

Tel. 1661-5117 www.smlab.co.kr

1 of 15

Patient Name: 고창환 Primary Tumor Site: lung Gender: M Collection Date: 2025.05.09

Gender: M Sample ID: N25-26

Sample Cancer Type: Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Alert Details	5
Relevant Therapy Summary	10

Report Highlights 2 Relevant Biomarkers 8 Therapies Available 61 Clinical Trials

Relevant Lung Cancer Findings

Gene	Finding		Gene	Finding
ALK	EML4::ALK fu	sion	NTRK1	None detected
BRAF	None detected		NTRK2	None detected
EGFR	None detected		NTRK3	None detected
ERBB2	None detected		RET	None detected
KRAS	KRAS p.(A14)	5V) c.437C>T	ROS1	None detected
MET	None detected			
Genomic Alt	eration	Finding		
Tumor Mu	ıtational Burden	0.95 Mut/Mb measured		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EML4::ALK fusion echinoderm microtubule associated protein like 4 - ALK receptor tyrosine kinase Locus: chr2:42522656 - chr2:29446394	alectinib 1,2/I,II+ brigatinib 1,2/I,II+ ceritinib 1,2/I,II+ crizotinib 1,2/I,II+ ensartinib 1/I,II+ lorlatinib 1,2/I,II+ atezolizumab + bevacizumab + chemotherapy II+	crizotinib 1 / I, II+ alectinib I, II+ brigatinib I, II+ ceritinib I, II+ lorlatinib I, II+	55
IIC	KRAS p.(A146V) c.437C>T KRAS proto-oncogene, GTPase Allele Frequency: 2.90% Locus: chr12:25378561 Transcript: NM_033360.4	None*	bevacizumab + chemotherapy	7

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Report Date: 30 May 2025 2 of 15

Relevant Biomarkers (continued)

🛕 Alerts informed by public data sources: 🤣 Contraindicated, 🔻 Resistance, 🦸 Breakthrough, 🔼 Fast Track

EML4::ALK fusion

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

KMT2A p.(C1448*) c.4343_4345delGCCinsA, MDM2 amplification, NQO1 p.(P187S) c.559C>T, Tumor Mutational Burden

Variant Details

DNA Soguence Variante

DNA Sequence variants							
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
KMT2A	p.(C1448*)	c.4343_4345delGCCin A	IS.	chr11:118359339	7.89%	NM_001197104.2	nonsense
KRAS	p.(A146V)	c.437C>T	COSM19900	chr12:25378561	2.90%	NM_033360.4	missense
NQ01	p.(P187S)	c.559C>T		chr16:69745145	44.27%	NM_000903.3	missense
POLR1B	p.(M285I)	c.855G>T		chr2:113309444	4.76%	NM_019014.6	missense

Gene Fusions		
Genes	Variant ID	Locus
ALK	ALK	chr2:29455169
EML4::ALK	EML4-ALK.E13A20.COSF408.2	chr2:42522656 - chr2:29446394
EML4::ALK	EML4-ALK.E13A20.Non-Targeted	chr2:42522656 - chr2:29446358

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
MDM2	chr12:69202958	9.18	2.43		

Biomarker Descriptions

KRAS p.(A146V) c.437C>T

KRAS proto-oncogene, GTPase

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁴. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q614.5.6. Mutations at A59. K117, and A146 have also been observed but are less frequent^{7,8}.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib9 (2021) and adagrasib10 (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). Sotorasib and adagrasib are also useful in certain circumstances for KRAS G12C-mutated pancreatic adenocarcinoma¹¹. The FDA has also granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-603612, for KRAS G12C-mutated non-small cell lung cancer.

Biomarker Descriptions (continued)

The SHP2 inhibitor, BBP-398¹³ was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC. The RAF/MEK clamp, avutometinib¹⁴ was also granted fast track designation (2024) in combination with sotorasib for KRAS G12C-mutated metastatic NSCLC who have received at least one prior systemic therapy and have not been previously treated with a KRAS G12C inhibitor. The KRAS G12C inhibitor, BBO-8520¹⁵, was granted fast track designation in 2025 for previously treated KRAS G12C-mutated patients with metastatic NSCLC. The KRAS G12C inhibitor, D3S-001¹⁶, was granted fast track designation in 2024 for KRAS G12C-mutated patients with advanced unresectable or metastatic colorectal cancers. The PLK1 inhibitor, onvansertib¹⁷, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). The EGFR antagonists, cetuximab¹⁸ and panitumumab¹⁹, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²⁰.

