

Tel. 1661-5117 www.smlab.co.kr

Report Date: 25 Jun 2025 1 of 23

Patient Name: 김창옥 Gender: M Sample ID: N25-58 Primary Tumor Site: Pancreas
Collection Date: 2025.05.27

Sample Cancer Type: Pancreatic Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Alert Details	8
Relevant Therapy Summary	15

Report Highlights
6 Relevant Biomarkers
7 Therapies Available
51 Clinical Trials

Relevant Pancreatic Cancer Findings

Gene	Finding		Gene	Finding
BRAF	None detected		KRAS	KRAS p.(G12C) c.34G>T
BRCA1	None detected		NRG1	None detected
BRCA2	None detected		NTRK1	None detected
ERBB2	None detected		NTRK2	None detected
FGFR1	None detected		NTRK3	None detected
FGFR2	None detected		PALB2	None detected
FGFR3	None detected		RET	None detected
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	2.85 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	KRAS p.(G12C) c.34G>T KRAS proto-oncogene, GTPase Allele Frequency: 45.29% Locus: chr12:25398285 Transcript: NM_033360.4	adagrasib ⁺ sotorasib ⁺	adagrasib 1,2/l,ll+ adagrasib + cetuximab 1/l,ll+ panitumumab + sotorasib 1/l,ll+ sotorasib 1,2/l,ll+ adagrasib + panitumumab l,ll+ cetuximab + sotorasib l,ll+ bevacizumab + chemotherapy l	40
IIC	MTAP deletion methylthioadenosine phosphorylase Locus: chr9:21802646	None*	None*	8

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

2 of 23

Report Date: 25 Jun 2025

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	3
IIC	ARID1A p.(Q1708*) c.5122C>T AT-rich interaction domain 1A Allele Frequency: 26.94% Locus: chr1:27102196 Transcript: NM_006015.6	None*	None*	1
IIC	CDKN2B deletion cyclin dependent kinase inhibitor 2B Locus: chr9:22005728	None*	None*	1
IIC	SMAD4 deletion SMAD family member 4 Locus: chr18:48573387	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

🔼 Alerts informed by public data sources: 🤣 Contraindicated, 🛡 Resistance, 🗳 Breakthrough, 🗚 Fast Track

KRAS p.(G12C) c.34G>T

A BBP-398 + sotorasib 1

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, TP53 p.(G266R) c.796G>A, TPMT p.(Y240C) c.719A>G, HLA-A deletion, HLA-A p.(L180*) c.539T>A, HLA-B deletion, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Sequence Variants Allele Gene Variant ID **Amino Acid Change** Coding **Variant Effect** Locus Frequency Transcript chr12:25398285 **KRAS** p.(G12C) c.34G>T COSM516 45.29% NM_033360.4 missense ARID1A p.(Q1708*) c.5122C>T chr1:27102196 26.94% NM_006015.6 nonsense TP53 COSM10794 chr17:7577142 p.(G266R) c.796G>A 28.61% NM_000546.6 missense **TPMT** p.(Y240C) c.719A>G COSM4986703 chr6:18130918 47.20% NM_000367.5 missense 99.95% NM_001242758.1 HLA-A p.(L180*) c.539T>A chr6:29911240 nonsense NQ01 p.(P187S) c.559C>T chr16:69745145 48.92% NM_000903.3 missense MSH3 c.162 179delTGCAGC chr5:79950707 nonframeshift p.(A57_A62del) 54.94% NM 002439.5 GGCCGCAGCGGC Deletion HLA-B p.([T118I;L119I]) c.353_355delCCCinsT . chr6:31324208 100.00% NM_005514.8 missense. missense PARP4 p.(?)c.3285_3285+5delinsA . chr13:25021149 100.00% NM_006437.4 unknown

^{*} Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Variant Details (continued)

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
MTAP	chr9:21802646	0.3	0.57		
CDKN2A	chr9:21968178	0	0.41		
CDKN2B	chr9:22005728	0.32	0.58		
SMAD4	chr18:48573387	0.2	0.55		
HLA-A	chr6:29910229	0.12	0.53		
HLA-B	chr6:31322252	0	0.43		
SETBP1	chr18:42281265	0.32	0.58		

Biomarker Descriptions

KRAS p.(G12C) c.34G>T

KRAS proto-oncogene, GTPase

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{10,11,12}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁸. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{8,13,14}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{9,15}.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib¹⁶ (2021) and adagrasib¹⁷ (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma¹⁸. The FDA has also granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036¹⁹, for KRAS G12C-mutated non-small cell lung cancer. The SHP2 inhibitor, BBP-398²⁰ was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC. The RAF/MEK clamp, avutometinib²¹ was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520²², was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The KRAS G12C inhibitor, D3S-001²³, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib²⁴, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab²⁵ and panitumumab²⁶, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)¹⁵. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²⁷.

