

Tel. 1661-5117 www.smlab.co.kr

Report Date: 04 Jun 2025 1 of 19

Patient Name: 이윤이 Gender: F Sample ID: N25-35 Primary Tumor Site: unknown Collection Date: 2025.05.20

Sample Cancer Type: Leiomyosarcoma

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	3
Relevant Therapy Summary	12

Report Highlights 5 Relevant Biomarkers 3 Therapies Available 6 Clinical Trials

Relevant Leiomyosarcoma Findings

Gene	Finding	
BRAF	None detected	
NTRK1	None detected	
NTRK2	None detected	
NTRK3	None detected	
RET	None detected	
Genomic Alte	eration	Finding
Tumor Mu	tational Burden	1.89 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	BRCA2 deletion BRCA2, DNA repair associated Locus: chr13:32890491	None*	niraparib ⁺ olaparib ⁺ rucaparib ⁺	2
IIC	LATS2 deletion large tumor suppressor kinase 2 Locus: chr13:21548922	None*	None*	1
IIC	PTEN deletion phosphatase and tensin homolog Locus: chr10:89623659	None*	None*	1
IIC	RB1 deletion RB transcriptional corepressor 1 Locus: chr13:48877953	None*	None*	1

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	TSC1 deletion	None*	None*	1
	tuberous sclerosis 1 Locus: chr9:135771600			

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, PARP4 deletion, PMS2 deletion, PTEN p.(Y16Dfs*9) c.44_45dup, RNASEH2B deletion, TCF7L2 deletion, TP53 p.(R273C) c.817C>T, ACVR2A deletion, PDCD1 deletion, HDAC9 deletion, PPP6C deletion, NOTCH1 deletion, LARP4B deletion, GATA3 deletion, MAPK8 deletion, ARID5B deletion, CYP2C9 deletion, SUFU deletion, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA :	DNA Sequence Variants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
PTEN	p.(Y16Dfs*9)	c.44_45dup		chr10:89624267	7.14%	NM_000314.8	frameshift Insertion
NQ01	p.(P187S)	c.559C>T		chr16:69745145	48.42%	NM_000903.3	missense
TP53	p.(R273C)	c.817C>T	COSM10659	chr17:7577121	84.85%	NM_000546.6	missense
FANCD2	p.(E1406G)	c.4217A>G	·	chr3:10140435	49.92%	NM_033084.6	missense

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
ACVR2A	chr2:148602708	0.91	0.57		
PDCD1	chr2:242793161	1.18	0.67		
PMS2	chr7:6012922	0.85	0.54		
HDAC9	chr7:18201905	0.96	0.59		
PPP6C	chr9:127911878	1.15	0.66		
TSC1	chr9:135771600	0.94	0.57		
NOTCH1	chr9:139390441	0.8	0.52		
LARP4B	chr10:858847	1.02	0.61		
GATA3	chr10:8097519	0.86	0.54		
MAPK8	chr10:49609682	0.99	0.6		
ARID5B	chr10:63661463	1.09	0.63		
PTEN	chr10:89623659	1.06	0.63		
CYP2C9	chr10:96698378	0.96	0.59		
SUFU	chr10:104263903	1.15	0.66		

Variant Details (continued)

Copy Number Var	riations (continued)		
Gene	Locus	Copy Number	CNV Ratio
TCF7L2	chr10:114710485	1.15	0.66
LATS2	chr13:21548922	1.04	0.62
PARP4	chr13:25000551	1.02	0.61
BRCA2	chr13:32890491	1.11	0.65
RB1	chr13:48877953	1.09	0.63
RNASEH2B	chr13:51484145	1.09	0.64
ERBB4	chr2:212248561	1.24	0.7
CARD11	chr7:2949684	0.96	0.59
RAC1	chr7:6426823	1.25	0.7
GLI3	chr7:42003880	1.02	0.61
EGFR	chr7:55211010	1.05	0.62
ABL1	chr9:133738250	0.99	0.6
RET	chr10:43609070	0.99	0.59
FGFR2	chr10:123239426	1.16	0.67
FGF9	chr13:22245989	0.99	0.6
FLT3	chr13:28578185	0.98	0.59
KLF5	chr13:73633435	0.99	0.6

Biomarker Descriptions

MAPK8 deletion

mitogen-activated protein kinase 8

Background: The MAPK8 gene encodes the mitogen-activated protein kinase 8, also known as JNK1¹. MAPK8 is involved in the JNK signaling pathway along with MAP3K4, MAP3K12, MAP2K4, MAP2K7, MAPK9, and MAPK10².³,⁴. Activation of MAPK proteins occurs through a kinase signaling cascade².³,⁵. Specifically, MAP3Ks are responsible for phosphorylation of MAP2K family members²,³,⁵. Once activated, MAP2Ks are responsible for the phosphorylation of various MAPK proteins whose signaling is involved in several cellular processes including cell proliferation, differentiation, and inflammation²,³,⁵.

<u>Alterations and prevalence:</u> Somatic mutations in MAPK8 are observed in 4% of uterine corpus endometrial carcinoma, 3% of skin cutaneous melanoma, and 2% of colorectal adenocarcinoma^{6,7}. Biallelic deletions are observed in 1% of bladder urothelial carcinoma, esophageal adenocarcinoma, adrenocortical carcinoma, and skin cutaneous melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for MAPK8 aberrations.

ARID5B deletion

AT-rich interaction domain 5B

<u>Background</u>: The ARID5B gene encodes the AT-rich interaction domain 5B protein¹. ARID5B, also known as MRF2, belongs to the ARID superfamily that also includes ARID1A, ARID1B, and ARID28.9. ARID5B forms a complex with PHF2, which is capable of histone demethylation leading to transcriptional activation of target genes⁹. ARID5B is known to be essential for the development of

Biomarker Descriptions (continued)

hematopoietic cells⁹. Several single-nucleotide polymorphisms (SNPs) in ARID5B have been associated with susceptibility of acute lymphoblastic leukemia (ALL)⁹.

Alterations and prevalence: Somatic mutations in ARID5B are observed in 15% of uterine corpus endometrial carcinoma, 6% of skin cutaneous melanoma, 5% of diffuse large B-cell lymphoma, 4% of stomach adenocarcinoma^{6,7}. Biallelic loss of ARID5B is observed in 1% of kidney chromophobe, lung squamous cell carcinoma, and skin cutaneous melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for ARID5B aberrations.

