

Tel. 1661-5117 www.smlab.co.kr

Report Date: 19 May 2025 1 of 8

Patient Name: 신천식 Gender: M Sample ID: N25-9 Primary Tumor Site: bone Collection Date: 2025.04.22

Sample Cancer Type: Chondrosarcoma

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	5

Report Highlights 2 Relevant Biomarkers 0 Therapies Available 4 Clinical Trials

Relevant Chondrosarcoma Findings

Gene	Finding	
BRAF	None detected	
IDH1	None detected	
IDH2	None detected	
NTRK1	None detected	
NTRK2	None detected	
NTRK3	None detected	
RET	None detected	
Genomic Alte	eration	Finding
Tumor Mu	tational Burden	6.63 Mut/Mb measured

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CDKN2A deletion cyclin dependent kinase inhibitor 2A Locus: chr9:21968178	None*	None*	4
IIC	CDKN2B deletion cyclin dependent kinase inhibitor 2B Locus: chr9:22005728	None*	None*	2

^{*} Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Line of therapy: I: First-line therapy, II+: Other line of therapy

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources

Microsatellite stable, GATA3 deletion, KLF5 amplification, Tumor Mutational Burden

Variant Details

DNA Sequence Variants

	-						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect
CDC73	p.(V276A)	c.827T>C		chr1:193117094	27.86%	NM_024529.5	missense
MSH3	p.(A57_A62del)	c.162_179delTGCAGC GGCCGCAGCGGC		chr5:79950707	73.31%	NM_002439.5	nonframeshift Deletion
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT		chr6:31324208	100.00%	NM_005514.8	missense,

CDC73	p.(V276A)	c.827T>C	chr1:193117094	27.86%	NM_024529.5	missense
MSH3	p.(A57_A62del)	c.162_179delTGCAGC GGCCGCAGCGGC	chr5:79950707	73.31%	NM_002439.5	nonframeshift Deletion
HLA-B	p.([T118I;L119I])	c.353_355delCCCinsT CA	chr6:31324208	100.00%	NM_005514.8	missense, missense
CDKN1A	p.(M1?)	c.1A>T	chr6:36651879	65.56%	NM_078467.3	missense
POT1	p.(H386R)	c.1157A>G	chr7:124482867	21.38%	NM_015450.3	missense
OR8U8	p.(L105I)	c.313C>A	chr11:56143412	25.70%	NM_001013356.2	missense
OR8U1	p.(L105I)	c.313C>A	chr11:56143412	25.70%	NM_001005204.1	missense
RNASEH20	p.(E6K)	c.16G>A	chr11:65488214	19.57%	NM_032193.4	missense
SCAPER	p.(Q1074R)	c.3221A>G	chr15:76726509	34.85%	NM_020843.4	missense

Copy Number Variations					
Gene	Locus	Copy Number	CNV Ratio		
CDKN2A	chr9:21968178	0	0.22		
CDKN2B	chr9:22005728	0	0.25		
GATA3	chr10:8097519	0.88	0.68		
KLF5	chr13:73633435	5.34	1.94		
TPP2	chr13:103249399	5.75	2.05		
CUL4A	chr13:113863977	5.89	2.09		

Biomarker Descriptions

Microsatellite stable

Background: Microsatellites are short tandem repeats (STR) of 1 to 6 bases of DNA between 5 to 50 repeat units in length. There are approximately 0.5 million STRs that occupy 3% of the human genome¹. Microsatellite instability (MSI) is defined as a change in the length of a microsatellite in a tumor as compared to normal tissue^{2,3}. MSI is closely tied to the status of the mismatch repair (MMR) genes. In humans, the core MMR genes include MLH1, MSH2, MSH6, and PMS24. Mutations and loss of expression in MMR genes, known as defective MMR (dMMR), lead to MSI. In contrast, when MMR genes lack alterations, they are referred to as MMR proficient (pMMR). Consensus criteria were first described in 1998 and defined MSI-high (MSI-H) as instability in two or more of the following five markers: BAT25, BAT26, D5S346, D2S123, and D17S2505. Tumors with instability in one of the five markers were defined as MSI-low (MSI-L) whereas, those with instability in zero markers were defined as MS-stable (MSS)5. Tumors classified as MSI-L are often phenotypically indistinguishable from MSS tumors and tend to be grouped with MSS^{6,7,8,9,10}. MSI-H is a hallmark of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer, which is caused by germline mutations in the MMR genes³. LS is associated with an increased risk of developing colorectal cancer, as well as other cancers, including endometrial and stomach cancer^{2,3,7,11}.