MDM2 amplification

MDM2 proto-oncogene

<u>Background</u>: The MDM2 gene encodes the murine double minute 2 proto-oncogene. MDM2 is structurally related to murine double minute 4 (MDM4), with both proteins containing an N-terminal domain that binds p53, a zinc-finger domain, and a C-terminal RING domain²¹. MDM2 and MDM4 are oncogenes that function as negative regulators of the tumor suppressor TP53, and can homo- or heterodimerize with p53 through their RING domains²¹. Specifically, the MDM2 RING domain functions as an E3 ubiquitin ligase and is responsible for the polyubiquitination and degradation of the p53 protein when MDM2 is present at high levels²². Alternately, low levels of MDM2 activity promote mono-ubiquitination and nuclear export of p53²². MDM2 amplification and overexpression disrupt the p53 protein function, thereby contributing to tumorigenesis and supporting an oncogenic role for MDM2²².

Alterations and prevalence: MDM2 is amplified in up to 13% of sarcoma, 8% of bladder urothelial carcinoma, glioblastoma, and 7% of adrenal cortical carcinoma^{4,7}. MDM2 overexpression is observed in lung, breast, liver, esophagogastric, and colorectal cancers²³. The most common co-occurring aberrations with MDM2 amplification or overexpression are CDK4 amplification and TP53 mutation^{24,25}.

Potential relevance: Currently, no therapies are approved for MDM2 aberrations. Amplification of region 12q13-15, which includes MDM2, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/well differentiated liposarcoma (ALT/WDLS) and dedifferentiated liposarcoma²⁶.

EML4::ALK fusion

ALK receptor tyrosine kinase, echinoderm microtubule associated protein like 4

Background: The ALK gene encodes the ALK receptor tyrosine kinase (RTK) with sequence similarity to the insulin receptor subfamily of kinases²⁷. ALK is the target of recurrent alterations in cancer, the most common being chromosomal rearrangements that generate fusion genes containing the intact ALK tyrosine kinase domain combined with multiple partner genes²⁸. ALK fusion kinases are constitutively activated and drive oncogenic transformation via activation of downstream STAT3, PI3K/AKT/MTOR, and RAS/RAF/MEK/ERK pathways^{28,29,30,31}.

Alterations and prevalence: ALK was discovered by positional cloning of translocations involving nucleophosmin (NPM) on 5q35 with a previously unidentified RTK on 2p23 (ALK), which occur in over 50% of anaplastic large cell lymphoma cases (ALCL)^{27,32}. In contrast, about 5% of non-small cell lung cancer (NSCLC) cases generate recurrent ALK fusions with EML4, KIF5B, and HIP1^{33,34,35}.

Potential relevance: The first generation small molecule tyrosine kinase inhibitor (TKI), crizotinib³⁶, was FDA approved (2011) for the treatment of ALK positive advanced NSCLC as well as ALK positive ALCL or inflammatory myofibroblastic tumor (IMT). Kinase domain mutations including L1196M, G1269A, F1174L, G1202R, as well as other variants have been shown to confer acquired resistance to crizotinib in ALK positive NSCLC^{37,38,39,40}. Other mechanisms of acquired resistance involve amplification of the ALK fusion gene and activation of alternate or bypass signaling pathways involving EGFR, KIT, MET, and IGF1R⁴¹. In order to overcome acquired resistance, second and third-generation ALK inhibitors including ceritinib⁴² (2014), alectinib⁴³ (2015), brigatinib⁴⁴ (2017), lorlatinib⁴⁵ (2018), and ensartinib⁴⁶ (2024) were developed and approved by the FDA. Two phase III trials evaluating crizotinib and alectinib as first line therapy in NSCLC, including patients with asymptomatic central nervous system (CNS) disease, were conducted and both studies showed consistent higher objective response rates (ORR) with alectinib relative to crizotinib^{47,48}. For this reason, alectinib is a preferred first-line treatment of ALK positive NSCLC⁴⁹. The FDA granted breakthrough therapy designation (2024) to NVL-655 for locally advanced or metastatic ALK-positive NSCLC patients who have been previously treated with two or more ALK TKIs⁵⁰.