PARP4 deletion

poly(ADP-ribose) polymerase family member 4

Background: The PARP4 gene encodes the poly(ADP-ribose) polymerase 4 protein¹. PARP4 belongs to the large PARP protein family that also includes PARP1, PARP2, and PARP3¹⁰. PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADP-ribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis, nucleic acid metabolism, and regulation of chromatin structure^{10,11}. PARP enzymes are involved in several DNA repair pathways^{10,11}. Although the functional role of PARP4 is not well understood, PARP4 has been predicted to function in base excision repair (BER) due to its BRCA1 C Terminus (BRCT) domain which is found in other DNA repair pathway proteins¹².

Alterations and prevalence: Somatic mutations in PARP4 are observed in 9% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 5% of bladder urothelial carcinoma, 4% of stomach adenocarcinoma, and 3% of lung squamous cell carcinoma^{6,7}. Biallelic deletions in PARP4 are observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{6,7}.

Potential relevance: Currently, no therapies are approved for PARP4 aberrations. However, PARP inhibition is known to induce synthetic lethality in certain cancer types that are homologous recombination repair (HRR) deficient (HRD) due to mutations in the HRR pathway. This is achieved from PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently resulting in cell death 13,14. Although not indicated for specific alterations in PARP4, several PARPis including olaparib, rucaparib, talazoparib, and niraparib have been approved in various cancer types with HRD. Olaparib (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC. Talazoparib (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Niraparib (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

PTEN deletion, PTEN p.(Y16Dfs*9) c.44_45dup

phosphatase and tensin homolog

Background: The PTEN gene encodes the phosphatase and tensin homolog, a tumor suppressor protein with lipid and protein phosphatase activities¹⁹. PTEN antagonizes PI3K/AKT signaling by catalyzing the dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to PIP2 at the cell membrane, which inhibits the activation of AKT^{20,21}. In addition, PTEN has been proposed to influence RAD51 loading at double strand breaks during homologous recombination repair (HRR) and regulate the G2/M checkpoint by influencing CHEK1 localization through AKT inhibition, thereby regulating HRR efficiency²². Germline mutations in PTEN are linked to hamartoma tumor syndromes, including Cowden disease, which are defined by uncontrolled cell growth and benign or malignant tumor formation²³. PTEN germline mutations are also associated with inherited cancer risk in several cancer types²⁴.

Alterations and prevalence: PTEN is frequently altered in cancer by inactivating loss-of-function mutations and by gene deletion. PTEN mutations are frequently observed in 50%-60% of uterine cancer^{6,7}. Nearly half of somatic mutations in PTEN are stop-gain or frame-shift mutations that result in truncation of the protein reading frame. Recurrent missense or stop-gain mutations at codons R130, R173, and R233 result in loss of phosphatase activity and inhibition of wild-type PTEN^{21,25,26,27,28}. PTEN gene deletion is observed in 15% of prostate cancer, 9% of squamous lung cancer, 9% of glioblastoma, and 1-5% of melanoma, sarcoma, and ovarian cancer^{6,7}.

Potential relevance: Due to the role of PTEN in HRR, poly(ADP-ribose) polymerase inhibitors (PARPi) are being explored as a potential therapeutic strategy in PTEN deficient tumors^{29,30}. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex³¹, for BRCA1/2, PALB2, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. In 2023, the FDA approved the kinase inhibitor, capivasertib³² in combination with fulvestrant for locally advanced or metastatic hormone

Biomarker Descriptions (continued)

receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment.

LARP4B deletion

La ribonucleoprotein domain family member 4B

<u>Background</u>: The LARP4B gene encodes the La ribonucleoprotein 4B protein¹. La-related proteins (LARPs) are RNA binding proteins and can be split into 5 families, LARP1, La, LARP4, LARP6, and LARP7³. Along with LARP4, LARP4B is part of the LARP4 family and is observed to bind AU-rich regions in the 3' untranslated regions of mRNAs³. In glioma, LARP4B has been observed to induce mitotic arrest and apoptosis in vitro, supporting a tumor suppressor role for LARP4B³4.

Alterations and prevalence: Somatic mutations in LARP4B are observed in 8% of uterine corpus endometrial carcinoma, 7% of stomach adenocarcinoma, 5% of colorectal adenocarcinoma and skin cutaneous melanoma, 4% of uterine carcinosarcoma, and 2% of lung adenocarcinoma, lung squamous cell carcinoma, esophageal adenocarcinoma, and bladder urothelial carcinoma^{6,7}. Biallelic deletions in LARP4B are observed in 4% of diffuse large B-cell lymphoma (DLBCL), 3% of sarcoma and testicular germ cell tumors, and 2% of mesothelioma, stomach adenocarcinoma, and lung squamous cell carcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for LARP4B aberrations.

CYP2C9 deletion

cytochrome P450 family 2 subfamily C member 9

Background: The CYP2C9 gene encodes cytochrome P450 family 2 subfamily C member 9, a member of the cytochrome P450 superfamily of proteins¹. The cytochrome P450 proteins are monooxygenases that play important roles in the biotransformation of xenobiotics and carcinogens, and the synthesis of cholesterol, steroids and other lipids¹.³5. CYP2C9 catalyzes the oxidation of arachidonic acid to epoxyeicosatrienoic acids (EETs) and also inactivates several NSAIDs, including cyclooxygenase inhibitors and chemopreventive agents³6.³7. EETs are mitogenic and pro-angiogenic signaling molecules that have been shown to promote cancer cell growth and metastasis in vitro³6.³7.³8. CYPC29 overexpression is found in several cancers supporting the role of EETs in vascularization and tumorigenesis³5,³6,³7,³8. Inherited CYP2C9 polymorphisms, including CYP2C9*2 and CYP2C9*3, can result in attenuated catalytic efficiency and reduced EETs leading to reduced proliferation and migration of cancer cells and less vascularized tumors³6. Depending on the cancer type and treatment, individuals with these polymorphisms may have slower drug metabolism and therefore, altered drug responses which may make them more protected or more at risk of disease³6.