MTAP deletion

methylthioadenosine phosphorylase

Background: The MTAP gene encodes methylthioadenosine phosphorylase¹. Methylthioadenosine phosphorylase, a key enzyme in polyamine biosynthesis and methionine salvage pathways, catalyzes the reversible phosphorylation of S-methyl-5'-thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate^{91,92}. Loss of MTAP function is commonly observed in cancer due to deletion or promotor methylation which results in the loss of MTA phosphorylation and sensitivity of MTAP-deficient cells to purine synthesis inhibitors and to methionine deprivation⁹².

Alterations and prevalence: MTAP is flanked by CDKN2A tumor suppressor on chromosome 9p21 and is frequently found to be codeleted with CDKN2A in numerous solid and hematological cancers^{92,93}. Consequently, biallelic loss of MTAP has been observed in 42% of glioblastoma multiforme, 32% of mesothelioma, 26% of bladder urothelial carcinoma, 22% of pancreatic adenocarcinoma, 21% of esophageal adenocarcinoma, 20% of lung squamous cell carcinoma and skin cutaneous melanoma, 15% of diffuse large B-cell

Biomarker Descriptions (continued)

lymphoma and head and neck squamous cell carcinoma, 12% of lung adenocarcinoma, 11% of cholangiocarcinoma, 9% of sarcoma, stomach adenocarcinoma and brain lower grade glioma, and 3% of ovarian serous cystadenocarcinoma, breast invasive carcinoma, adrenocortical carcinoma, thymoma and liver hepatocellular carcinoma^{8,9}. Somatic mutations in MTAP have been found in 3% of uterine corpus endometrial carcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for MTAP aberrations.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes cyclin dependent kinase inhibitor 2A, a cell cycle regulator that controls G1/S progression¹. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)¹00. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb¹01,102,103. CDKN2A encodes two alternative transcript variants, namely p16 and p14ARF, both of which exhibit differential tumor suppressor functions¹04. Specifically, the CDKN2A/p16 transcript inhibits cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript stabilizes the tumor suppressor protein p53 to prevent its degradation¹,104,105. CDKN2A aberrations commonly co-occur with CDKN2B¹00. Loss of CDKN2A/p16 results in downstream inactivation of the Rb and p53 pathways, leading to uncontrolled cell proliferation¹06. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer¹07,108.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations¹⁰⁹. Somatic mutations in CDKN2A are observed in 20% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma, 15% of lung squamous cell carcinoma, 13% of skin cutaneous melanoma, 8% of esophageal adenocarcinoma, 7% of bladder urothelial carcinoma, 6% of cholangiocarcinoma, 4% of lung adenocarcinoma and stomach adenocarcinoma, and 2% of liver hepatocellular carcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma^{8,9}. Biallelic deletion of CDKN2A is observed in 56% of glioblastoma multiforme, 45% of mesothelioma, 39% of esophageal adenocarcinoma, 32% of bladder urothelial carcinoma, 31% of skin cutaneous melanoma and head and neck squamous cell carcinoma, 28% of pancreatic adenocarcinoma, 27% of diffuse large B-cell lymphoma, 26% of lung squamous cell carcinoma, 17% of lung adenocarcinoma and cholangiocarcinoma, 15% of sarcoma, 11% of stomach adenocarcinoma and of brain lower grade glioma, 7% of adrenocortical carcinoma, 6% of liver hepatocellular carcinoma, 4% of breast invasive carcinoma, kidney renal papillary cell carcinoma and thymoma, 3% of ovarian serous cystadenocarcinoma and kidney renal clear cell carcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{8,9}. Alterations in CDKN2A are also observed in pediatric cancers⁹. Biallelic deletion of CDKN2A is observed in 68% of T-lymphoblastic leukemia/lymphoma, 40% of B-lymphoblastic leukemia/lymphoma, 25% of glioma, 19% of bone cancer, and 6% of embryonal tumors⁹. Somatic mutations in CDKN2A are observed in less that 1.5% of bone cancer (5 in 327 cases), B-lymphoblastic leukemia/lymphoma (3 in 252 cases), and leukemia (1 in 354 cases)⁹.