Alterations and prevalence: The MSI-H phenotype is observed in 30% of uterine corpus endothelial carcinoma, 20% of stomach adenocarcinoma, 15-20% of colon adenocarcinoma, and 5-10% of rectal adenocarcinoma^{2,3,12,13}. MSI-H is also observed in 5% of adrenal cortical carcinoma and at lower frequencies in other cancers such as esophageal, liver, and ovarian cancers^{12,13}.

Potential relevance: Anti-PD-1 immune checkpoint inhibitors including pembrolizumab¹⁴ (2014) and nivolumab¹⁵ (2015) are approved for patients with MSI-H or dMMR colorectal cancer who have progressed following chemotherapy. Pembrolizumab¹⁴ is also approved

Biomarker Descriptions (continued)

as a single agent, for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR with disease progression on prior therapy who are not candidates for surgery or radiation. Importantly, pembrolizumab is approved for the treatment of MSI-H or dMMR solid tumors that have progressed following treatment, with no alternative option and is the first anti-PD-1 inhibitor to be approved with a tumor agnostic indication¹⁴. Dostarlimab¹⁶ (2021) is also approved for dMMR recurrent or advanced endometrial carcinoma or solid tumors that have progressed on prior treatment and is recommended as a subsequent therapy option in dMMR/MSI-H advanced or metastatic colon or rectal cancer^{8,17}. The cytotoxic T-lymphocyte antigen 4 (CTLA-4) blocking antibody, ipilimumab¹⁸ (2011), is approved alone or in combination with nivolumab in MSI-H or dMMR colorectal cancer that has progressed following treatment with chemotherapy. MSI-H may confer a favorable prognosis in colorectal cancer although outcomes vary depending on stage and tumor location^{8,19,20}. Specifically, MSI-H is a strong prognostic indicator of better overall survival (OS) and relapse free survival (RFS) in stage II as compared to stage III colorectal cancer patients²⁰. The majority of patients with tumors classified as either MSS or pMMR do not benefit from treatment with single-agent immune checkpoint inhibitors as compared to those with MSI-H tumors^{21,22}. However, checkpoint blockade with the addition of chemotherapy or targeted therapies have demonstrated response in MSS or pMMR cancers^{21,22}.

GATA3 deletion

GATA binding protein 3

<u>Background:</u> The GATA3 gene encodes GATA binding protein 3²³. GATA3 is a zinc-finger transcription factor that functions in the <u>differentiation</u> of immune cells and tissue development 2^{4,25}. As GATA3 also functions in luminal cell development and cell function, it is a common marker of the gene expression profile in luminal breast cancer²⁴.

Alterations and prevalence: Somatic mutations in GATA3 are observed in 12% of breast invasive carcinoma, 4% of uterine corpus endometrial carcinoma and stomach adenocarcinoma, and 3% of colorectal adenocarcinoma, skin cutaneous melanoma^{26,27}. Biallelic loss of GATA3 is observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{26,27}.

Potential relevance: Currently, no therapies are approved for GATA3 aberrations. Low GATA3 expression is associated with invasion and poor prognosis in breast cancer^{24,28}.