Biomarker Descriptions (continued)

KMT2A p.(C1448*) c.4343_4345delGCCinsA

lysine methyltransferase 2A

Background: The KMT2A gene encodes the lysine methyltransferase 2A protein, a transcriptional coactivator and histone H3 lysine 4 (H3K4) methyltransferase. KMT2A, also known as mixed lineage leukemia (MLL), is part of the SET domain protein methyltransferase superfamily. KMT2A influences epigenetic regulation by means of its methyltransferase activity, which regulates a variety of cellular functions including neurogenesis, hematopoiesis, and osteogenesis⁵¹. Located at the chromosomal position 11q23, KMT2A is the target of recurrent chromosomal rearrangements observed in several leukemia subtypes including MLL, acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL)⁵². Such translocations encode KMT2A fusion proteins that are oncogenic with simultaneous loss of KMT2A H3K4 methyltransferase activity⁵². Loss of methyltransferase activity along with partner gene gain of function contributes to increased HOX gene expression and promotes the transformation of hematopoietic cells into leukemic stem cells^{52,53,54,55}.

Alterations and prevalence: KMT2A fusions are observed in 3-10% of AML cases with the highest frequencies in therapy-related AML (9%) and patients younger than 60 years (5%)^{52,56,57}. KMT2A rearrangements including t(4;11)(q21;q23)/AFF1::KMT2A, t(9;11)(p22;q23)/MLLT3::KMT2A, t(11;19)(q23;p13.3)/KMT2A::MLLT1, t(10;11)(p12;q23)/MLLT10::KMT2A, and t(6;11)(q27;q23)/AFDN::KMT2A translocations account for about 80% of all KMT2A rearranged leukemias⁵². In infant acute leukemic cases, KMT2A rearrangement is reported in up to 70% of those diagnosed with either AML or ALL^{52,58,59}. Mutations in KMT2A are also reported in diverse solid tumors including 10-20% of melanoma, stomach, bladder, and uterine cancers and around 5% of lung and head and neck cancers⁴. KMT2A alterations observed in solid tumors include nonsense or frameshift mutations which result in KMT2A truncation and loss of methyltransferase activity^{4,60}.

Potential relevance: KMT2A fusions are associated with variable prognosis based on the partner genes involved in the fusion^{57,61}. For example, t(6;11)(q27;q23)/AFDN::KMT2A fusions are associated with poor prognosis, whereas t(9;11)(p22;q23)/MLLT3::KMT2A fusions confer a more favorable or intermediate prognosis in AML^{62,63,64}. Additionally, 11q23 rearrangements define an unfavorable karyotype in patients diagnosed with primary myelofibrosis (PMF) and may confer intermediate to high risk depending on concurrent cytogenetic abnormalities⁶⁵. KMT2A fusion is also associated with poor risk in ALL⁶⁶. In 2024, the FDA approved the oral menin inhibitor, revumenib⁶⁷, for the treatment of adult and pediatric patients 1 year and older with relapsed or refractory acute leukemia harboring a KMT2A rearrangement. In 2024, the FDA also grant fast track designation to the small molecule inhibitor, DSP-5336, for the treatment of patients with relapsed or refractory AML with KMT2A rearrangements⁶⁸.

5 of 15 Report Date: 30 May 2025

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

FDA information is current as of 2025-03-19. For the most up-to-date information, search www.fda.gov.

EML4::ALK fusion

Cancer type: Non-Small Cell Lung Cancer

Variant class: ALK fusion

Supporting Statement:

The FDA has granted Breakthrough Therapy designation to a brain-penetrant ALK-selective tyrosine kinase inhibitor (TKI), NVL-655, for the treatment of patients with locally advanced or metastatic ALK-positive non-small cell lung cancer (NSCLC) who have been previously treated with two or more ALK TKIs.