Potential relevance: Loss of CDKN2A can be useful in the diagnosis of mesothelioma, and mutations in CDKN2A are ancillary diagnostic markers of malignant peripheral nerve sheath tumors^{110,111,112}. Additionally, deletion of CDKN2B is a molecular marker used in staging Grade 4 pediatric IDH-mutant astrocytoma¹¹³. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{114,115,116}. Alternatively, CDKN2A expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme¹¹⁷. CDKN2A (p16) expression is associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{118,119,120,121}.

ARID1A p.(Q1708*) c.5122C>T

AT-rich interaction domain 1A

Background: The ARID1A gene encodes the AT-rich interaction domain 1A tumor suppressor protein¹. ARID1A, also known as BAF250A, belongs to the ARID1 subfamily that also includes AR1D1B^{1,94}. ARID1A and ARID1B are mutually exclusive subunits of the BAF variant of the SWI/SNF chromatin-remodeling complex^{94,95}. The BAF complex is a multisubunit protein that consists of SMARCB1/IN1, SMARCC1/BAF155, SMARCC2/BAF170, SMARCA4/BRG1 or SMARCA2/BRM, and ARID1A or ARID1B⁹⁵. The BAF complex remodels chromatin at promoter and enhancer elements to alter and regulate gene expression^{95,96}. ARID1A binds to transcription factors and coactivator/corepressor complexes to alter transcription⁹⁴. Recurrent inactivating mutations in BAF complex subunits, including ARID1A, lead to transcriptional dysfunction thereby, altering its tumor suppressor function⁹⁴.

Alterations and prevalence: Mutations in SWI/SNF complex subunits are the most commonly mutated chromatin modulators in cancer and have been observed in 20% of all tumors⁹⁶. The majority of ARID1A inactivating mutations are nonsense or frameshift mutations⁹⁴. Somatic mutations in ARID1A have been identified in 50% of ovarian clear cell carcinoma, 30% of endometrioid carcinoma, and 24-43% of uterine corpus endometrial carcinoma, bladder urothelial carcinoma, and stomach adenocarcinoma^{8,9,95}. In microsatellite stable

Biomarker Descriptions (continued)

(MSS) colorectal cancer, mutations in ARID1A have been observed to correlate with increased tumor mutational burden (TMB) and expression of genes involved in the immune response⁹⁷.

Potential relevance: Currently, no therapies are approved for ARID1A aberrations. However, the FDA has granted fast track designation (2022) to HSF1 pathway inhibitor, NXP-80098, for the treatment of platinum resistant ARID1A-mutated ovarian carcinoma. Tulmimetostat99, dual inhibitor of EZH2 and EZH1, was also granted a fast track designation (2023) for the treatment of patients with advanced, recurrent or metastatic endometrial cancer harboring ARID1A mutations and who have progressed on at least one prior line of treatment

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

<u>Background</u>: CDKN2B encodes cyclin dependent kinase inhibitor 2B, a cell cycle regulator that controls G1/S progression^{1,100}. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D)¹⁰⁰. The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{101,102,103}. CDKN2B is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A¹⁰⁰. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma^{1,122,123}.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 55% of glioblastoma multiforme, 43% of mesothelioma, 35% of esophageal adenocarcinoma, 31% of bladder urothelial carcinoma, 29% of skin cutaneous melanoma, 28% of head and neck squamous cell carcinoma, 27% of pancreatic adenocarcinoma, 26% of lung squamous cell carcinoma, 25% of diffuse large B -cell lymphoma, 16% of lung adenocarcinoma, 15% of sarcoma, 14% of cholangiocarcinoma, 11% of stomach adenocarcinoma and brain lower grade glioma, 5% of liver hepatocellular carcinoma, 4% of adrenocortical carcinoma, breast invasive carcinoma, thymoma, and kidney renal papillary cell carcinoma, 3% of kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and 2% of uterine carcinosarcoma and kidney chromophobe^{8,9}. Somatic mutations in CDKN2B are observed in 2% of uterine carcinosarcoma^{8,9}. CDKN2B copy number loss is also observed in pediatric cancers, including 64% of childhood T-lymphoblastic leukemia/lymphoma, 37% of pediatric B-lymphoblastic leukemia/lymphoma, 25% of pediatric gliomas, 14% of pediatric bone cancers, 6% of embryonal tumors, and 2% of peripheral nervous system cancers^{8,9}. Somatic mutations in CDKN2B are observed in less than 1% of bone cancer (1 in 327 cases)^{8,9}.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations. Homozygous deletion of CDKN2B is a molecular marker used in staging grade 4 pediatric IDH-mutant astrocytoma¹¹³.