Alterations and prevalence: Somatic mutations in CYP2C9 are observed in 12% of skin cutaneous melanoma, 3% of uterine corpus endometrial carcinoma, and 2% of cervical squamous cell carcinoma, esophageal adenocarcinoma, lung adenocarcinoma, and kidney chromophobe^{6,7}. Biallelic loss of CYP2C9 is observed in 2% diffuse large B-cell lymphoma and prostate adenocarcinoma^{6,7}. Amplification of CYP2C9 is observed in 1% of pheochromocytoma, paraganglioma, and ovarian serous cystadenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for CYP2C9.

SUFU deletion

SUFU negative regulator of hedgehog signaling

Background: SUFU encodes the SUFU negative regulator of hedgehog signaling protein, a protein integrally involved in inhibition of hedgehog pathway signaling¹. During early human development, hedgehog pathway activation of the Gli/Ci family of zinc finger transcription factors is known to drive both cell proliferation and differentiation³⁹. SUFU is capable of interacting and complexing with GLI1 and GLI2, thereby regulating transactivation of GLI1 and GLI2 target genes and inhibiting hedgehog pathway signaling^{40,41}. Aberrant activation of the hedgehog signaling pathway has been implicated in several cancer types, supporting a tumor suppressor role for SUFU⁴². Germline mutations in SUFU confer a strong predisposition to medulloblastoma, particularly the desmoplastic/nodular subtype, and is observed almost exclusively in children less than 3 years of age⁴³.

Alterations and prevalence: Somatic mutations are observed in 4% endometrial carcinoma, 2% esophageal adenocarcinoma, and stomach adenocarcinoma⁷. Biallelic deletion of SUFU is observed in 2% of mesothelioma, diffuse large cell B-cell lymphoma, and prostate adenocarcinoma⁷.

Potential relevance: Currently, no therapies are approved for SUFU aberrations.

Biomarker Descriptions (continued)

RNASEH2B deletion

ribonuclease H2 subunit B

<u>Background</u>: The RNASEH2B gene encodes the ribonuclease H2 subunit B protein¹. RNASEH2B functions as an auxiliary subunit of RNase H2 holoenzyme along with RNASEH2C and the catalytic subunit RNASEH2A^{44,45}. RNase H2 is responsible for the removal of ribonucleotides that have been misincorporated in DNA, and also degrades DNA:RNA hybrids formed during transcription⁴⁴. Specifically, RNase H2 is observed to interact with BRCA1 for DNA:RNA hybrid resolution at double-strand breaks (DSBs) through homologous recombination repair (HRR)⁴⁴.

Alterations and prevalence: Somatic mutations in RNASEH2B are observed in 3% of uterine corpus endometrial carcinoma, and 2% of skin cutaneous melanoma^{6,7}. RNASEH2B biallelic deletions are observed in 10% of prostate adenocarcinoma, 7% sarcoma, 6% of bladder urothelial carcinoma, and 3% of ovarian serous cystadenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for RNASEH2B aberrations.

ACVR2A deletion

activin A receptor type 2A

Background: The ACVR2A gene encodes the activin A type 2A receptor protein, a transmembrane serine-threonine kinase receptor and member of the bone morphogenic protein (BMP)/transforming growth factor-beta (TGFβ) receptor family^{1,46}. ACVR2A is a type II receptor that forms heterotetrametric complex with at least two type I receptors (ACVR1 and ACVR1B) and two type II receptors (including BMPR2 and ACVR2B)^{46,47}. When ligands, such as activin A or BMPs, dimerize and bind to the heterotetrametric complex, type II receptors transphosphorylate and activate type I receptors leading to phosphorylation of SMAD proteins and downstream signaling^{46,47}. Downregulation of ACVR2A has been associated with increased cell migration, tumor progression, and metastases in colon cancer⁴⁸.

Alterations and prevalence: Somatic mutations of ACVR2A are observed in 11% of stomach adenocarcinoma and uterine corpus endometrial carcinoma, 7% of colorectal adenocarcinoma, 3% of liver hepatocellular carcinoma, skin cutaneous melanoma, and cholangiocarcinoma, 2% of cervical squamous cell carcinoma, and 1% of kidney renal papillary cell carcinoma, pancreatic adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma, breast invasive carcinoma, and glioblastoma multiforme, and esophageal adenocarcinoma^{6,7}. Biallelic deletion of ACVR2A is observed in 4% of prostate adenocarcinoma, 2% of liver hepatocellular carcinoma, and 1% of stomach adenocarcinoma, thymoma, testicular germ cell tumors, esophageal adenocarcinoma, and colorectal adenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for ACVR2A aberrations.

GATA3 deletion

GATA binding protein 3

Background: The GATA3 gene encodes GATA binding protein 3¹. GATA3 is a zinc-finger transcription factor that functions in the differentiation of immune cells and tissue development^{49,50}. As GATA3 also functions in luminal cell development and cell function, it is a common marker of the gene expression profile in luminal breast cancer⁴⁹.

Alterations and prevalence: Somatic mutations in GATA3 are observed in 12% of breast invasive carcinoma, 4% of uterine corpus endometrial carcinoma and stomach adenocarcinoma, and 3% of colorectal adenocarcinoma, skin cutaneous melanoma^{6,7}. Biallelic loss of GATA3 is observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{6,7}.

Potential relevance: Currently, no therapies are approved for GATA3 aberrations. Low GATA3 expression is associated with invasion and poor prognosis in breast cancer^{49,51}.

TSC1 deletion

tuberous sclerosis 1

Background: The TSC1 gene encodes the hamartin protein. TSC1 and TSC2 (also known as tuberin) form a complex through their respective coiled-coil domains⁵². The TSC1-TSC2 complex is a negative regulator of the mTOR signaling pathway that regulates cell growth, cell proliferation, and protein and lipid synthesis⁵³. Specifically, the TSC1-TSC2 complex acts as a GTPase activating (GAP) protein that inhibits the G-protein RHEB and keeps it in an inactivated state (RHEB-GDP). GTP bound RHEB (RHEB-GTP) is required to activate the mTOR complex 1 (mTORC1). TSC1 and TSC2 are tumor suppressor genes. Loss of function mutations in TSC1 and TSC2 lead to dysregulation of the mTOR pathway^{52,54}. Inactivating germline mutations in TSC1 and TSC2 are associated with tuberous

Biomarker Descriptions (continued)

sclerosis complex (TSC), an autosomal dominant neurocutaneous and progressive disorder that presents with multiple benign tumors in different organs⁵².

