: 29146991
- 72. Jia et al. KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene. 2016 Apr 21;35(16):2040-51. PMID: 26189798