SMAD4 deletion

SMAD family member 4

Background: The SMAD4 gene encodes the SMAD family member 4, a transcription factor that belongs to a family of 8 SMAD genes that can be divided into three main classes. SMAD4 (also known as DPC4) belongs to the common mediator SMAD (co-SMAD) class while SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8 are part of the regulator SMAD (R-SMAD) class. The inhibitory SMAD (I-SMAD) class includes both SMAD6 and SMAD7 28,29 . SMAD4 is a tumor suppressor gene and functions as a mediator of the TGF-β and BMP signaling pathways that are implicated in cancer initiation and progression 29,30,31 . Loss of SMAD4 does not drive oncogenesis, but is associated with progression of cancers initiated by driver genes such as KRAS and APC 28,29

Alterations and prevalence: Inactivation of SMAD4 can occur due to mutations, allelic loss, homozygous deletions, and 18q loss of heterozygosity (LOH)²⁸. Somatic mutations in SMAD4 occur in up to 20% of pancreatic, 12% of colorectal, and 8% of stomach cancers. Recurrent hotspot mutations including R361 and P356 occur in the mad homology 2 (MH2) domain leading to the disruption of the TGF- β signaling^{9,31,32}. Copy number deletions occur in up to 12% of pancreatic, 10% of esophageal, and 13% of stomach cancers^{8,9,33}.

Potential relevance: Currently, no therapies are approved for SMAD4 aberrations. Clinical studies and meta-analyses have demonstrated that loss of SMAD4 expression confers poor prognosis and poor overall survival (OS) in colorectal and pancreatic cancers^{29,31,34,35,36}. Importantly, SMAD4 is a predictive biomarker to fluorouracil based chemotherapy^{37,38}. In a retrospective analysis of 241 colorectal cancer patients treated with fluorouracil, 21 patients with SMAD4 loss demonstrated significantly poor median OS when compared to SMAD4 positive patients (31 months vs 89 months)³⁸. In another clinical study of 173 newly diagnosed and recurrent head and neck squamous cell carcinoma (HNSCC) patients, SMAD4 loss is correlated with cetuximab resistance in HPV-negative HNSCC tumors³⁹.

Microsatellite stable

<u>Background</u>: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome⁶⁶. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{67,68}. MSI is closely tied to the status of the mismatch repair (MMR)

Biomarker Descriptions (continued)

genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁶⁹. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250⁷⁰. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)⁷⁰. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{71,72,73,74,75}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁶⁸. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{67,68,72,76}.

<u>Alterations and prevalence</u>: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{67,68,77,78}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{77,78}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁷⁹ (2014) and nivolumab⁸⁰ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁷⁹ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁷⁹. Dostarlimab⁸¹ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{73,82}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁸³ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{73,84,85}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients⁸⁵. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{86,87}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{86,87}.

TP53 p.(G266R) c.796G>A

tumor protein p53

Background: The TP53 gene encodes the tumor suppressor protein p53, which binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair¹. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis⁴⁰. Alterations in TP53 are required for oncogenesis as they result in loss of protein function and gain of transforming potential⁴¹. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{42,43}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{8,9,44,45,46,47}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common, including substitutions at codons R158, R175, Y220, R248, R273, and R2828,⁹. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{48,49,50,51}. Alterations in TP53 are also observed in pediatric cancers^{8,9}. Somatic mutations are observed in 53% of non-Hodgkin lymphoma, 24% of soft tissue sarcoma, 19% of glioma, 13% of bone cancer, 9% of B-lymphoblastic leukemia/lymphoma, 4% of embryonal tumors, 3% of Wilms tumor and leukemia, 2% of T-lymphoblastic leukemia/lymphoma, and less than 1% of peripheral nervous system cancers (5 in 1158 cases) ^{8,9}. Biallelic loss of TP53 is observed in 10% of bone cancer, 2% of Wilms tumor, and less than 1% of B-lymphoblastic leukemia/lymphoma (2 in 731 cases) and leukemia (1 in 250 cases)^{8,9}.