Alterations and prevalence: Somatic mutations are observed in up to 8.5% of bladder urothelial carcinoma and uterine corpus endometrial carcinoma, and up to 6% of skin cutaneous melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for TSC1 aberrations.

HDAC9 deletion

histone deacetylase 9

<u>Background:</u> The HDAC9 gene encodes the histone deacetylase 9 protein¹. HDAC9 is part of the histone deacetylase (HDAC) family consisting of 18 different isoforms categorized into four classes (I-IV)⁵⁵. HDACs, including HDAC9, function by removing acetyl groups on histone lysines resulting in chromatin condensation, transcriptional repression, and regulation of cell proliferation and differentiation^{55,56}. HDAC9 functions in neurological function, brain development, and maintains regulatory T-cell homeostasis⁵⁵. HDAC deregulation, including overexpression, is observed in a variety of tumor types, which is proposed to affect the expression of genes involved in cellular regulation and promote tumor development^{55,57}.

Alterations and prevalence: Somatic mutations in HDAC9 are observed in 16% of skin cutaneous melanoma, 8% of lung adenocarcinoma, 7% of colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma and lung squamous cell carcinoma, and 4% of esophageal adenocarcinoma^{6,7}.

Potential relevance: Currently, no therapies are approved for HDAC9 aberrations. Although not approved for specific HDAC2 alterations, the pan-HDAC inhibitor vorinostat (2006) is approved for the treatment of progressive, persistent, or recurrent cutaneous T-cell lymphoma (CTCL) following treatment with two systemic therapies⁵⁸. The pan-HDAC inhibitor, romidepsin (2009), is approved for the treatment of CTCL and peripheral T-cell lymphoma (PTCL) having received at least one prior systemic therapy⁵⁹. The pan-HDAC inhibitor, belinostat (2014), is approved for the treatment of relapsed or refractory PTCL⁶⁰. The pan-HDAC inhibitor, panobinostat (2015), is approved for the treatment of multiple myeloma in combination of bortezomib and dexamethasone having received at least 2 prior regimens⁶¹.

RB1 deletion

RB transcriptional corepressor 1

Background: The RB1 gene encodes the retinoblastoma protein (pRB), and is an early molecular hallmark of cancer. RB1 belongs to the family of pocket proteins that also includes p107 and p130, which play a crucial role in the cell proliferation, apoptosis, and differentiation^{62,63}. RB1 is well characterized as a tumor suppressor gene that restrains cell cycle progression from G1 phase to S phase⁶⁴. Specifically, RB1 binds and represses the E2F family of transcription factors that regulate the expression of genes involved in the G1/S cell cycle regulation^{62,63,65}. Germline mutations in RB1 are associated with retinoblastoma (a rare childhood tumor) as well as other cancer types such as osteosarcoma, soft tissue sarcoma, and melanoma⁶⁶.

Alterations and prevalence: Recurrent somatic alterations in RB1, including mutations and biallelic loss, lead to the inactivation of the RB1 protein. RB1 mutations are observed in urothelial carcinoma (approximately 16%), endometrial cancer (approximately 12%), and sarcomas (approximately 9%)⁷. Similarly, biallelic loss of RB1 is observed in sarcomas (approximately 13%), urothelial carcinoma (approximately 6%), and endometrial cancer (approximately 1%)⁷. Biallelic loss of the RB1 gene is also linked to the activation of chemotherapy-induced acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)^{67,68,69}.

Potential relevance: Currently, there are no therapies approved for RB1 aberrations.

PMS2 deletion

PMS1 homolog 2, mismatch repair system component

Background: The PMS2 gene encodes the PMS1 homolog 2 protein¹. PMS2 is a tumor suppressor gene that heterodimerizes with MLH1 to form the MutLa complex⁷⁰. The MutLa complex functions as an endonuclease that is specifically involved in the mismatch repair (MMR) process. Mutations in MLH1 result in the inactivation of MutLa and degradation of PMS2⁷¹. PMS2, along with MLH1, MSH6, and MSH2, form the core components of the MMR pathway^{70,71}. The MMR pathway is critical to the repair of mismatch errors which typically occur during DNA replication. Deficiency in MMR (dMMR) is characterized by mutations and loss of expression in these genes. dMMR is associated with microsatellite instability (MSI), which is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{72,73,74}. MSI-high (MSI-H) is a hallmark of Lynch Syndrome (LS), also known as hereditary non-polyposis

Biomarker Descriptions (continued)

colorectal cancer, which is caused by germline mutations in MMR genes^{72,75}. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{73,75,76,77}.

Alterations and prevalence: Somatic mutations in PMS2 are observed in 7% of uterine corpus endometrial carcinoma, 6% of skin cutaneous melanoma, and 4% of adrenocortical carcinoma^{6,7}.

Potential relevance: Pembrolizumab (2014) is an anti-PD-1 immune checkpoint inhibitor that is approved for patients with MSI-H or dMMR solid tumors that have progressed on prior therapies⁷⁸. Nivolumab (2015), an anti-PD-1 immune checkpoint inhibitor, is approved alone or in combination with the cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab (2011), for patients with dMMR colorectal cancer that have progressed on prior treatment^{79,80}.

PDCD1 deletion

programmed cell death 1

Background: The PDCD1 gene encodes programmed cell death 1, also known as PD-1 or CD279¹. PDCD1 is a type I transmembrane inhibitory receptor and member of the CD28/CTLA-4 family, which is part of the immunoglobulin superfamily^{8¹}. PDCD1 is an immune checkpoint molecule that acts as a gatekeeper of immune responses through a balance of signaling suppression, which is critical in the facilitation of self and non-self cell recognition^{8²}. PDCD1 is expressed in a variety of hematopoietic cells, immune cells, tumor cells, and tumor specific T-cells^{8¹}. The two main immunoregulatory ligands of PDCD1 are CD274 (PD-L1) and PDCD1LG2 (PD-L2), which are type I transmembrane proteins expressed in many cells including antigen presenting cells and tumor cells^{8¹}. PDCD1 and CD274 act as co-inhibitors and regulate immune tolerance of central and peripheral T-cells and reduce the proliferation of CD8+ T-cells by inhibitor signals^{8¹}.