CDKN2A deletion

cyclin dependent kinase inhibitor 2A

Background: CDKN2A encodes the cyclin-dependent kinase inhibitor 2A protein, a cell cycle regulator that controls G1/S progression²³. CDKN2A, also known as p16/INK4A, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2B (p15/INK4B), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D). The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6, thereby preventing the phosphorylation of Rb^{29,30,31}. CDKN2A codes for two alternate transcript variants namely p16 and p14ARF, both of which exhibit differential tumor suppressor function³². Specifically, the CDKN2A/p16 transcript functions as an inhibitor of cell cycle kinases CDK4 and CDK6, whereas the CDKN2A/p14ARF transcript variant stabilizes the tumor suppressor protein p53 to prevent its degradation^{23,32,33}. CDK2NA aberrations commonly co-occur with CDKN2B. Loss of CDKN2A/p16 demonstrates downstream inactivation of Rb and p53 pathways leading to uncontrolled cell proliferation³⁴. Germline mutations of CDKN2A are known to confer a predisposition to melanoma and pancreatic cancer^{35,36}.

Alterations and prevalence: Somatic alterations in CDKN2A often result in loss of function (LOF) which is attributed to copy number loss, truncating, or missense mutations. Copy number loss of CDKN2A is observed in 63% of esophageal cancer, 54% of glioblastoma, 45% of pleural mesothelioma, 31% of bladder urothelial carcinoma, and 29% of head and neck squamous cell carcinoma and pancreatic adenocarcinoma^{26,27}. Additionally, CDKN2A mutations have been observed in 19% of pancreatic adenocarcinoma and 6% of bladder urothelial carcinoma cases^{26,27}.

Potential relevance: CDKN2A loss can be useful in the diagnosis of mesothelioma and mutations are used as an ancillary diagnostic marker of malignant peripheral nerve sheath tumors^{37,38,39}. Currently, no therapies are approved for CDKN2A aberrations. However, CDKN2A LOF leading to CDK4/6 activation may confer sensitivity to CDK inhibitors such as palbociclib and abemaciclib^{40,41,42}. Alternatively, CDK2NA expression and Rb inactivation demonstrate resistance to palbociclib in cases of glioblastoma multiforme⁴³. CDKN2A (p16) expression is also associated with a favorable prognosis for progression-free survival (PFS) and overall survival (OS) in p16/HPV positive head and neck cancer^{44,45,46,47,48}.

CDKN2B deletion

cyclin dependent kinase inhibitor 2B

Background: CDKN2B encodes the cyclin-dependent kinase inhibitor 2B protein, a cell cycle regulator that controls G1/S progression²³. CDKN2B, also known as p15/INK4B, belongs to a family of INK4 cyclin-dependent kinase inhibitors, which also includes CDKN2A (p16/INK4A), CDKN2C (p18/INK4C), and CDKN2D (p19/INK4D). The INK4 family regulates cell cycle progression by inhibiting CDK4 or CDK6,

Biomarker Descriptions (continued)

thereby preventing the phosphorylation of Rb^{29,30,31}. CDK2NB is a tumor suppressor and aberrations in this gene commonly co-occur with CDKN2A. Germline mutations in CDKN2B are linked to pancreatic cancer predisposition and familial renal cell carcinoma^{23,49,50}.

Alterations and prevalence: CDKN2B copy number loss is a frequently occurring somatic aberration that is observed in 56% of esophageal squamous cell carcinoma, 54% of glioblastoma, 42% of pleural mesothelioma, 31% of bladder urothelial carcinoma, 28% of head and neck squamous cell carcinoma, and 27% of pancreatic adenocarcinoma²⁷.

Potential relevance: Currently, no therapies are approved for CDKN2B aberrations.

KLF5 amplification

Kruppel like factor 5

<u>Background:</u> The KLF5 gene encodes the Kruppel like factor 5 protein, a member of the Kruppel-like factor (KLF) subfamily of zinc finger transcription factors within group 2, along with KLF1, KLF2, KLF4, KLF7, and KLF6^{23,51}. KLF proteins are known for their role in the reprogramming of somatic cells into inducible pluripotent stem cells and impact several biological processes including the regulation of proliferation, differentiation, and apoptosis⁵¹. KLF5 regulates a variety of target genes including PDGFa, cyclin D1, p21, and p27, and is known to contribute to the regulation of cell proliferation, differentiation, angiogenesis, and migration^{52,53}.