Potential relevance: The small molecule p53 reactivator, PC14586⁵² (2020), received a fast track designation by the FDA for advanced tumors harboring a TP53 Y220C mutation. The FDA has granted fast track designation to the p53 reactivator, eprenetapopt⁵³, (2019) and breakthrough designation⁵⁴ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{55,56}. TP53 mutation are a diagnostic marker of SHH-activated, TP53-mutant medulloblastoma⁵⁷. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{58,59,60,61,62,63}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant⁶⁴. Mono- and bi-allelic mutations in TP53 confer unique

Biomarker Descriptions (continued)

characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system⁶⁵.

TPMT p.(Y240C) c.719A>G

thiopurine S-methyltransferase

<u>Background:</u> The TPMT gene encodes thiopurine S-methyltransferase, a cytosolic enzyme that methylates aromatic and heterocyclic sulfhydryl compounds such as thiopurines^{1,88,89}. TPMT is the major enzyme responsible for the metabolic inactivation of thiopurine chemotherapeutic drugs used in the treatment of acute lymphoblastic leukemia (ALL), including, 6-mercaptopurine, 6-thioguanine, and azathioprine^{88,89,90}. Inherited TPMT polymorphisms, including TPMT*3, TPMT*3B, TPMT*3C, and TPMT*8, can result in TPMT deficiency, which is characterized by impaired enzymatic activity and confers an increased risk of severe toxicity to thiopurine drugs due to an increase in systemic drug exposure^{88,90}.

Alterations and prevalence: Somatic mutations in TPMT are observed in 2% of uterine corpus endometrial carcinoma and colorectal adenocarcinoma^{8,9}. Biallelic loss of TPMT is observed in 1% of stomach adenocarcinoma, esophageal adenocarcinoma, and adrenocortical carcinoma^{8,9}. Amplification of TPMT is observed in 7% of ovarian serous cystadenocarcinoma, 6% of bladder urothelial carcinoma, 4% of diffuse large B-cell lymphoma, uveal melanoma, uterine carcinosarcoma, and skin cutaneous melanoma, 3% of cholangiocarcinoma, and 2% of breast invasive carcinoma, uterine corpus endometrial carcinoma, and liver hepatocellular carcinoma^{8,9}.

Potential relevance: Currently, no therapies are approved for TPMT aberrations.

HLA-A deletion, HLA-A p.(L180*) c.539T>A

major histocompatibility complex, class I, A

Background: The HLA-A gene encodes the major histocompatibility complex, class I, A^1 . MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and B2M³. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-A⁷.

Alterations and prevalence: Somatic mutations in HLA-A are observed in 7% of diffuse large B-cell lymphoma (DLBCL), 4% of cervical squamous cell carcinoma and head and neck squamous cell carcinoma, 3% of colorectal adenocarcinoma, and 2% of uterine corpus endometrial carcinoma and stomach adenocarcinoma^{8,9}. Biallelic loss of HLA-A is observed in 4% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-A aberrations.

HLA-B deletion

major histocompatibility complex, class I, B

Background: The HLA-B gene encodes the major histocompatibility complex, class I, B^1 . MHC (major histocompatibility complex) class I molecules are located on the cell surface of nucleated cells and present antigens from within the cell for recognition by cytotoxic T cells². MHC class I molecules are heterodimers composed of two polypeptide chains, α and $B2M^3$. The classical MHC class I genes include HLA-A, HLA-B, and HLA-C and encode the α polypeptide chains, which present short polypeptide chains, of 7 to 11 amino acids, to the immune system to distinguish self from non-self^{4,5,6}. Downregulation of MHC class I promotes tumor evasion of the immune system, suggesting a tumor suppressor role for HLA-B⁷.

Alterations and prevalence: Somatic mutations in HLA-B are observed in 10% of diffuse large B-cell lymphoma (DLBCL), 5% of cervical squamous cell carcinoma and stomach adenocarcinoma, 4% of head and neck squamous cell carcinoma and colorectal adenocarcinoma, 3% of uterine cancer, and 2% of esophageal adenocarcinoma and skin cutaneous melanoma^{8,9}. Biallelic loss of HLA-B is observed in 5% of DLBCL^{8,9}.

Potential relevance: Currently, no therapies are approved for HLA-B aberrations.

Report Date: 25 Jun 2025 8 of 23

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

FDA information is current as of 2025-04-16. For the most up-to-date information, search www.fda.gov.