Reference:

https://investors.nuvalent.com/2024-05-16-Nuvalent-Receives-U-S-FDA-Breakthrough-Therapy-Designation-for-NVL-655

KRAS p.(A146V) c.437C>T

cetuximab

Cancer type: Colorectal Cancer

Label as of: 2021-09-24

Variant class: KRAS A146 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

Report Date: 30 May 2025 6 of 15

KRAS p.(A146V) c.437C>T (continued)

panitumumab

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS A146 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of:

Adult patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test) Metastatic Colorectal Cancer (mCRC)*:

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan-containing chemotherapy.

KRAS G12C-mutated Metastatic Colorectal Cancer (mCRC)*

■ In combination with sotorasib, for the treatment of adult patients with KRAS G12C-mutated mCRC, as determined by an FDA-approved test, who have received prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy.

*Limitations of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC unless used in combination with sotorasib in KRAS G12C-mutated mCRC. VECTIBIX® is not indicated for the treatment of patients with mCRC for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf

Current NCCN Information

Contraindicated

Not recommended

Breakthrough

A Fast Track

NCCN information is current as of 2025-03-03. To view the most recent and complete version of the guideline, go online to NCCN.org.

For NCCN International Adaptations & Translations, search www.nccn.org/global/what-we-do/international-adaptations.

Some variant specific evidence in this report may be associated with a broader set of alterations from the NCCN Guidelines. Specific variants listed in this report were sourced from approved therapies or scientific literature. These therapeutic options are appropriate for certain population segments with cancer. Refer to the NCCN Guidelines® for full recommendation.

All guidelines cited below are referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) National Comprehensive Cancer Network, Inc. 2023. All rights reserved. NCCN makes no warranties regarding their content.

KRAS p.(A146V) c.437C>T

cetuximab

Cancer type: Colon Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 1.2025]

Report Date: 30 May 2025 7 of 15

KRAS p.(A146V) c.437C>T (continued)

cetuximab

Cancer type: Rectal Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2025]

panitumumab

Cancer type: Colon Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 1.2025]

panitumumab

Cancer type: Rectal Cancer Variant class: KRAS A146 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2025]

Current EMA Information

EMA information is current as of 2025-03-19. For the most up-to-date information, search www.ema.europa.eu.

KRAS p.(A146V) c.437C>T

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2025-01-16 Variant class: KRAS A146 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2022-07-06 Variant class: KRAS A146 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

8 of 15 Report Date: 30 May 2025

Current ESMO Information

Contraindicated

Not recommended

Breakthrough

Fast Track

ESMO information is current as of 2025-03-03. For the most up-to-date information, search www.esmo.org.

KRAS p.(A146V) c.437C>T

cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS A146 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/ j.annonc.2022.10.003 (published)]

panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS A146 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "The presence of RAS mutations is associated with resistance to anti-EGFR mAbs and knowing the expanded RAS mutational status is mandatory for use of both cetuximab and panitumumab, avoiding anti-EGFR mAb treatment when a RAS mutation is confirmed"
- "RAS testing is mandatory before treatment with anti-EGFR mAbs and can be carried out on either the primary tumor or other metastatic sites [III, A]"

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2023); https://doi.org/10.1016/ j.annonc.2022.10.003 (published)]

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLC01B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XP01, ZNF217, ZNF429

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRFI1, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAT1, FBXW7, FGF19, FGF23, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C, PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCG, FANCI, FANCI, FANCH, FA