Alterations and prevalence: Somatic mutations in PDCD1 are observed in 4% of skin cutaneous melanoma, 3% of uterine corpus endometrial carcinoma, and 2% of uterine carcinosarcoma^{6,7}. Deletions in PDCD1 are observed in 8% of sarcoma, 5% of brain lower grade glioma, 3% of cervical squamous cell carcinoma, esophageal adenocarcinoma, bladder urothelial carcinoma, and uveal melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for PDCD1 aberrations. Immune checkpoint inhibitor therapy uses immunotherapy to block receptor-ligand interactions and enhance immunity activity against tumor cells⁸⁴. Although not approved for specific PDCD1 aberrations, approved checkpoint inhibitors targeting PDCD1 include the monoclonal antibodies pembrolizumab, nivolumab, and cemiplimab⁸¹.

BRCA2 deletion

BRCA2, DNA repair associated

Background: The breast cancer early onset gene 2 (BRCA2) encodes one of two BRCA proteins (BRCA1 and BRCA2) initially discovered as major hereditary breast cancer genes. Although structurally unrelated, both BRCA1 and BRCA2 exhibit tumor suppressor function and are integrally involved in the homologous recombination repair (HRR) pathway, a pathway critical in the repair of damaged DNA. Specifically, BRCA1/2 are required for repair of chromosomal double strand breaks (DSBs) which are highly unstable and compromise genome integrity^{85,86}. Inherited pathogenic mutations in BRCA1/2 are known to confer increased risk in women for breast and ovarian cancer⁸⁷ and in men for breast and prostate cancer^{88,89}. For individuals diagnosed with inherited pathogenic or likely pathogenic BRCA1/2 variants, estimated lifetime risks range from 41% to 90% for developing breast cancer and 8 to 62% for developing ovarian cancer⁹⁰.테스트 입니다.

<u>Alterations and prevalence</u>: Inherited BRCA1/2 mutations occur in 1:400 to 1:500 individuals and are observed in 10-15% of ovarian cancer and 5-10% of breast cancer^{91,92,93,94,95,96,97}. Somatic alterations in BRCA2 are observed in 5-15% of melanomas, uterine, cervical, gastric, colorectal, esophageal, and lung cancers^{6,7}.

Potential clinical relevance: Individuals possessing BRCA1/2 pathogenic germline or somatic mutations are shown to exhibit sensitivity to platinum based chemotherapy as well as treatment with poly (ADP-ribose) polymerase inhibitors (PARPi)⁹⁸. Inhibitors targeting PARP induce synthetic lethality in recombination deficient BRCA1/2 mutant cells^{99,100}. Consequently, several PARP inhibitors have been FDA approved for BRCA1/2-mutated cancers. Olaparib[] (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting. Rucaparib[] (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers treated with two or more chemotherapies. Talazoparib[] (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Due to efficacy in both gBRCAm and non-gBRCAm patients, Niraparib (2017) is another PARPi approved for maintenance of epithelial ovarian, fallopian tube, or primary

Biomarker Descriptions (continued)

peritoneal cancers, regardless of BRCA status¹⁰¹. Despite tolerability and efficacy, acquired resistance to PARP inhibition has been clinically reported¹⁰². One of the most common mechanisms of resistance includes secondary intragenic mutations that restore BRCA1/2 functionality¹⁰³.

TP53 p.(R273C) c.817C>T

tumor protein p53

<u>Background</u>: The TP53 gene encodes the p53 tumor suppressor protein that binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis. Alterations in TP53 is required for oncogenesis as they result in loss of protein function and gain of transforming potential¹⁰⁴. Germline mutations in TP53 are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{105,106}.

Alterations and prevalence: TP53 is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing TP53 mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high TP53 mutation rates (60-90%)^{6,7,107,108,109,110}. Approximately two-thirds of TP53 mutations are missense mutations and several recurrent missense mutations are common including substitutions at codons R158, R175, Y220, R248, R273, and R282^{6,7}. Invariably, recurrent missense mutations in TP53 inactivate its ability to bind DNA and activate transcription of target genes^{111,112,113,114}.

Potential relevance: The small molecule p53 reactivator, PC14586, received a fast track designation (2020) by the FDA for advanced tumors harboring a TP53 Y220C mutation¹¹⁵. The FDA has granted fast track designation (2019) to the p53 reactivator, eprenetapopt,¹¹⁶ and breakthrough designation¹¹⁷ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a TP53 mutation, respectively. In addition to investigational therapies aimed at restoring wild-type TP53 activity, compounds that induce synthetic lethality are also under clinical evaluation^{118,119}. TP53 mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)^{120,121,122,123,124,125}. In mantle cell lymphoma, TP53 mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant¹²⁶. Mono- and bi-allelic mutations in TP53 confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occuring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system¹²⁷.

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹²⁸. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{73,75}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS2⁷⁴. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S250¹²⁹. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)¹²⁹. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{76,130,131,132,133}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes⁷⁵. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{73,75,76,77}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{73,75,134,135}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{134,135}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab⁷⁸ (2014) and nivolumab⁷⁹ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab⁷⁸ is also approved as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication⁷⁸. Dostarlimab¹³⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{131,137}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab⁸⁰ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary

Biomarker Descriptions (continued)

depending on stage and tumor location^{131,138,139}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients¹³⁹. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{140,141}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{140,141}.

LATS2 deletion

large tumor suppressor kinase 2

Background: The LATS2 gene encodes the large tumor suppressor kinase 2¹. LATS2 is a serine/threonine protein kinase and, along with LATS1, is a member of the AGC kinase family comprised of more than 60 members¹⁴²²,¹⁴³. LATS1 and LATS2 are downstream phosphorylation targets of the Hippo pathway, and when activated, mediate the phosphorylation of transcriptional co-activators YAP and TAZ¹⁴⁴. Phosphorylation of YAP and TAZ results in their cytoplasmic retention and inhibition of nuclear translocation, thereby inhibiting YAP and TAZ mediated transcription of target genes¹⁴⁴. Mutations in LATS1 and LATS2 are suggested to result in kinase inactivation and loss of function, supporting a tumor suppressor role for LATS1¹⁴⁵.

Alterations and prevalence: Somatic mutations in LATS2 are observed in 9% of mesothelioma, 8% of uterine corpus endometrial carcinoma, 5% of skin cutaneous melanoma, 4% stomach adenocarcinoma, and 3% of colorectal adenocarcinoma^{6,7}. Biallelic deletion of LATS2 is observed in 2% of lung adenocarcinoma and uterine carcinosarcoma^{6,7}.