KRAS p.(G12C) c.34G>T

panitumumab, panitumumab + sotorasib

Cancer type: Colorectal Cancer

Label as of: 2025-01-16

Variant class: KRAS G12C mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDAapproved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

Report Date: 25 Jun 2025 9 of 23

Variant class: KRAS G12C mutation

KRAS p.(G12C) c.34G>T (continued)

cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

 in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

divarasib

Cancer type: Non-Small Cell Lung Cancer Variant class: KRAS G12C mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to KRAS G12C inhibitor, GDC-6036, for KRAS G12C mutation in non-small cell lung cancer.

Reference:

https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf

BBP-398 + sotorasib

Cancer type: Non-Small Cell Lung Cancer, Solid Tumor

Supporting Statement:

The FDA has granted Fast Track designation to a SHP2 inhibitor, BBP-398, in combination with LUMAKRAS® for adult patients with previously treated KRAS G12C-mutated metastatic NSCLC.

Reference:

https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/

Report Date: 25 Jun 2025 10 of 23

KRAS p.(G12C) c.34G>T (continued)

avutometinib + sotorasib

Cancer type: Non-Small Cell Lung Cancer Variant class: KRAS G12C mutation

Supporting Statement:

The FDA has granted Fast Track designation to Verastem Oncology's investigational RAF/MEK clamp, avutometinib, in combination with Amgen's KRAS G12C inhibitor, LUMAKRASTM (sotorasib), for the treatment of patients with KRAS G12C-mutant metastatic non-small cell lung cancer (NSCLC) who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor.

Reference:

https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination

ு № BBO-8520

Cancer type: Non-Small Cell Lung Cancer Variant class: KRAS G12C mutation

Supporting Statement:

The FDA has granted Fast Track designation to the KRAS G12C inhibitor, BBO-8520, for the treatment of adult patients with previously treated, KRAS^{G12C}-mutated metastatic non-small cell lung cancer (NSCLC).

Reference:

https://www.businesswire.com/news/home/20250109170439/en/

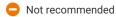
D3S-001

Cancer type: Colorectal Cancer Variant class: KRAS G12C mutation

Supporting Statement:

The FDA has granted Fast Track designation to the KRAS G12C inhibitor, D3S-001, for the treatment of KRAS G12C mutated patients with advanced unresectable or metastatic colorectal cancers.

The FDA has also granted Fast Track designation to D3S-001, for the treatment of late-line non-small cell lung cancer (NSCLC) and colorectal cancer (CRC).


Reference:

https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation

Report Date: 25 Jun 2025 11 of 23

Current NCCN Information

Contraindicated

NCCN information is current as of 2025-04-01. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(G12C) c.34G>T

cetuximab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 2.2025]

cetuximab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

panitumumab

Cancer type: Colon Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 2.2025]

Report Date: 25 Jun 2025 12 of 23

KRAS p.(G12C) c.34G>T (continued)

panitumumab

Cancer type: Rectal Cancer Variant class: KRAS G12 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2025]

Current EMA Information

EMA information is current as of 2025-04-16. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(G12C) c.34G>T

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2022-07-06 Variant class: KRAS G12 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Report Date: 25 Jun 2025 13 of 23

Current ESMO Information

Contraindicated

Not recommended

Breakthrough

Fast Track

ESMO information is current as of 2025-04-01. For the most up-to-date information, search www.esmo.org.

KRAS p.(G12C) c.34G>T

cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed."
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS G12 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]".

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/j.annonc.2022.10.003 (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
adagrasib	0	0	0	0	(l)
sotorasib	0	0	0	0	×
adagrasib + cetuximab	0	0	×	×	×
panitumumab + sotorasib	A	0	×	×	×
panitumumab	A	×	×	×	×
adagrasib + panitumumab	×	0	×	×	×
cetuximab + sotorasib	×	0	×	×	×
bevacizumab + CAPOX	×	×	×	0	×
bevacizumab + FOLFIRI	×	×	×	0	×
bevacizumab + FOLFOX	×	×	×	0	×
bevacizumab + FOLFOXIRI	×	×	×	0	×
RMC-6236	×	×	×	×	(III)
daratumumab, TG-01 (Targovax), QS-21 Stimulon, nivolumab	×	×	×	×	(II)
divarasib	×	×	×	×	(II)
glecirasib	×	×	×	×	(II)
regorafenib	×	×	×	×	(II)
D-1553, ifebemtinib	×	×	×	×	(1/11)
FMC-376	×	×	×	×	(I/II)
glecirasib, JAB-3312	×	×	×	×	(I/II)
HBI 2376, D-1553	×	×	×	×	(I/II)
HS-10370	×	×	×	×	(I/II)
HYP-2090PTSA	×	×	×	×	(I/II)
IMM-1-104	×	×	×	×	(I/II)
IMM-6-415	×	×	×	×	(1/11)
MRTX0902, adagrasib	×	×	×	×	(1/11)
olomorasib	×	×	×	×	(1/11)
RMC-6291, pembrolizumab, chemotherapy, RMC-6236	×	×	×	×	(1/11)
YL-15293	×	×	×	×	(1/11)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type
In other