Relevant Therapy Summary

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
crizotinib	0	0	•	•	(III)
alectinib	•	0	•	•	(IV)
ceritinib		0			(IV)
brigatinib	•	0	•		(II)
lorlatinib	•	0	•	•	(II)
ensartinib	•	•	×	×	(II)
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
alectinib, chemotherapy	×	×	×	×	(III)
alectinib, durvalumab	×	×	×	×	(III)
neladalkib, alectinib	×	×	×	×	(III)
sacituzumab tirumotecan	×	×	×	×	(III)
SGN-B6A	×	×	×	×	(III)
targeted therapy	×	×	×	×	(III)
TGRX-326, crizotinib	×	×	×	×	(III)
alectinib, crizotinib	×	×	×	×	(II)
alectinib, lorlatinib	×	×	×	×	(II)
brigatinib, chemotherapy	×	×	×	×	(II)
brigatinib, chemotherapy, radiation therapy	×	×	×	×	(II)
chemotherapy, lorlatinib	×	×	×	×	(II)
ensartinib, radiation therapy, bevacizumab	×	×	×	×	(II)
IBI323, bevacizumab, chemotherapy	×	×	×	×	(II)
iruplinalkib	×	×	×	×	(II)
pembrolizumab, bevacizumab, chemotherapy	×	×	×	×	(II)
sacituzumab govitecan	×	×	×	×	(II)
SY-3505	×	×	×	×	(II)
alectinib, radiation therapy	×	×	×	×	(/)
amivantamab, alectinib, brigatinib, lorlatinib	×	×	×	×	(/)
benmelstobart, catequentinib	×	×	×	×	(/)
DAJH-1050766	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

EML4::ALK fusion (continued)					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
furetinib	×	×	×	×	(/)
neladalkib	×	×	×	×	(/)
ramucirumab, lorlatinib	×	×	×	×	(I/II)
sotiburafusp alfa, HB-0030	×	×	×	×	(I/II)
APG-2449	×	×	×	×	(I)
gilteritinib	×	×	×	×	● (I)
IBI-318, lenvatinib	×	×	×	×	(I)
IBI-363, IBI-325, lenvatinib	×	×	×	×	(I)
LZ-001	×	×	×	×	(I)
talazoparib, crizotinib	×	×	×	×	(I)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
bevacizumab + CAPOX	×	×	×	0	×
bevacizumab + FOLFIRI	×	×	×	0	×
bevacizumab + FOLFOX	×	×	×	0	×
bevacizumab + FOLFOXIRI	×	×	×	0	×
regorafenib	×	×	×	×	(II)
afatinib, selumetinib	×	×	×	×	(1/11)
IMM-1-104	×	×	×	×	(/)
IMM-6-415	×	×	×	×	(/)
zotatifin	×	×	×	×	(1/11)
HMPL-415	×	×	×	×	(I)
Nest-1	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

12 of 15

Report Date: 30 May 2025

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.0.2 data version 2025.04(004)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-03-19. NCCN information was sourced from www.nccn.org and is current as of 2025-03-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-03-19. ESMO information was sourced from www.esmo.org and is current as of 2025-03-03. Clinical Trials information is current as of 2025-03-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/2146650rig1s009correctedlbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216340s005lbl.pdf
- 11. NCCN Guidelines® NCCN-Pancreatic Adenocarcinoma [Version 2.2025]
- 12. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 13. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 14. https://investor.verastem.com/news-releases/news-release-details/verastem-oncology-granted-fast-track-designation-combination
- 15. https://www.businesswire.com/news/home/20250109170439/en/
- 16. https://www.d3bio.com/press-releases/d3-bios-d3s-001-receives-u-s-fda-fast-track-designation-for-the-treatment-of-colorectal-cancer-with-kras-g12c-mutation
- 17. https://cardiffoncology.com/wp-content/uploads/2021/07/Cardiff_Oncology_Investor_Presentation-_July_2021.pdf
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125147s213lbl.pdf
- 20. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 21. Toledo et al. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 2007;39(7-8):1476-82. PMID: 17499002
- 22. Zhao et al. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin. (Shanghai). 2014 Mar;46(3):180-9. PMID: 24389645
- 23. Helei et al. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell International volume 19, Article number: 216 (2019). PMID: 31440117
- 24. Dembla et al. Prevalence of MDM2 amplification and coalterations in 523 advanced cancer patients in the MD Anderson phase 1 clinic. Oncotarget. 2018 Sep 4;9(69):33232-33243. PMID: 30237864
- 25. Momand et al. The MDM2 gene amplification database. Nucleic Acids Res. 1998 Aug 1;26(15):3453-9. PMID: 9671804
- 26. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 4.2024]
- 27. Webb et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009 Mar;9(3):331-56. PMID: 19275511
- 28. Shaw et al. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer. 2013 Nov;13(11):772-87. PMID: 24132104
- 29. Chiarle et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 2005 Jun;11(6):623-9. PMID: 15895073
- 30. Bai et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood. 2000 Dec 15;96(13):4319-27. PMID: 11110708
- 31. Hrustanovic et al. RAS signaling in ALK fusion lung cancer. Small GTPases. 2016;7(1):32-3. PMID: 26901483