Potential relevance: Currently, no therapies are approved for LATS2 aberrations.

TCF7L2 deletion

transcription factor 7 like 2

Background: TCF7L2 encodes the transcription factor 7 like 2, a key component of the WNT signaling pathway^{1,146}. Through its interaction with β-catenin, TCF7L2 functions as a central transcriptional regulator of the WNT pathway by modulating the expression of several genes involved in epithelial to mesenchymal transdifferentiation (EMT) and cancer progression, including MYC^{146,147,148}. TCF7L2 is also responsible for the regulation of cell cycle inhibitors, including CDKN2C and CDKN2D, thereby influencing cell cycle progression¹⁴⁶. Loss of TCF7L2 function is commonly observed in colorectal cancer due to mutations or copy number loss which has been correlated with increased tumor invasion and metastasis, supporting a tumor suppressor role for TCF7L2¹⁴⁶.

Alterations and prevalence: Somatic mutations of TCF7L2 are observed in 11% colorectal adenocarcinoma, 6% of uterine corpus endometrial carcinoma, 3% of stomach adenocarcinoma, and 2% of skin cutaneous melanoma and uterine carcinosarcoma^{6,7}. Biallelic deletion of TCF7L2 is observed in 2% diffuse large B-cell lymphoma, brain lower grade glioma, and colorectal adenocarcinoma, and 1% of bladder urothelial carcinoma, mesothelioma, stomach adenocarcinoma, esophageal adenocarcinoma, liver hepatocellular carcinoma, and skin cutaneous melanoma^{6,7}.

Potential relevance: Currently, no therapies are approved for TCF7L2 aberrations.

NOTCH1 deletion

notch 1

Background: The NOTCH1 gene encodes the notch receptor 1 protein, a type 1 transmembrane protein and member of the NOTCH family of genes, which also includes NOTCH2, NOTCH3, and NOTCH4. NOTCH proteins contain multiple epidermal growth factor (EGF)-like repeats in their extracellular domain, which are responsible for ligand binding and homodimerization, thereby promoting NOTCH signaling¹⁴⁹. Following ligand binding, the NOTCH intracellular domain is released, which activates the transcription of several genes involved in regulation of cell proliferation, differentiation, growth, and metabolism^{150,151}. In cancer, depending on the tumor type, aberrations in the NOTCH family can be gain of function or loss of function suggesting both oncogenic and tumor suppressor roles for NOTCH family members^{152,153,154,155}.

Alterations and prevalence: Somatic mutations in NOTCH1 are observed in 15-20% of head and neck cancer, 5-10% of glioma, melanoma, gastric, esophageal, lung, and uterine cancers^{6,7,108}. Activating mutations in either the heterodimerization or PEST domains of NOTCH1 have been reported in greater than 50% of T-cell acute lymphoblastic leukemia^{156,157}.

Potential relevance: Currently, no therapies are approved for NOTCH1 aberrations.

Biomarker Descriptions (continued)

PPP6C deletion

protein phosphatase 6 catalytic subunit

Background: PPP6C encodes protein phosphatase 6 catalytic subunit and is a member of the serine/threonine protein phosphatase family^{1,158}. As the catalytic subunit of the heterotrimeric phosphoprotein phosphatase 6 (PP6) holoenzyme, PPP6C is involved in diverse processes such as cell cycle regulation, DNA damage response, autophagy, miRNA processing, inflammatory signaling, and lymphocyte development^{158,159}. Loss of PPP6C results in hyperphosphorylation of Aurora A kinase, which results in defects in mitotic spindle assembly and subsequent genomic instability¹⁵⁹. Overexpression of PPP6C has been observed to result in decreased colony formation of human endometrial carcinoma cells in vitro, supporting a possible tumor suppressor role for PPP6C¹⁶⁰.

Alterations and prevalence: Somatic mutations in PPP6C are observed in 7% of skin cutaneous melanoma, 3% of uterine corpus endometrial carcinoma and cholangiocarcinoma, and 2% of colorectal adenocarcinoma^{6,7}. Biallelic loss of PPP6C is observed in 1% of thyroid carcinoma, pancreatic adenocarcinoma, and skin cutaneous melanoma^{6,7}. Amplification of PPP6C is observed in 2% kidney chromophobe^{6,7}.

Potential relevance: Currently, no therapies are approved for PPP6C aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

12 of 19

Report Date: 04 Jun 2025

Genes Assayed (continued)

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

In this cancer type	r type		type and other car	d other cancer types 💢 No evidence		ce
BRCA2 deletion						
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
olaparib		×	0	×	×	(II)
niraparib		×	0	×	×	×
rucaparib		×	0	×	×	×
pamiparib, tislelizumab		×	×	×	×	(II)
LATS2 deletion Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
IAG-933		×	×	×	×	(1)
PTEN deletion						
PTEN deletion Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Report Date: 04 Jun 2025 13 of 19

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

RB1 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ARTS-021	×	×	×	×	(I/II)

15C1 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
nab-rapamycin (Abraxis), chemotherapy	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
BRCA2	CNV, CN:1.11