Alterations and prevalence: Somatic mutations in KLF5 are observed in 5% of bladder urothelial carcinoma, 3% of cervical squamous cell carcinoma, 2% of lung squamous cell carcinoma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma^{26,27}. Amplifications in KLF5 are observed in 4% of stomach adenocarcinoma and uterine carcinosarcoma, and 3% of bladder urothelial carcinoma, esophageal adenocarcinoma, head and neck squamous cell carcinoma, and colorectal adenocarcinoma^{26,27}.

Potential relevance: Currently, no therapies are approved for KLF5 aberrations.

Genes Assayed

Genes Assayed for the Detection of DNA Sequence Variants

ABL1, ABL2, ACVR1, AKT1, AKT2, AKT3, ALK, AR, ARAF, ATP1A1, AURKA, AURKB, AURKC, AXL, BCL2, BCL2L12, BCL6, BCR, BMP5, BRAF, BTK, CACNA1D, CARD11, CBL, CCND1, CCND2, CCND3, CCNE1, CD79B, CDK4, CDK6, CHD4, CSF1R, CTNNB1, CUL1, CYSLTR2, DDR2, DGCR8, DROSHA, E2F1, EGFR, EIF1AX, EPAS1, ERBB2, ERBB3, ERBB4, ESR1, EZH2, FAM135B, FGF7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FOXL2, FOXO1, GATA2, GLI1, GNA11, GNAQ, GNAS, HIF1A, HRAS, IDH1, IDH2, IKBKB, IL6ST, IL7R, IRF4, IRS4, KCNJ5, KDR, KIT, KLF4, KLF5, KNSTRN, KRAS, MAGOH, MAP2K1, MAP2K2, MAPK1, MAX, MDM4, MECOM, MED12, MEF2B, MET, MITF, MPL, MTOR, MYC, MYCN, MYD88, MYOD1, NFE2L2, NRAS, NSD2, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, PAX5, PCBP1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3CG, PIK3R2, PIM1, PLCG1, PPP2R1A, PPP6C, PRKACA, PTPN11, PTPRD, PXDNL, RAC1, RAF1, RARA, RET, RGS7, RHEB, RHOA, RICTOR, RIT1, ROS1, RPL10, SETBP1, SF3B1, SIX1, SIX2, SLCO1B3, SMC1A, SMO, SNCAIP, SOS1, SOX2, SPOP, SRC, SRSF2, STAT3, STAT5B, STAT6, TAF1, TERT, TGFBR1, TOP1, TOP2A, TPMT, TRRAP, TSHR, U2AF1, USP8, WAS, XPO1, ZNF217, ZNF429

Genes Assayed for the Detection of Copy Number Variations

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AKT1, AKT2, AKT3, ALK, AMER1, APC, AR, ARAF, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AURKA, AURKC, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BCL2, BCL2L12, BCL6, BCOR, BLM, BMPR2, BRAF, BRCA1, BRCA2, BRIP1, CARD11, CASP8, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHD4, CHEK1, CHEK2, CIC, CREBBP, CSMD3, CTCF, CTLA4, CTNND2, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, DAXX, DDR1, DDR2, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, EGFR, EIF1AX, ELF3, EMSY, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERBB2, ERBB3, ERBB4, ERCC2, ERCC4, ERRF11, ESR1, ETV6, EZH2, FAM135B, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCI, FANCH, FAT1, FBXW7, FGF19, FGF23, FGF3, FGF4, FGF9, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FLT4, FOXA1, FUBP1, FYN, GATA2, GATA3, GLI3, GNA13, GNAS, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, IDH2, IGF1R, IKBKB, IL7R, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KDR, KEAP1, KIT, KLF5, KMT2A, KMT2B, KMT2C, KMT2D, KRAS, LARP4B, LATS1, LATS2, MAGOH, MAP2K1, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK1, MAPK8, MAX, MCL1, MDM2, MDM4, MECOM, MEF2B, MEN1, MET, MGA, MITF, MLH1, MLH3, MPL, MRE11, MSH2, MSH3, MSH6, MTAP, MTOR, MUTYH, MYC, MYCL, MYCN, MYD88, NBN, NCOR1, NF1, NF2, NFE2L2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NRAS, NTRK1, NTRK3, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PCBP1, PDCD1, PDCD1LG2, PDGFRA, PDGFRB, PDIA3, PGD, PHF6, PIK3C2B, PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIM1, PLCG1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,