References (continued)

- 32. Morris et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994 Mar 4;263(5151):1281-4. PMID: 8122112
- 33. Kwak et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 2010 Oct 28;363(18):1693-703. PMID: 20979469
- 34. Yu et al. Frequencies of ALK rearrangements in lung adenocarcinoma subtypes: a study of 2299 Chinese cases. Springerplus. 2016 Jun 27;5(1):894. doi: 10.1186/s40064-016-2607-5. eCollection 2016. PMID: 27386342
- 35. Dai et al. Incidence and patterns of ALK FISH abnormalities seen in a large unselected series of lung carcinomas. Send to Mol Cytogenet. 2012 Dec 3;5(1):44. doi: 10.1186/1755-8166-5-44. PMID: 23198868
- 36. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202570s036lbl.pdf
- 37. Choi et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 2010 Oct 28;363(18):1734-9. PMID: 20979473
- 38. Awad et al. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol. 2014 Jul;12(7):429-39. PMID: 25322323
- Kim et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J Thorac Oncol. 2013 Apr;8(4):415-22. PMID: 23344087
- 40. Katayama et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25. PMID: 22277784
- 41. Katayama. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. Cancer Sci. 2018 Mar;109(3):572-580. PMID: 29336091
- 42. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/211225s004lbl.pdf
- 43. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208434s015lbl.pdf
- 44. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208772s013lbl.pdf
- 45. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf
- 46. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218171s000lbl.pdf
- 47. Peters et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017 Aug 31;377(9):829-838. PMID: 28586279
- 48. Hida et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017 Jul 1;390(10089):29-39. PMID: 28501140
- 49. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 3.2025]
- 50. https://investors.nuvalent.com/2024-05-16-Nuvalent-Receives-U-S-FDA-Breakthrough-Therapy-Designation-for-NVL-655
- 51. Huang et al. Epigenetic regulation of NOTCH1 and NOTCH3 by KMT2A inhibits glioma proliferation. Oncotarget. 2017 Sep 8;8(38):63110-63120. PMID: 28968975
- 52. Krivtsov et al. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer. 2007 Nov;7(11):823-33. PMID: 17957188
- 53. Ayton et al. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene. 2001 Sep 10;20(40):5695-707. PMID: 11607819
- 54. DiMartino et al. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood. 2002 May 15;99(10):3780-5. PMID: 11986236
- 55. Biswas et al. Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc. Natl. Acad. Sci. U.S.A. 2011 Sep 20;108(38):15751-6. PMID: 21896721
- 56. Schoch et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood. 2003 Oct 1;102(7):2395-402. PMID: 12805060
- 57. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 2.2025]
- 58. Biondi et al. Biological and therapeutic aspects of infant leukemia. Blood. 2000 Jul 1;96(1):24-33. PMID: 10891426
- 59. Pui et al. Biology and treatment of infant leukemias. Leukemia. 1995 May;9(5):762-9. PMID: 7769837
- 60. Rao et al. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer. 2015 Jun;15(6):334-46. PMID: 25998713
- 61. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463

Report Date: 30 May 2025 15 of 15

References (continued)

62. Krauter et al. Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. J. Clin. Oncol. 2009 Jun 20;27(18):3000-6. PMID: 19380453

- 63. Balgobind et al. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia. 2011 Aug;25(8):1239-48. PMID: 21566656
- 64. Tamai et al. 11q23/MLL acute leukemia: update of clinical aspects. J Clin Exp Hematop. 2010;50(2):91-8. PMID: 21123966
- 65. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2025]
- 66. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 3.2024]
- 67. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218944s000lbl.pdf
- 68. https://www.onclive.com/view/fda-grants-fast-track-designation-to-dsp-5336-in-kmt2a-nmp1-aml