O In other cancer type

In this cancer type and other cancer types

× No evidence

KRAS p.(G12C) c.34G>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ZG-19018	×	×	×	×	(/)
adagrasib, olaparib	×	×	×	×	(l)
BAY-3498264, sotorasib	×	×	×	×	(l)
BEBT-607	×	×	×	×	(l)
BPI-421286	×	×	×	×	(l)
divarasib, bevacizumab, RLY-1971, inavolisib	×	×	×	×	(l)
GEC-255	×	×	×	×	(l)
HBI-2438	×	×	×	×	(l)
HMPL-415	×	×	×	×	(l)
HRS-7058	×	×	×	×	(l)
JAB-3312	×	×	×	×	(l)
KO-2806, adagrasib	×	×	×	×	(I)
KQB-365	×	×	×	×	(l)
KRAS peptide vaccine, poly-ICLC, nivolumab, ipilimumab	×	×	×	×	(I)
KRAS-EphA-2-CAR-DC, anti-PD-1, ipilimumab	×	×	×	×	(l)
MK-0472, MK-1084	×	×	×	×	(l)
MK-1084	×	×	×	×	(l)
Nest-1	×	×	×	×	(l)
RMC-6291, RMC-6236	×	×	×	×	(l)
SY-5933	×	×	×	×	(l)

MTAP deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
AMG 193	×	×	×	×	(1/11)
MRTX-1719	×	×	×	×	(1/11)
TNG-456, abemaciclib	×	×	×	×	(I/II)
TNG-462	×	×	×	×	(1/11)
GTA-182	×	×	×	×	(1)
ISM-3412	×	×	×	×	(I)

 $^{{}^{\}star}\ \mathsf{Most}\ \mathsf{advanced}\ \mathsf{phase}\ \mathsf{(IV,III,II/III,II,I/II,I)}\ \mathsf{is}\ \mathsf{shown}\ \mathsf{and}\ \mathsf{multiple}\ \mathsf{clinical}\ \mathsf{trials}\ \mathsf{may}\ \mathsf{be}\ \mathsf{available}.$

17 of 23

Report Date: 25 Jun 2025

Relevant Therapy Summary (continued)

No evidence

		<i>[continued]</i>	١.
N/INDA	alation i	CONTINUED	и
IVITALU	CICUOII	COILLIIUCU	,
			"

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
S-095035	×	×	×	×	(l)
SYH-2039	×	×	×	×	(l)

CDKN2A deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib	×	×	×	×	(II)
palbociclib, abemaciclib	×	×	×	×	(II)
AMG 193	×	×	×	×	(1/11)

ARID1A p.(Q1708*) c.5122C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
talazoparib	×	×	×	×	(II)

CDKN2B deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib, abemaciclib	×	×	×	×	(II)

SMAD4 deletion

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
regorafenib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	16.37%
RAD54L	LOH, 1p34.1(46714017-46743978)x2

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's lon Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.1.1 data version 2025.05(007)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-04-16. NCCN information was sourced from www.nccn.org and is current as of 2025-04-01. EMA information was sourced from www.ema.europa.eu and is current as of 2025-04-16. ESMO information was sourced from www.esmo.org and is current as of 2025-04-01. Clinical Trials information is current as of 2025-04-01. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Hulpke et al. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci. PMID: 23849087
- 3. Adams et al. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class l-like molecules. Annu Rev Immunol. 2013;31:529-61. PMID: 23298204
- 4. Rossjohn et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. PMID: 25493333
- 5. Parham. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005 Mar;5(3):201-14. PMID: 15719024
- 6. Sidney et al. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1. PMID: 18211710
- 7. Cornel et al. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2020 Jul 2;12(7). PMID: 32630675
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 11. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PPO.00000000000187. PMID: 27341593
- 13. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- $16. \quad https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/214665Orig1s009correctedlbl.pdf$
- 17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
- 18. NCCN Guidelines® NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
- 19. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 20. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 21. https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination
- 22. https://www.businesswire.com/news/home/20250109170439/en/
- 23. https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-q12c-mutation
- 24. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation-_July_2021.pdf
- 25. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
- 27. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 28. Ahmed et al. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. J Clin Med. 2017 Jan 5;6(1). PMID: 28067794
- 29. Zhao et al. The role of TGF- β /SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018;14(2):111-123. PMID: 29483830
- 30. Cicenas et al. KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 Mutations in Pancreatic Cancer. Cancers (Basel). 2017 Apr 28;9(5). PMID: 28452926
- 31. Miyaki et al. Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 2003 Jul 11;306(4):799-804. PMID: 12821112