Report Date: 19 May 2025 5 of 8

Genes Assayed (continued)

Genes Assayed for the Detection of Copy Number Variations (continued)

PRDM1, PRDM9, PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPRT, PXDNL, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RAF1, RARA, RASA1, RASA2, RB1, RBM10, RECQL4, RET, RHEB, RICTOR, RIT1, RNASEH2A, RNASEH2B, RNF43, ROS1, RPA1, RPS6KB1, RPTOR, RUNX1, SDHA, SDHB, SDHD, SETBP1, SETD2, SF3B1, SLCO1B3, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMO, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT6, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TP53, TP63, TPMT, TPP2, TSC1, TSC2, U2AF1, USP8, USP9X, VHL, WT1, XPO1, XRCC2, XRCC3, YAP1, YES1, ZFHX3, ZMYM3, ZNF217, ZNF429, ZRSR2

Genes Assayed for the Detection of Fusions

AKT2, ALK, AR, AXL, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, FGR, FLT3, JAK2, KRAS, MDM4, MET, MYB, MYBL1, NF1, NOTCH1, NOTCH4, NRG1, NTRK1, NTRK2, NTRK3, NUTM1, PDGFRA, PDGFRB, PIK3CA, PPARG, PRKACA, PRKACB, PTEN, RAD51B, RAF1, RB1, RELA, RET, ROS1, RSPO2, RSPO3, TERT

Genes Assayed with Full Exon Coverage

ABRAXAS1, ACVR1B, ACVR2A, ADAMTS12, ADAMTS2, AMER1, APC, ARHGAP35, ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ASXL2, ATM, ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BARD1, BCOR, BLM, BMPR2, BRCA1, BRCA2, BRIP1, CALR, CASP8, CBFB, CD274, CD276, CDC73, CDH1, CDH10, CDK12, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CHEK1, CHEK2, CIC, CIITA, CREBBP, CSMD3, CTCF, CTLA4, CUL3, CUL4A, CUL4B, CYLD, CYP2C9, CYP2D6, DAXX, DDX3X, DICER1, DNMT3A, DOCK3, DPYD, DSC1, DSC3, ELF3, ENO1, EP300, EPCAM, EPHA2, ERAP1, ERAP2, ERCC2, ERCC4, ERCC5, ERRF11, ETV6, FANCA, FANCC, FANCD2, FANCE, FANCE, FANCF, FANCG, FANCI, FANCI, FANCM, FAS, FAT1, FBXW7, FUBP1, GATA3, GNA13, GPS2, HDAC2, HDAC9, HLA-A, HLA-B, HNF1A, ID3, INPP4B, JAK1, JAK2, JAK3, KDM5C, KDM6A, KEAP1, KLHL13, KMT2A, KMT2B, KMT2C, KMT2D, LARP4B, LATS1, LATS2, MAP2K4, MAP2K7, MAP3K1, MAP3K4, MAPK8, MEN1, MGA, MLH1, MLH3, MRE11, MSH2, MSH3, MSH6, MTAP, MTUS2, MUTYH, NBN, NCOR1, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PALB2, PARP1, PARP2, PARP3, PARP4, PBRM1, PDCD1, PDCD1LG2, PDIA3, PGD, PHF6, PIK3R1, PMS1, PMS2, POLD1, POLE, POT1, PPM1D, PPP2R2A, PRDM1, PRDM9, PRKAR1A, PSMB10, PSMB8, PSMB9, PTCH1, PTEN, PTPRT, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RASA1, RASA2, RB1, RBM10, RECQL4, RNASEH2A, RNASEH2B, RNASEH2C, RNF43, RPA1, RPL22, RPL5, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SLX4, SMAD2, SMAD4, SMARCA4, SMARCB1, SOCS1, SOX9, SPEN, STAG2, STAT1, STK11, SUFU, TAP1, TAP2, TBX3, TCF7L2, TET2, TGFBR2, TMEM132D, TNFAIP3, TNFRSF14, TP53, TP63, TPP2, TSC1, TSC2, UGT1A1, USP9X, VHL, WT1, XRCC2, XRCC3, ZBTB20, ZFHX3, ZMYM3, ZRSR2