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.0.2 data version 2025.04(004)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-03-19. NCCN information was sourced from www.nccn.org and is current as of 2025-03-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-03-19. ESMO information was sourced from www.esmo.org and is current as of 2025-03-03. Clinical Trials information is current as of 2025-03-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Pritchard et al. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin. Cancer Res. 2013 May 1;19(9):2301-9. PMID: 23406774
- 3. Bubici et al. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014 Jan;171(1):24-37. PMID: 24117156
- 4. Cargnello et al. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. PMID: 21372320
- Lee et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3). PMID: 32046099
- Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Patsialou et al. DNA-binding properties of ARID family proteins. Nucleic Acids Res. 2005;33(1):66-80. PMID: 15640446
- Wang et al. The Role of ARID5B in Acute Lymphoblastic Leukemia and Beyond. Front Genet. 2020;11:598. PMID: 32595701
- 10. Amé et al. The PARP superfamily. Bioessays. 2004 Aug;26(8):882-93. PMID: 15273990
- 11. Morales et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15-28. PMID: 24579667
- 12. Prawira et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res Treat. 2019 Aug;177(1):145-153. PMID: 31119570
- 13. Pilié et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res. 2019 Jul 1;25(13):3759-3771. PMID: 30760478
- 14. Lord et al. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017 Mar 17;355(6330):1152-1158. PMID: 28302823
- 15. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208558s028lbl.pdf
- 16. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209115s013lbl.pdf
- 17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/214876s000lbl.pdf
- 19. Milella et al. PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol. 2015 Feb 16;5:24. doi: 10.3389/fonc.2015.00024. eCollection 2015. PMID: 25763354
- 20. Song et al. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012 Apr 4;13(5):283-96. PMID: 22473468
- 21. Chalhoub et al. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127-50. PMID: 18767981
- 22. Mansour et al. Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer. Sci Rep. 2018 Mar 2;8(1):3947. PMID: 29500400
- 23. Leslie et al. Inherited PTEN mutations and the prediction of phenotype. Semin. Cell Dev. Biol. 2016 Apr;52:30-8. PMID: 26827793
- 24. Tan et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin. Cancer Res. 2012 Jan 15;18(2):400-7. PMID: 22252256
- 25. Dillon et al. Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets. 2014 Jan;15(1):65-79. PMID: 24387334
- 26. Papa et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell. 2014 Apr 24;157(3):595-610. PMID: 24766807
- 27. Kato et al. Functional evaluation of p53 and PTEN gene mutations in gliomas. Clin. Cancer Res. 2000 Oct;6(10):3937-43. PMID: 11051241
- 28. Han et al. Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 2000 Jun 15;60(12):3147-51. PMID: 10866302
- 29. Mendes-Pereira et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009 Sep;1(6-7):315-22. PMID: 20049735
- 30. Bian et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene. 2018 Jan 18;37(3):341-351. PMID: 28945226
- 31. https://www.senhwabio.com//en/news/20220125

- 32. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/218197s002lbl.pdf
- 33. Seetharaman et al. The RNA-binding protein LARP4 regulates cancer cell migration and invasion. Cytoskeleton (Hoboken). 2016 Nov;73(11):680-690. PMID: 27615744
- Koso et al. Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma. Cancer Res. 2016 Apr 15;76(8):2254-64. PMID: 26933087
- 35. Schmelzle et al. Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins Other Lipid Mediat. 2011 Feb;94(1-2):25-33. PMID: 21167292
- 36. Sausville et al. The Cytochrome P450 Slow Metabolizers CYP2C9*2 and CYP2C9*3 Directly Regulate Tumorigenesis via Reduced Epoxyeicosatrienoic Acid Production. Cancer Res. 2018 Sep 1;78(17):4865-4877. PMID: 30012669
- 37. Wei et al. Elevated 14,15- epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. BMC Cancer. 2014 Nov 18;14:841. PMID: 25406731
- 38. Jernström et al. CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients. Br J Cancer. 2009 Dec 1;101(11):1817-23. PMID: 19935798
- Merchant et al. Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol. 2004 Oct;24(19):8627-41. PMID: 15367681
- 40. Zhang et al. Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nat Commun. 2013;4:2608. PMID: 24217340
- 41. Cherry et al. Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2563-79. PMID: 24311597
- 42. Doheny et al. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells. 2020 Sep 17;9(9). PMID: 32957513
- 43. Guerrini-Rousseau et al. Germline SUFU mutation carriers and medulloblastoma: clinical characteristics, cancer risk, and prognosis. Neuro Oncol. 2018 Jul 5;20(8):1122-1132. PMID: 29186568
- 44. D'Alessandro et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat Commun. 2018 Dec 18;9(1):5376. PMID: 30560944
- 45. Aden et al. Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice. Gastroenterology. 2019 Jan;156(1):145-159.e19. PMID: 30273559
- 46. Valer et al. ACVR1 Function in Health and Disease. Cells. 2019 Oct 31;8(11). PMID: 31683698
- 47. Haupt et al. Variable signaling activity by FOP ACVR1 mutations. Bone. 2018 Apr;109:232-240. PMID: 29097342
- 48. Zhuo et al. Downregulation of Activin A Receptor Type 2A Is Associated with Metastatic Potential and Poor Prognosis of Colon Cancer. J Cancer. 2018;9(19):3626-3633. PMID: 30310521
- 49. Takaku et al. GATA3 in Breast Cancer: Tumor Suppressor or Oncogene?. Gene Expr. 2015;16(4):163-8. PMID: 26637396
- 50. Chou et al. GATA3 in development and cancer differentiation: cells GATA have it!. J Cell Physiol. 2010 Jan;222(1):42-9. PMID: 19798694
- 51. Mehra et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005 Dec 15;65(24):11259-64. PMID: 16357129
- 52. Rosset et al. TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol. 2017 Jan-Mar;40(1):69-79. PMID: 28222202
- 53. Henske et al. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016 May 26;2:16035. PMID: 27226234
- 54. Santiago et al. Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex. PLoS ONE. 2014;9(4):e93940. PMID: 24714658
- 55. Falkenberg et al. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014 Sep;13(9):673-91. PMID: 25131830
- 56. Li et al. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016 Dec;84:284-290. PMID: 27665474
- 57. Li et al. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10). PMID: 27599530
- 58. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021991s009lbl.pdf
- 59. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022393s017lbl.pdf
- 60. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/2062560rig1s006lbl.pdf
- 61. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205353s000lbl.pdf