- 32. Mehrvarz et al. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS ONE. 2017;12(3):e0173345. PMID: 28267766
- 33. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 34. Yan et al. Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer. Clin. Cancer Res. 2016 Jun 15;22(12):3037-47. PMID: 26861460
- 35. Voorneveld et al. A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer. Transl Oncol. 2015 Feb;8(1):18-24. PMID: 25749173
- 36. Shugang et al. Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis. Transl Oncol. 2016 Feb;9(1):1-7. PMID: 26947875
- 37. Boulay et al. SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br. J. Cancer. 2002 Sep 9;87(6):630-4. PMID: 12237773
- 38. Kozak et al. Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer. J. Clin. Pathol. 2015 May;68(5):341-5. PMID: 25681512
- 39. Ozawa et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin. Cancer Res. 2017 Sep 1;23(17):5162-5175. PMID: 28522603
- 40. Nag et al. The MDM2-p53 pathway revisited. J Biomed Res. 2013 Jul;27(4):254-71. PMID: 23885265
- 41. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 42. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 43. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 44. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 45. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 46. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 47. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 48. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 49. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 50. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 51. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 52. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 53. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 54. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/ fonc.2015.00288. eCollection 2015. PMID: 26732534
- 56. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 57. Louis et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. PMID: 34185076
- 58. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]

- 59. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 60. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 61. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 62. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 63. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 64. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 65. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 66. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 67. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 68. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/ fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 70. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 71. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 72. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 73. NCCN Guidelines® NCCN-Colon Cancer [Version 2.2025]
- 74. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 75. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 76. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 77. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 78. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 79. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s174lbl.pdf
- 80. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 81. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 82. NCCN Guidelines® NCCN-Rectal Cancer [Version 2.2025]
- 83. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 84. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 85. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 86. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 87. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 88. Katara et al. TPMT Polymorphism: When Shield Becomes Weakness. Interdiscip Sci. 2016 Jun;8(2):150-155. PMID: 26297310
- 89. Yong et al. The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol. 2006 Jul;62(1):35-46. PMID: 16842377
- 90. McLeod et al. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 2000 Apr;14(4):567-72. PMID: 10764140

- 91. Harasawa et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia. 2002 Sep;16(9):1799-807. PMID: 12200696
- 92. Bertino et al. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther. 2011 Apr 1;11(7):627-32. PMID: 21301207
- Katya et al. Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. 10.1146/annurevcancerbio-030419-033444
- 94. Wu et al. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013 Jan;3(1):35-43. PMID: 23208470
- 95. Wilson et al. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011 Jun 9;11(7):481-92. PMID: 21654818
- 96. Alver et al. The SWI/SNF Chromatin Remodelling Complex Is Required for Maintenance of Lineage Specific Enhancers. Nat Commun. 8;14648. PMID: 28262751
- 97. Mehrvarz et al. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res. 2021 Mar 15;27(6):1663-1670. PMID: 33414133
- 98. https://nuvectis.com/press-release-view/?i=114174
- 99. https://www.morphosys.com/en/news/morphosys-receives-us-fda-fast-track-designation-tulmimetostat-endometrial-cancer
- 100. Xia et al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat Commun. 2021 Apr 6;12(1):2047. PMID: 33824349
- 101. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 102. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 103. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509
- 104. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 105. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 106. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 107. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 108. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 109. Adib et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin Cancer Res. 2021 Jul 15;27(14):4025-4035. PMID: 34074656
- 110. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 111. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 112. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 5.2024]
- 113. Louis et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020 Jul;30(4):844-856. PMID: 32307792
- 114. Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 115. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 116. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 117. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 118. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 119. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 120. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161

Report Date: 25 Jun 2025 23 of 23

- 121. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 122. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. . Cancer Discov.2015 Jul;5(7):723-9. PMID: 25873077
- 123. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018 Jan 4;37(1):128-138. PMID: 28892048