Relevant Therapy Summary

In this cancer type	In other cancer type	In this cancer	type and other car	ncer types	No eviden	ce
CDKN2A deletion	n					
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
abemaciclib		×	×	×	×	(II)
palbociclib		×	×	×	×	(II)
palbociclib, abemacic	lib	×	×	×	×	(II)
AMG 193		×	×	×	×	(I/II)
CDKN2B deletion	n					

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
abemaciclib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

CDKN2B deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
palbociclib, abemaciclib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

HRR Details

Gene/Genomic Alteration	Finding
LOH percentage	1.35%
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L.

Thermo Fisher Scientific's Ion Torrent Oncomine Reporter software was used in generation of this report. Software was developed and designed internally by Thermo Fisher Scientific. The analysis was based on Oncomine Reporter (6.0.2 data version 2025.04(004)). The data presented here are from a curated knowledge base of publicly available information, but may not be exhaustive. FDA information was sourced from www.fda.gov and is current as of 2025-03-19. NCCN information was sourced from www.nccn.org and is current as of 2025-03-03. EMA information was sourced from www.ema.europa.eu and is current as of 2025-03-19. ESMO information was sourced from www.esmo.org and is current as of 2025-03-03. Clinical Trials information is current as of 2025-03-03. For the most up-to-date information regarding a particular trial, search www.clinicaltrials.gov by NCT ID or search local clinical trials authority website by local identifier listed in 'Other identifiers.' Variants are reported according to HGVS nomenclature and classified following AMP/ ASCO/CAP guidelines (Li et al. 2017). Based on the data sources selected, variants, therapies, and trials listed in this report are listed in order of potential clinical significance but not for predicted efficacy of the therapies.

7 of 8

Report Date: 19 May 2025

References

- 1. Lander et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921. PMID: 11237011
- 2. Baudrin et al. Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol. 2018 Dec 12:8:621. doi: 10.3389/fonc.2018.00621. eCollection 2018. PMID: 30631754
- Nojadeh et al. Microsatellite instability in colorectal cancer. EXCLI J. 2018;17:159-168. PMID: 29743854
- 4. Saeed et al. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol. 2016 Jan 5;6:1462. doi: 10.3389/fmicb.2015.01462. eCollection 2015. PMID: 26779133
- 5. Boland et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248-57. PMID: 9823339
- 6. Halford et al. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002 Jan 1;62(1):53-7. PMID: 11782358
- 7. Imai et al. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 2008 Apr;29(4):673-80. PMID: 17942460
- NCCN Guidelines® NCCN-Colon Cancer [Version 1.2025]
- Pawlik et al. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20(4-5):199-206. PMID: 15528785
- 10. Lee et al. Low-Level Microsatellite Instability as a Potential Prognostic Factor in Sporadic Colorectal Cancer. Medicine (Baltimore). 2015 Dec;94(50):e2260. PMID: 26683947
- 11. Latham et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019 Feb 1;37(4):286-295. PMID: 30376427
- 12. Cortes-Ciriano et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017 Jun 6;8:15180. doi: 10.1038/ncomms15180. PMID: 28585546
- 13. Bonneville et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017;2017. PMID: 29850653
- 14. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125514s172lbl.pdf
- 15. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125554s127lbl.pdf
- 16. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761174s009lbl.pdf
- 17. NCCN Guidelines® NCCN-Rectal Cancer [Version 1.2025]
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/125377s132lbl.pdf
- 19. Ribic et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003 Jul 17;349(3):247-57. PMID: 12867608
- 20. Klingbiel et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 2015 Jan;26(1):126-32. PMID: 25361982
- 21. Hermel et al. The Emerging Role of Checkpoint Inhibition in Microsatellite Stable Colorectal Cancer. J Pers Med. 2019 Jan 16;9(1). PMID: 30654522
- 22. Ciardiello et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev. 2019 Jun;76:22-32. PMID: 31079031
- 23. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 24. Takaku et al. GATA3 in Breast Cancer: Tumor Suppressor or Oncogene?. Gene Expr. 2015;16(4):163-8. PMID: 26637396
- 25. Chou et al. GATA3 in development and cancer differentiation: cells GATA have it!. J Cell Physiol. 2010 Jan;222(1):42-9. PMID: 19798694
- 26. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 27. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 28. Mehra et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005 Dec 15;65(24):11259-64. PMID: 16357129
- 29. Scruggs et al. Loss of CDKN2B Promotes Fibrosis via Increased Fibroblast Differentiation Rather Than Proliferation. Am. J. Respir. Cell Mol. Biol. 2018 Aug;59(2):200-214. PMID: 29420051
- 30. Roussel. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 1999 Sep 20;18(38):5311-7. PMID: 10498883
- 31. Aytac et al. Rb independent inhibition of cell growth by p15(INK4B). Biochem. Biophys. Res. Commun. 1999 Aug 27;262(2):534-8. PMID: 10462509