- 62. Korenjak et al. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev . 2005 Oct;15(5):520-7. doi: 10.1016/j.gde.2005.07.001. PMID: 16081278
- 63. Sachdeva et al. Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J. Clin. Invest. 2012 Feb;122(2):425-34. PMID: 22293180
- 64. Dyson. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016 Jul 1;30(13):1492-502. PMID: 27401552
- 65. Cobrinik. Pocket proteins and cell cycle control. Oncogene. 2005 Apr 18;24(17):2796-809. PMID: 15838516
- 66. Dommering et al. RB1 mutations and second primary malignancies after hereditary retinoblastoma. Fam. Cancer. 2012 Jun;11(2):225-33. PMID: 22205104
- 67. Anasua et al. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma. . Oman J Ophthalmol . May-Aug 2016;9(2):116-8. PMID: 27433042
- 68. Tanaka et al. Frequent allelic loss of the RB, D13S319 and D13S25 locus in myeloid malignancies with deletion/translocation at 13q14 of chromosome 13, but not in lymphoid malignancies. Leukemia. 1999 Sep;13(9):1367-73. PMID: 10482987
- 69. Gombos et al. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor?. Ophthalmology. 2007 Jul;114(7):1378-83. PMID: 17613328
- 70. Li. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008 Jan;18(1):85-98. PMID: 18157157
- 71. Zhao et al. Mismatch Repair Deficiency/Microsatellite Instability-High as a Predictor for anti-PD-1/PD-L1 Immunotherapy Efficacy. J Hematol Oncol. 12(1),54. PMID: 31151482
- 72. Lynch et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009 Jul;76(1):1-18. PMID: 19659756
- 73. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12;8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- 74. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 75. Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 76. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- 77. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 78. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s172lbl.pdf
- 79. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 80. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- Ai et al. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. Drug Des Devel Ther. 2020;14:3625-3649.
 PMID: 32982171
- 82. He et al. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020 Aug;30(8):660-669. PMID: 32467592
- 83. Han et al. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727-742. PMID: 32266087
- 84. Marin-Acevedo et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018 Mar 15;11(1):39. PMID: 29544515
- 85. Liu et al. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Res. 2002;4(1):9-13. PMID: 11879553
- 86. Jasin. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene. 2002 Dec 16;21(58):8981-93. PMID: 12483514
- 87. Kuchenbaecker et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun 20;317(23):2402-2416. PMID: 28632866
- 88. Tai et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007 Dec 5;99(23):1811-4. PMID: 18042939
- 89. Levy-Lahad et al. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer. 2007 Jan 15;96(1):11-5. PMID: 17213823
- 90. NCCN Guidelines® NCCN-Genetic/Familial High-Risk Assessment: Breast and Ovarian [Version 1.2018]. NCCN-Genetic/Familial High-Risk Assessment: Breast and Ovarian
- 91. ARUP Laboratories University of Utah Department of Pathology.. https://arupconsult.com/ati/hereditary-breast-and-ovarian-cancer

- 92. Petrucelli et al. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews® [Internet]. PMID: 20301425
- 93. Pruthi et al. Identification and Management of Women With BRCA Mutations or Hereditary Predisposition for Breast and Ovarian Cancer. Mayo Clin. Proc. 2010 Dec;85(12):1111-20. PMID: 21123638
- 94. Walsh et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. U.S.A. 2011 Nov 1;108(44):18032-7. PMID: 22006311
- 95. Alsop et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012 Jul 20;30(21):2654-63. PMID: 22711857
- 96. Whittemore et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol. Biomarkers Prev. 2004 Dec;13(12):2078-83. PMID: 15598764
- 97. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer. 2000 Nov;83(10):1301-8. PMID: 11044354
- 98. Hodgson et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer. 2018 Nov;119(11):1401-1409. PMID: 30353044
- 99. Bryant et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005 Apr 14;434(7035):913-7. PMID: 15829966
- 100. Farmer et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005 Apr 14;434(7035):917-21. PMID: 15829967
- 101. Ison et al. FDA Approval Summary: Niraparib for the Maintenance Treatment of Patients with Recurrent Ovarian Cancer in Response to Platinum-Based Chemotherapy. Clin. Cancer Res. 2018 Sep 1;24(17):4066-4071. PMID: 29650751
- 102. Barber et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 2013 Feb;229(3):422-9. PMID: 23165508
- 103. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst.). 2018 Nov;71:172-176. PMID: 30177437
- 104. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- 105. Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 106. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 107. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 108. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 109. Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 110. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 111. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 112. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 113. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 114. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 115. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designation-of-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 116. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 117. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fda-breakthrough-therapy-designation-1769167
- 118. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534

- 119. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 120. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 121. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 122. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 2.2025]
- 123. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 124. NCCN Guidelines® NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 2.2025]
- 125. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 126. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2025]
- 127. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829
- 128. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 129. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 130. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 131. NCCN Guidelines® NCCN-Colon Cancer [Version 1.2025]
- 132. Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 133. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 134. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 135. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 136. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 137. NCCN Guidelines® NCCN-Rectal Cancer [Version 1.2025]
- 138. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 139. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 140. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 141. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 142. Furth et al. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 2017 Sep;24(9):1488-1501. PMID: 28644436
- 143. Leroux et al. AGC kinases, mechanisms of regulation #and innovative drug development. Semin Cancer Biol. 2018 Feb;48:1-17. PMID: 28591657
- 144. Meng et al. Mechanisms of Hippo pathway regulation. Genes Dev. 2016 Jan 1;30(1):1-17. PMID: 26728553
- 145. Yu et al. Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer. Protein Cell. 2015 Jan;6(1):6-11. PMID: 25482410
- 146. Wenzel et al. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene. 2020 May;39(19):3893-3909. PMID: 32203164
- 147. Hong et al. MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem. 2009 Jul 17;284(29):19613-22. PMID: 19443654
- 148. He et al. Identification of c-MYC as a target of the APC pathway. Science. 1998 Sep 4;281(5382):1509-12. PMID: 9727977
- 149. Sakamoto et al. Distinct roles of EGF repeats for the Notch signaling system. Exp. Cell Res. 2005 Jan 15;302(2):281-91. PMID: 15561108
- 150. Bray. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 2016 Nov;17(11):722-735. PMID: 27507209

19 of 19

Report Date: 04 Jun 2025

- 151. Kopan et al. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216-33. PMID: 19379690
- 152. Lobry et al. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 2011 Sep 26;208(10):1931-5. PMID: 21948802
- 153. Goriki et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol. 2018 Jun;15(6):345-357. PMID: 29643502
- 154. Wang et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2011 Oct 25;108(43):17761-6. PMID: 22006338
- 155. Xiu et al. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854. PMID: 31218097
- 156. Weng et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004 Oct 8;306(5694):269-71. PMID: 15472075
- 157. Breit et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006 Aug 15;108(4):1151-7. PMID: 16614245
- 158. Maskin et al. PPP6C, a serine-threonine phosphatase, regulates melanocyte differentiation and contributes to melanoma tumorigenesis through modulation of MITF activity. Sci Rep. 2022 Apr 2;12(1):5573. PMID: 35368039
- 159. Cho et al. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Rep. 2021 Mar 30;34(13):108928. PMID: 33789117
- 160. Wandzioch et al. PME-1 modulates protein phosphatase 2A activity to promote the malignant phenotype of endometrial cancer cells. Cancer Res. 2014 Aug 15;74(16):4295-305. PMID: 24928782