References (continued)

- 32. Hill et al. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257-79. PMID: 23875803
- 33. Kim et al. The regulation of INK4/ARF in cancer and aging. Cell. 2006 Oct 20;127(2):265-75. PMID: 17055429
- 34. Sekulic et al. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin. Proc. 2008 Jul;83(7):825-46. PMID: 18613999
- 35. Orlow et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J. Invest. Dermatol. 2007 May;127(5):1234-43. PMID: 17218939
- 36. Bartsch et al. CDKN2A germline mutations in familial pancreatic cancer. Ann. Surg. 2002 Dec;236(6):730-7. PMID: 12454511
- 37. NCCN Guidelines® NCCN-Mesothelioma: Peritoneal [Version 2.2025]
- 38. NCCN Guidelines® NCCN-Mesothelioma: Pleural [Version 2.2025]
- 39. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 4.2024]
- Longwen et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med. 2019 Jul 29;17(1):245. PMID: 31358010
- 41. Logan et al. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 2013 Aug;33(8):2997-3004. PMID: 23898052
- 42. von et al. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res. 2015 Sep 15;75(18):3823-31. PMID: 26183925
- 43. Cen et al. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-oncology. 2012 Jul;14(7):870-81. PMID: 22711607
- 44. Vitzthum et al. The role of p16 as a biomarker in nonoropharyngeal head and neck cancer. Oncotarget. 2018 Sep 7;9(70):33247-33248. PMID: 30279955
- 45. Chung et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J. Clin. Oncol. 2014 Dec 10;32(35):3930-8. PMID: 25267748
- 46. Bryant et al. Prognostic Role of p16 in Nonoropharyngeal Head and Neck Cancer. J. Natl. Cancer Inst. 2018 Dec 1;110(12):1393-1399. PMID: 29878161
- 47. Stephen et al. Significance of p16 in Site-specific HPV Positive and HPV Negative Head and Neck Squamous Cell Carcinoma. Cancer Clin Oncol. 2013;2(1):51-61. PMID: 23935769
- 48. NCCN Guidelines® NCCN-Head and Neck Cancers [Version 2.2025]
- 49. Jafri et al. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. . Cancer Discov.2015 Jul;5(7):723-9. PMID: 25873077
- 50. Tu et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018 Jan 4;37(1):128-138. PMID: 28892048
- 51. McConnell et al. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010 Oct;90(4):1337-81. PMID: 20959618
- 52. Ma et al. KLF5 promotes cervical cancer proliferation, migration and invasion in a manner partly dependent on TNFRSF11a expression. Sci Rep. 2017 Nov 16;7(1):15683. PMID: 29146991
- 53. Jia et al. KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene. 2016 Apr 21;35(16):2040-51. PMID: 26189798